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Abstract We are concerned with the solution of time-dependent non-linear hyperbolic par-
tial differential equations. We investigate the combination of residual distribution methods
with a consistent mass matrix (discretisation in space) and a Runge–Kutta-type time-stepping
(discretisation in time). The introduced non-linear blending procedure allows us to retain the
explicit character of the time-stepping procedure. The resulting methods are second order
accurate provided that both spatial and temporal approximations are. The proposed approach
results in a global linear system that has to be solved at each time-step. An efficient way
of solving this system is also proposed. To test and validate this new framework, we per-
form extensive numerical experiments on a wide variety of classical problems. An extensive
numerical comparison of our approach with other multi-stage residual distribution schemes
is also given.

Keywords Hyperbolic conservation laws · Time-dependent problems · Second order
schemes · Residual distribution · Runge–Kutta time-stepping

1 Introduction

In this paper we study the numerical solution of hyperbolic partial differential equations. In
the scalar case these equations take the following form:

∂t u + ∇ · f(u) = 0 in Ω × [0, T ]. (1)
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Ω is the spatial domain and T is the given final time. Equation (1) is equipped with an initial
solution:

u(x, t = 0) = u0(x) x ∈ Ω,
and boundary conditions defined on ∂Ω or a properly defined subset. The above equation
models the evolution of the conserved unknown u(x, t), the flux of which is denoted here by
f . Systems of equations are introduced later in the text. The framework we shall design our
schemes in is that of Residual Distribution (RD).

The residual distribution framework (see [19] for a thorough overview) is widely recog-
nised as an efficient and accurate way of discretising steady state hyperbolic PDEs. It was
originally introduced by Roe [35] as an alternative to the frequently-used finite volume and
finite difference methods. Its ability to perform genuinely multidimensional upwinding [4,20]
enables the construction of approximations free of spurious oscillations, even in the vicinity
of shocks in the solution. More important, it facilitates construction of methods which are
capable of capturing the underlying physical processes incorporated within the mathematical
model in a truly multidimensional manner. Extension to systems, although not straightfor-
ward, is well understood and covered in the literature. Usually it is performed with the aid
of Roe’s parameter vector in the case of the Euler equations [21,37] or, for instance, the
CRD approach of Csík et al. [16] in more complex cases. In [4,25] it was demonstrated that
when residual distribution methods do provide plausible solutions, these are usually more
accurate than those obtained with the aid of more popular finite volume methods. However,
the residual distribution framework lacks the robustness of the finite volume approach, in
particular, when it comes to discretising time-dependent equations. Various techniques of
extending residual distribution methods to transient problems exist, but none is considered
fully satisfactory. The existing approaches can be grouped into two categories: the space-time
and consistent mass matrix frameworks.

The Space-Time residual distribution framework [5,15,17,22,34] is very faithful to the
RD and multidimensional upwinding spirit. Although it allows construction of discretisations
with all the desired properties, those methods are subject to a CFL-type restriction on the
time-step. This restriction is particularly disappointing when taking into account that they
are, by construction, implicit. In the two layer variant [14] one couples two space-time slabs
at a time and solves the equations simultaneously in both. The resulting system to be solved
at each step is larger, but the construction removes from one of the layers the restriction
on the time-step. In theory, this means that an arbitrarily large time-step can be used. For a
full discussion see [15]. More recently, Hubbard and Ricchiuto [26] proposed to drive the
height of one of the space-time slabs (and hence its associated time-step) to zero so that
the scheme becomes discontinuous-in-time. The resulting formulation is simpler than the
original whereas all of the properties are retained.

In this paper we focus on a different approach. The Consistent Mass Matrix formulation
was inspired by the discovery of a close relation between the residual distribution and finite
element frameworks [12]. This, quite naturally, led to the introduction of a mass matrix mi j

(see, in particular, [33] and [18]) and coupling in space of the time derivatives of the nodal
values. It was the first successful attempt to construct second-order residual distribution
schemes for time-dependent problems. This approach was implemented and investigated
in a number of references, i.e. [5,18,33,34] or [11]. In all of these references the authors
used multi-step methods to integrate the underlying PDE in time. It is usually argued that
the major disadvantage of this approach is the fact that the resulting discretisations are
implicit, i.e. the resulting linear system is not diagonal (even if explicit multi-step methods
are utilised) and therefore expensive. In [7] Ricchiuto and Abgrall modified the consistent
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mass matrix framework by introducing the so-called shifted time operator. By combining
it with a multi-stage Runge–Kutta method, they derived a genuinely explicit scheme. The
resulting methods are indeed explicit, but the formulation is somewhat complicated and leaves
open the question of constructing a genuinely positive method. Recently, the authors of this
paper proposed to draw together the discontinuous-in-space residual distribution scheme
[6,27] and the first order forward Euler time-stepping procedure. The resulting scheme [42]
is explicit and positive, but so far only first order accurate.

In this contribution we focus on the consistent mass matrix formulation in its original form,
i.e. continuous-in-time. To integrate the underlying PDE in time we use the second order TVD
Runge–Kutta discretisation method due to Shu and Osher [38]. Although this time-stepping
procedure is explicit, our methods are implicit in the sense that at each time-step (and each RK
stage) a system of linear equations (regardless whether the PDE is linear or non-linear) has
to be solved. This contrasts with the aforementioned space-time approximations, in which
a system of nonlinear equations must be solved at each time-step, therefore reducing the
computation per time-step. We investigate the resulting discretisations in terms of accuracy
and positivity. The order of accuracy we obtain, i.e. two, corresponds to that demonstrated
in [7]. However, by avoiding the shifted time operator we construct a formulation that is
more straightforward. The goal of the new approach was to improve the accuracy of the
explicit Runge–Kutta residual distribution framework of Ricchiuto and Abgrall [7]. The
comparison of numerical results in this paper does indeed demonstrate that the new method
gives significantly more accurate approximations on the same computational meshes, due
to lower numerical diffusion, but only at the expense of requiring more computation per
time-step and reduced stability in regions with strong shocks. The case in which the resulting
system of equations is non-linear (i.e. genuinely non-linear schemes) will not be covered
here. It is a subject of ongoing research.

This paper is structured as follows. In the following section we introduce the notation
and basic assumptions. In Sect. 3 we introduce the Consistent Mass Matrix formulation and
then move to the Runge–Kutta Residual Distribution (RKRD) framework in Sect. 4. This is
followed by the introduction of the explicit Runge–Kutta Residual Distribution framework
of Ricchiuto and Abgrall [7] in Sect. 5. Extension to systems of non-linear equations is
discussed in Sect. 6 and extensive numerical results are presented in Sect. 7.

2 The Notation

Although our approach extends to R
3, for clarity and brevity we assume that the spatial

domain Ω is embedded in R
2. We also assume that Ω is subdivided into non-overlapping

triangular elements, denoted by E, belonging to Th , such that:

⋃

E∈Th

E = Ω.

Di will stand for the subset of triangles containing node xi . It is assumed that the temporal
domain [0, T ] is discretized into a set of N + 1 discrete levels {tn}n=0,1...,N such that:

t0 = 0, t N = T, tn < tn+1 and Δtn = tn+1 − tn .

For each element E ∈ Th and for each node xi ∈ E, ψ E
i is defined as the linear Lagrange

basis function associated with xi respecting:
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ψ E
i (x j ) = δi j ∀i, j ∈ Th,

∑

j∈E

ψ E
j = 1 ∀E ∈ Th . (2)

As long as it does not introduce any ambiguity, the superscript E will be omitted. At each
time level tn the approximate solution un

h is assumed to be globally continuous and linear
within each element E ∈ Th, and is given by:

un
h(x) =

∑

i

ψi (x) un
i , (3)

where un
i = un

h(xi ) are the nodal values of the approximate solution at time tn . Having
decided to focus on piece-wise linear approximations, we aim to design a scheme that is
second order accurate.

Last, but not least, we introduce the cell residual φE (u) :

φE (u) =
∫

E

∇ · f(u) dΩ.

Cell residuals are one of the key ingredients of all residual distribution approximations. This
will become apparent in the following sections.

3 The Consistent Mass Matrix Formulation

Cell residuals introduced in the previous section are used to construct the consistent mass
matrix semi-discrete approximation of (1):

∑

E∈Di

∑

j∈E

m E
i j

du j

dt
+

∑

E∈Di

βiφ
E = 0. (4)

The distribution coefficients βi (i = 1, 2, 3) define the so-called distribution strategy. Note
that each set of these coefficients leads to a distinct approximation. Four examples of such
distributions are given in Sect. 4. Here we only mention that for conservation, in every element
E ∈ Th, the following condition has to be satisfied:

β1 + β2 + β3 = 1 ∀E∈Th .

In the case of steady state problems for which piece-wise linear approximations are imple-
mented, existence of C ∈ R such that:

βi ≤ C ∀E ∈ Th ∀i ∈ E, (5)

i.e. the boundedness of βi , guarantees accuracy of order two (see [5] for details). The defin-
ition of the mass matrix, mi j , that guarantees accuracy of order two in both space and time
when transient problems are considered is not unique. Four different approaches are known,
only one of which will be employed here. A thorough overview was given in [7] in which
it was observed that their Formulation 2 (naming as in [7]) gives best (in terms of accuracy
and stability) results. For each cell E ∈ Th this mass matrix is defined as:

m E
i j = |E |

36
(3δi j + 12βi − 1) (6)

with δi j Kronecker’s delta. The consistency of this mass matrix with the distribution strategy
follows from the dependency of m E

i j on βi . This formulation was originally derived by
März [33]. Its construction is based on the analogy between the linearity preserving RD,
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i.e. methods for which Condition (5) is satisfied, and the stabilized Galerkin finite element
methods.

4 The Runge–Kutta Residual Distribution Framework

The Runge–Kutta Residual Distribution framework is derived by first integrating (1) in time
using Runge–Kutta scheme. Here we choose the second order TVD Runge–Kutta time-
stepping indicated by Shu and Osher [38], which leads to the following semi-discrete formu-
lation:

⎧
⎨

⎩

δu1

Δt + ∇ · f(un) = 0,

δun+1

Δt + 1
2

(∇ · f(un)+ ∇ · f(u1)
) = 0,

(7)

in which δuk = uk − un is the increment during the current Runge–Kutta stage and u1 is the
intermediate Runge–Kutta estimate approximating u at time t = tn+1. Using the consistent
mass matrix formulation (4) to integrate both stages in (7) in space leads to:

⎧
⎪⎨

⎪⎩

∑
E∈Di

∑
j∈E m E

i j
δu1

j
Δt + ∑

E∈Di
βiφ

E (un) = 0,

∑
E∈Di

∑
j∈E m E

i j
δun+1

j
Δt + ∑

E∈Di
1
2 βi

(
φE (un)+ φE (u1)

) = 0.

(8)

Equation (8) defines two linear systems to be solved at each time-step. These systems can be
written in a more compact form as:

{
u1 = un −Δt M−1 φ1,

un+1 = u1 −Δt M−1 φ2,
(9)

which is the form that was employed to carry out numerical experiments in Sect. 7. In
Formulation (9) M is the global mass matrix, the entries of which are defined by Formula
(6), and φ1 and φ2 are the vectors of signals each node has received, i.e.

φ1
i =

∑

E∈Di

βiφ
E (un), φ2

i =
∑

E∈Di

1

2
βi

(
φE (un)+ φE (u1)

)
.

Formulation (9) (or, equivalently, (8)) defines the second order TVD Runge–Kutta Residual
Distribution (RKRD) framework. By choosing different time-stepping routines one obtains
different frameworks. However, we believe that our choice is appropriate. The spatial accuracy
of the residual distribution framework in the form considered here is at most two. Combining
it with higher than second order time-stepping routine is unlikely to increase the accuracy.
This was investigated in [7]. Among the second order Runge–Kutta methods the second
order TVD method (7) is the most frequent choice, which brings us to Formulation (9). For
brevity, hereafter this formulation will be referred to as the Runge–Kutta Residual Distribution
(RKRD) framework.

Let us now introduce four examples of algorithms falling into the framework of RKRD
methods. Each such scheme is constructed by first choosing a distribution strategy for cell
residuals. This distribution determines the β coefficients which are then substituted into (8) to
complete the construction. There is a number of well understood and established distribution
techniques for cell residuals within the RD framework. An overview can be found in [19].
Here we will focus on the

– N, LDA, SU and BLEND
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schemes leading to, respectively, the

– RKRD-N, RKRD-LDA, RKRD-SU and RKRD-BLEND

methods.

The RKRD-N scheme

Among linear and positive schemes, the N scheme of Roe [36] allows the largest time-step
and has the smallest cross diffusion [39]. The N scheme is usually defined with the aid of the
so-called flow sensors. For each vertex i ∈ E, the corresponding flow sensors are defined as:

ki = −a(u) · ni

2
|ei |, k+

i = max(0, ki ), k−
i = min(0, ki ), (10)

in which ni is the outward pointing unit normal vector to edge ei (opposite the i th vertex). |ei |
denotes the length of ei and a(u) = ∂f

∂u is the flux Jacobian. We will also need the following
quantities:

N =
⎛

⎝
∑

j∈E

k+
j

⎞

⎠
−1

, uin = −
∑

j∈E

Nk−
j u j .

Finally, the distribution itself reads:

βN
i φ

E = k+
i (ui − uin).

The N scheme is only first order accurate and hence the RKRD-N scheme cannot be expected
to be more accurate than that. Recall that consistency of the mass matrix discussed in Sect.
3 is required to guarantee that the accuracy remains of order two when a linearity preserving
scheme is applied to time-dependent problems. However, in the case of the N scheme the
linearity preservation condition (i.e. Eq. (5)) is not satisfied and hence there is no need for such
a consistency condition to be considered. Moreover, the equivalence between the stabilised
Galerkin finite element and residual distribution methods was derived on the assumption that
the distribution coefficients are bounded (linearity preservation). Again, the N scheme is not
linearity preserving and hence Formulation (6) cannot be used. Instead, we replace the mass
matrix in this case with the diagonal matrix:

m N
i j = δi j

|E |
3
.

Note that an identical formulation is obtained by row-lumping the high order mass matrix
(6).

The RKRD-LDA scheme

The Low Diffusion A scheme of Roe [36], more often referred to as the LDA scheme, like
the N scheme is linear, but not positive. However, this scheme has one nice property which
the N scheme lacks, namely the linearity preservation. This means that in smooth regions,
provided that the discrete representation of the data is linear, it is second order accurate (see
[4] for details). The distribution coefficients for this scheme are given by:

βL D A
i = k+

i∑
j∈E k+

j

≥ 0.

The consistent mass matrix that guarantees second order of accuracy is defined by (6).
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The RKRD-SU scheme

The SU distribution was inspired by the close link between the residual distribution and
Galerkin finite element frameworks (in particular the Streamline Upwind Petrov Galerkin
approach [10,29,30]). Its derivation can be found in [19]. The distribution coefficients are
given by:

βSU
i = 1

3
+ kiτ,

in which τ is a scaling parameter, taken here as

τ =
⎛

⎝
∑

j∈E

|k j |
⎞

⎠
−1

.

This scheme is linear and linearity preserving, but not positive. As in the case of the LDA
scheme, the consistent mass matrix is defined by (6).

The RKRD-BLEND scheme

Desire to construct methods which are simultaneously linearity preserving and positive brings
the need to consider non-linear distributions. As a representative of this class of discretisa-
tions, the BLEND scheme will be now introduced. It is obtained by blending the two linear
schemes presented so far, namely the positive N and the linearity preserving LDA schemes.
The signals in this case are defined as:

φBL E N D
i = (1 − θ(uh)) φ

L D A
i + θ(uh)φ

N
i ,

in which θ(uh) is a blending coefficient. In this work we propose a blending parameter allow-
ing retention of the explicit nature of the time-marching scheme. In particular, we propose to
combine our RKRD framework with the time-shifted residual evaluation proposed in [7].
In every cell E this blending coefficient is defined as:

θk(uh) =
∣∣∣�E(k)

∣∣∣
∑

j∈E

∣∣∣∣�
N (k)
j

∣∣∣∣

where k = 1, 2 denotes Runge–Kutta stage and �E(k) the total shifted residual:

�E(k) =
∫

E

(
δuk + ek

)
dΩ.

δuk is the so-called shifted time-operator introduced in [7]:

δuk = uk−1 − un (11)

and e1 and e2 are the corresponding evolution operators:

e1 = ∇ · f(un), e2 = 1

2
∇ · f(u1)+ 1

2
∇ · f(un).

Finally, �N (k)
j is determined by signals sent by distributing the residuals with the aid of the

N scheme and is defined as:

�
N (k)
j = |E |

3

δuk

Δt
+ βN

j

∫

E

ek dΩ.
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The mass matrix for the BLEND scheme is defined as:

m BL E N D
i j = θ(uh)m

N
i j + (1 − θ(uh))m

L D A
i j .

Note that the above formulation guarantees that the resulting system of equations is linear.
Indeed, had θk(uh) depended on un+1

h (or, to be more precise, on δuk rather than on δuk),
this would not have been the case and a system of non-linear equations would have been
constructed instead. Therefore the RKRD-BLEND scheme is not genuinely non-linear. Our
aim is to construct efficient schemes and hence the desire to avoid non-linear approximations.

5 The Explicit Runge–Kutta Residual Distribution Framework

The method presented in Sect. 4 is implicit in the sense that at every time-step two linear
systems have to be solved. In [7] Ricchiuto et al. derived an approximation to that approach,
namely the framework of explicit Runge–Kutta Residual Distribution methods, in which
the resulting linear systems are diagonal. It is based on the observation that for every cell
E ∈ Th and set of distribution coefficients βi , there exists a uniformly bounded and locally
differentiable bubble function γi , such that

∑
i∈E γi = 0, and the following relation holds

(cf. Eq. (4)):

∑

E∈Di

∑

j∈E

m E
i j

du j

dt
+

∑

E∈Di

βiφ
E

=
∫

E

ψi

(
∂uh

∂t
+ ∇ · f(uh)

)
dΩ +

∫

E

γi

(
∂uh

∂t
+ ∇ · f(uh)

)
dΩ. (12)

For a proof of this statement and examples of bubble functions satisfying the above refer to
[7]. The Lagrange basis functionψi acts here as the Galerkin test function. As a consequence,
every residual distribution discretization that fits into Formulation (4) can be rewritten as a
sum of a finite element-type term and a stabilizing bubble function contribution. It follows
immediately that the first stage in System (8) can be rewritten as

∑

E∈Di

∑

j∈E

m E
i j

δu1
j

Δt
+

∑

E∈Di

βiφ
E (un)

=
∫

E

ψi

(
δu1

Δt
+ ∇ · f(un)

)
dΩ +

∫

E

γi

(
δu1

Δt
+ ∇ · f(un)

)
dΩ. (13)

Similarly, the second stage in (8) can be rewritten as

∑

E∈Di

∑

j∈E

m E
i j

δun+1
j

Δt
+

∑

E∈Di

1

2
βi

(
φE (un)+ φE (u1)

)

= 1

2

∫

E

ψi

(
δun+1

Δt
+ ∇ · f(u1)

)
dΩ + 1

2

∫

E

γi

(
δun+1

Δt
+ ∇ · f(u1)

)
dΩ

+ 1

2

∫

E

ψi

(
δun+1

Δt
+ ∇ · f(un)

)
dΩ + 1

2

∫

E

γi

(
δun+1

Δt
+ ∇ · f(un)

)
dΩ. (14)
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Recall that the above formulation leads to a global non-diagonal mass matrix that has to be
solved at every stage of the Runge–Kutta time-stepping. In order to construct a genuinely
explicit method, i.e. such that the mass matrix is diagonal, Ricchiuto and Abgrall introduced
the so-called shifted time-operator,

δuk = uk−1 − un , (15)

and substituted it into the right-hand-side of Eqs. (13)–(14), but only in the bubble function
contribution. In the first stage (Eq. (13)), this leads to the approximation

∑

E∈Di

∑

j∈E

m E
i j

δu1
j

Δt
+

∑

E∈Di

βiφ
E (un)

≈
∫

E

ψi

(
δu1

Δt
+ ∇ · f(un)

)
dΩ +

∫

E

γi

(
δu1

Δt
+ ∇ · f(un)

)
dΩ. (16)

A similar relation holds for the second stage, i.e. Eq. (14). The next steps involve mainly
algebraic manipulations and are detailed in [7]. The final form of the scheme considered here,
referred to in [7] as the globally lumped formulation, is given by

⎧
⎨

⎩
|Si | u1

i −un
i

Δt + ∑
E∈Di

βiφ
E (un) = 0,

|Si | un+1
i −u1

i
Δt + ∑

E∈Di
βiΦ

RK (un, u1) = 0,
(17)

in which ΦRK is the Runge–Kutta residual defined as

ΦRK (un, u1) =
∑

j∈E

m E
i j

u1
j − un

j

Δt
+ 1

2
βi

(
φE (un)+ φE (u1)

)
.

If this formulation is rewritten in the form of Eq. (9) then
{

u1 = un −Δt Mex
−1 φex

1,

un+1 = u1 −Δt Mex
−1 φex

2,
(18)

in which Mex is a diagonal matrix, the entries of which are given by: (Mex)i = 1
|Si | . The

right-hand-side vectors φex
1 and φex

2 are defined as:

(φex
1)i =

∑

E∈Di

βiφ
E (un), (φex

2)i =
∑

E∈Di

βiΦ
RK (un, u1) .

This contrasts with the matrix, M, defining the (implicit) RKRD scheme (9), which is, in
general, non-diagonal. Ricchiuto and Abgrall [7] prove that the above construction does not
degrade the overall accuracy of the scheme. Their experimental investigation also demon-
strates that the resulting discretization is second order accurate. This is confirmed by the
numerical results presented in Sect. 7.

As in the case of the (implicit) RKRD framework, four different distribution strategies
will be considered here, namely the LDA, SU, N and BLEND schemes. These will lead to,
respectively, the explicit RKRD-LDA, explicit RKRD-SU, explicit RKRD-N and explicit
RKRD-BLEND schemes. The distribution coefficients, βi , and the blending parameter, θ,
are defined as in Sect. 4. Note that the (implicit) RKRD-N and explicit RKRD-N schemes
are, by construction, identical.
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It should be pointed out that in [7] the authors, apart from Scheme (18), presented one
more formulation of the explicit RKRD framework: the so-called selectively lumped explicit
RKRD scheme. The two differ only slightly, the latter being somewhat more complicated
and slightly less stable (based on experimental observations). Here only the globally lumped
formulation will be considered as this document is only meant to give an overview rather
than a complete review of possible alternatives. Moreover, as already pointed out, between
the two the globally lumped formulation is more straightforward and gives better results.

6 Non-Linear Systems of Equations

To demonstrate the robustness of the computational frameworks presented in Sects. 4 and 5 we
shall employ them to solve a system of non-linear hyperbolic PDEs, namely the Euler equa-
tions of fluid dynamics. We will also use this model problem to compare the two approaches
when applied in more involved scenarios.

The underlying system of equations can be written in a vector form as:

∂t w + ∇ · F = 0 (19)

in which w is the vector of conserved variables and F = (g,h) are the conservative fluxes.
In the two-dimensional setting, i.e. in R

2, these are given by:

w =

⎛

⎜⎜⎝

ρ

ρu
ρv

Etotal

⎞

⎟⎟⎠ , g =

⎛

⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

u(p + Etotal)

⎞

⎟⎟⎟⎠ h =

⎛

⎜⎜⎜⎝

ρv

ρuv

ρv2 + p

v(p + Etotal)

⎞

⎟⎟⎟⎠ .

In the above ρ is the density and u and v are the x and y components of the velocity,
respectively. The total energy Etotal is related to the other quantities by a state equation
which, for a perfect gas, takes the form:

Etotal = p

γ − 1
+ 1

2
ρ

(
u2 + v2) .

Here γ is the ratio of specific heats (the Poisson adiabatic constant) and p is the pressure.
Only the case of air will be considered, that is γ = 1.4.

6.1 Conservative Linearisation

In the context of residual distribution methods, the Euler equations are most frequently solved
under the assumption that the “parameter vector” of Roe [37]:

z =

⎛

⎜⎜⎝

z1

z2

z3

z4

⎞

⎟⎟⎠ = √
ρ

⎛

⎜⎜⎝

1
u
v

H

⎞

⎟⎟⎠ ,

varies linearly within each mesh cell. In the above H stands for the total enthalpy H =
Etotal+p

ρ
. The parameter vector z and its linearity facilitate construction of a conservative

linearisation. It is a very desirable feature when dealing with hyperbolic equations as it
guarantees that the position and strength of non-linear discontinuities in the solution are
approximated correctly.
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By analogy with the scalar case, the cell residual, ΦE , lies at the basis of all RD approx-
imations of (19):

ΦE =
∫

E

∇ · F(wh) dΩ =
∮

∂E

F(wh) · n d�. (20)

n is the outward pointing unit normal vector. In order to derive a discrete system approxi-
mating (19), one has to find an efficient and accurate way of calculating (20). Evaluating it
in terms of the parameter vector gives:

ΦE =
∫

E

(
∂g
∂z

zx + ∂h
∂z

zy

)
dΩ. (21)

Assuming that z is piece-wise linear (and hence both zx and zy are piece-wise constant), one
can further expand (21) as:

ΦE =
⎛

⎝
∫

E

∂g
∂z

dΩ

⎞

⎠ zx +
⎛

⎝
∫

E

∂h
∂z

dΩ

⎞

⎠ zy . (22)

From quadratic dependence of the numerical flux on z (and hence the linear dependence of
the flux Jacobian on it), ΦE can be evaluated exactly using a one point quadrature rule:

ΦE = |E |
(
∂g(z̄)
∂z

zx + ∂h(z̄)
∂z

zy

)
(23)

in which z̄ is taken as the average of the values of z at the vertices of the corresponding
triangle E :

z̄ = z1 + z2 + z3

3
, with zi = z(xi ) and xi ∈ E . (24)

Within each cell E, the gradient of z is constant. Denoting by ni the unit outward pointing
normal to edge ei ∈ E (opposite the i th vertex), it can be calculated using:

∇z = − 1

2|E | |ei |
3∑

i=1

zi ni .

Equation (23), gives a very simple formula for evaluating cell residuals, but expressed in
terms of Roe’s parameter vector. A similar formula in terms of the conservative variables
would be more practical and natural to work with. This can be achieved by first noting that:

zx = ∂z
∂w

wx , zy = ∂z
∂w

wy .

and then showing that the averaged gradient of w :

ŵx = 1

|E |
∫

E

wx dΩ, ŵy = 1

|E |
∫

E

wy dΩ
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can be evaluated as:

ŵx = 1

|E |
∫

E

∂w
∂z

zx dΩ = 1

|E |
∫

E

∂w
∂z

dΩ zx = ∂w(z̄)
∂z

zx ,

ŵy = 1

|E |
∫

E

∂w
∂z

zy dΩ = 1

|E |
∫

E

∂w
∂z

dΩ zy = ∂w(z̄)
∂z

zy .

It now follows that (23) is equivalent to:

ΦE = |E |
(
∂g(z̄)
∂w

ŵx + ∂h(z̄)
∂w

ŵy

)
, (25)

which is the formula that we used to get our results.
The linearisation process described above shows how to evaluate the cell residuals ΦE

exactly. This means the procedure outlined here is conservative as:

∑

E∈Ω
ΦE =

∑

E∈Ω

∮

∂E

Fh · n d� =
∮

Ω

Fh · n d�.

In other words, the discrete flux balance (summed up over the whole domain) reduces to
boundary contributions, even though it is evaluated numerically.

A detailed description of how to evaluate the time derivative ∂t w using the hypothesis of
linear z can be found in [5]. Here we decided to use a mixed approach and to simplify the
calculations by evaluating the time derivative using the hypothesis of linear w rather than z.

6.2 Matrix Distribution Schemes

Conservative linearisation discussed in the previous section is simply a tool that is imple-
mented to calculate cell residuals when the underlying system of PDEs being solved is the
Euler equations. The next step is to distribute those residuals among the vertices of the given
cell and degrees of freedom located at each of those vertices (four unknowns per vertex in the
case of two-dimensional Euler equations). To this end we implemented the so called matrix
distribution approach devised in [1,40,41]. We note that contrary to the previous section in
which the parameter vector of Roe was presented, definitions presented here are independent
of the underlying system of PDEs being discretized. The only condition is that the underlying
system is hyperbolic.

Matrix distribution schemes are constructed by heuristically generalising their scalar coun-
terparts to systems of equations. Only the matrix LDA, N, and BLEND schemes will be
considered here, all of which are defined with the aid of matrix flow parameters. For every
cell E ∈ Th these are defined as (cf. Eq. (10)):

K j = −1

2
(A(w̄),B(w̄)) n j |e j |,

with w̄ being the cell average of w (cf. Eq. (24)) and A and B defined as Jacobian matrices
of the fluxes:

A = ∂g
∂w
, B = ∂h

∂w
. (26)

Vector n j is the unit normal to edge e j (opposite the j th vertex) pointing outward from cell
E . |e j | denotes the length of e j . Note that this definition is consistent with the definition of
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scalar flow sensors. Indeed, if f and u from Eq. (1) are substituted into (26) then the resulting
quantity will be equal to the scalar flow sensor, ki , introduced in Sect. 4.

Since the system is hyperbolic, the matrix flow sensor admits real eigenvalues and a
complete set of right and left eigenvectors. In other words, it can be diagonalised:

K j = R j� j R
−1
j ,

with R j being composed of the right eigenvectors of K j and � j containing the corresponding
eigenvalues on its diagonal and zero elsewhere. These matrices can be found in, for exam-
ple, Sect. 4.3.2 of the monograph by Godlewski and Raviart [24]. The authors also give a
very detailed presentation of the conservative linearisation for the two-dimensional Euler
equations.

Let now λ1, λ2, λ3 and λ4 denote the non-zero entries of � j (eigenvalues of K j ). The
following matrices based on � j :

�+
j = diag{max(0, λk)}4

k=1, �−
j = diag{min(0, λk)}4

k=1,

and

∣∣� j
∣∣ = diag |λk |4k=1 = �+

j − �−
j ,

can now be used to define:

K+
j = R j�

+
j R−1

j , K−
j = R j�

−
j R−1

j ,
∣∣K j

∣∣ = R j
∣∣� j

∣∣ R−1
j .

The above definitions are, again, consistent with the corresponding ones in the scalar case,
cf. Eq. (10). It is worth recalling that for all scalar residual distribution methods/frameworks
considered here, the flow sensors are evaluated using only the previous (already calculated)
solution. This guarantees that the resulting systems of equations are linear. Matrix flow
sensors are consistent with their scalar counterparts and hence a similar property holds in the
case considered here. We will now present particular matrix distribution schemes.

The LDA scheme The split residuals for the matrix LDA scheme are defined as:

φL D A
i = BL D A

i φE , BL D A
i = K+

i N, N =
⎛

⎝
∑

j∈E

K+
j

⎞

⎠
−1

,

The existence of matrix product K+
i N was proven in [2,4].

The N scheme The matrix N scheme is defined by:

φN
i = K+

i (wi − win), win = −N
∑

j∈E

K−
j w j ,

The existence of matrix N was proven in [2,4].

The BLEND scheme The matrix BLEND scheme is given by:

φBL E N D
i = ΘφN

i + (I − Θ)φL D A
i ,
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with I the identity matrix. The entries of the non-linear blending matrix Θ were computed
using the following formula:

Θk,k =
∣∣φE

k

∣∣
∑

i∈E

∣∣∣φN
i,k

∣∣∣
. (27)

In expression (27), index k refers to the kth equation of the system, i.e. φE
k and φN

i,k are

the kth components of vectors φE and φN
i , respectively [16]. Note that Θ is a diagonal

matrix. Depending on the problem being solved (smooth or exhibiting shocks), one is free to
either give preference to the LDA scheme for smooth problems (set all the diagonal values
to minimum), or to the N scheme for non-smooth problems (set all the diagonal values to
maximum).

The mass matrix (6) for systems is derived by applying the procedure outlined in [33]
to systems. Since at every vertex i ∈ E there are four degrees of freedom, the mass matrix
coefficient m E

i j becomes a 4 × 4 matrix ME
i j defined as:

ME
i j = |E |

36
(3δi j I + 12BE

i − I),

in which BE
i is the corresponding distribution matrix and I is the identity matrix.

7 Numerical Results

In this section we will use a range of test cases, for a linear scalar equation, a non-linear scalar
equation and a nonlinear system of equations, to demonstrate the accuracy and efficiency of
the implicit RKRD schemes and compare them with the corresponding explicit schemes.
Recall that we are using the terms implicit and explicit to distinguish between the two
formulations, even though the Runge–Kutta time-stepping used is explicit in both cases.

We used two types of triangulations, i.e. structured (regular and isotropic) and unstruc-
tured, examples of which are illustrated in Fig. 1. Further details regarding the meshes are
discussed when particular results are presented. The linear systems resulting from the implicit
RKRD discretization were solved using PETSc [9] (see also the manual [8]) within which the
ILU preconditioned GMRES solver was used. Since it gave good results, no other solver was
implemented. To guarantee convergence, the relative tolerance in PETSc, i.e. the stopping
criterion, was set to 10−8 in the case of scalar equations and to 10−5 for the Euler equations.
Reducing it, i.e. setting to values lower than 10−5, did not show any noticeable improvements
(qualitative nor quantitative). However, in the case of the scalar equations the extra overhead
related to setting a lower tolerance did not have a significant effect on the efficiency and we
decided to run our experiments using the reduced value. The initial estimate was always set
to zero.

In all computations the time-step Δt was calculated using the following formula:

Δti = CFL
|Si |∑

E∈Di
αE

∀i ∈ Th .

The αE coefficient is defined as:

αE = 1

2
max
j∈E

∥∥∥∥
∂f(u j )

∂u

∥∥∥∥ hE , (28)
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Fig. 1 Representative structured (left) and unstructured (right) grids used for transient problems

hE stands for the reference length for element E in the scalar case, while for the Euler
equations this coefficient was set to:

αE = 1

2
max
j∈E

(||u j || + a j
)
.

hE stands for the reference length for element E . The velocity vector u j = (u j , v j ) is
evaluated at vertex j ∈ E and the speed of sound a j is given by:

a j =
√
γ p j

ρ j
. (29)

The Courant-Friedrichs-Lewy (CFL) number was set to 0.9 in the case of scalar equations
and between 0.1 and 0.9 in the case of the Euler equations. Precise values are given when
the corresponding results are presented.

7.1 Scalar Equations

Three distinct scalar test problems were implemented. Test Cases A and B are linear equations
with smooth initial conditions which were used to measure convergence rates. Test Case C is a
non-linear equation with a piece-wise constant initial condition, the solution to which exhibits
shocks and rarefaction waves. It was employed to investigate positivity. In all experiments,
the final time was set as:

– T = 1 for Test Cases A and C;
– T = π

2 for Test Case B.

Test Case A: The constant advection equation given by

∂t u + a · ∇u = 0 on Ωt = Ω × [0, 1]
with Ω = [−1, 1] × [−1, 1] and a = (1, 0). The exact solution to this problem (which was
also used to specify the initial condition at t = 0) is given by

u(x, t) =
{

z5
(
70z4 − 315z3 + 540z2 − 420z + 126

)
if r < 0.4,

0 otherwise
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in which r =
√
(x + 0.5 − t)2 + y2, z = − r−0.4

0.4 and x = (x, y). Note that this function is

C4(Ω) regular. The boundary conditions were set to

u(x, t) = 0 on ∂Ω.

Note that for structured grids the advection velocity given above is aligned with the mesh.

Test Case B: The rotational advection equation, given by:

∂t u + a · ∇u = 0 on Ωt = Ω × [0, π
2

]
with Ω = [−1, 1] × [−1, 1] and a = (−y, x). The exact solution to this problem (which
was also used to specify the initial condition at t = 0) is given by

u(x, t) =
{

z5(70z4 − 315z3 + 540z2 − 420z + 126) if r < 0.4,

0 otherwise

where r = √
(x − xc)2 + (y − yc)2 and

z = −r − 0.4

0.4
, xc = 1

2
cos

(
t − π

2

)
, yc = 1

2
cos

(
t − π

2

)
.

The boundary conditions were set to:

u(x, t) = 0 on ∂Ω.

Contrary to Test Case A, here the advection velocity is generally not aligned with the mesh.
This test case is used to make sure that results obtained for Test Case A are not biased by the
direction of the flow.

Test Case C: The inviscid Burgers’ equation is given by:

∂t u + ∇ · f(u) = 0 on Ωt = Ω × [0, 1]
with f = ( u2

2 ,
u2

2 ). As for Test Cases A and B, the spatial domain is a square:Ω = [−1, 1]×
[−1, 1]. The initial condition was set to be piece-wise constant:

u(x, 0) =
{

1 if x ∈ [−0.6,−0.1] × [−0.5, 0]
0 otherwise

The boundary conditions were set to:

u(x, t) = 0 on ∂Ω.

The solution to this problem is discontinuous and exhibits rarefaction and shock waves
[31,32] and was used to test for positivity.

Linear equations (Test Case A and B) were solved on structured grids. To demonstrate
robustness of the methods discussed here, in particular to show that they can be used with
both structured and unstructured discretisations of the domain, an unstructured mesh with
26,054 elements (topology similar to that on the right of Fig. 1) was used in the case of the
non-linear Burgers’ equation.

The grid convergence analysis confirmed that the implicit/explicit RKRD-N scheme (recall
that this scheme is the same in both frameworks) is only first order accurate, whereas both
forms of RKRD-LDA, RKRD-SU and RKRD-BLEND scheme exhibit convergence of order
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Fig. 2 Grid convergence in the L2 norm for the implicit and explicit RKRD-LDA (top), RKRD-SU (middle)
and RKRD-BLEND (bottom) schemes. The errors shown are for Test Cases A (left) and B (right)

two. The behaviour of the error in the second order schemes as the mesh is refined is presented
in Fig. 2. The LDA and SU schemes gave best results, the SU scheme being noticeably more
accurate than the LDA scheme. The BLEND scheme is slightly less accurate than both of
them. This is most likely due to its use of a non-linear combination of first and second order
schemes. In terms of accuracy on a given mesh, the implicit RKRD scheme outperformed its
explicit counterpart. The difference is relatively small in the case of the non-linear BLEND
scheme, but becomes more noticable when moving to the linear distributions. In the case of
the SU scheme it was over an order of magnitude.

These experiments were carried out on a set of regular triangular meshes (topology as on
the left of Fig. 1) with the coarsest mesh of a 14×14 regular grid refined uniformly 6 times by
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Fig. 3 2d Burgers’ equation: the analytical solution. Left: contours at time t = 1. Middle: solution along the
line y = 0.3 and along the symmetry line, y = x +0.1. Right: minimum and maximum values of the solution

a factor 2 in each direction. The accuracy was monitored by the convergence of the L2 norm
of error at the final time of the simulation with respect to the exact solution. The behaviour
of the L1 and L∞ norms was qualitatively and quantitatively very similar. Carrying out a
similar grid refinement study on unstructured meshes led to qualitatively similar results.

Concerning Test Case C, i.e. Burgers’ equation, Fig. 3 shows the contours and cross
sections (along the symmetry line y − x = 0.1 and y = 0.3) of the exact solution [43]. The
maximum and minimum values of the profile are written next to the plots. Similar plots and
quantities are given for the approximate solutions obtained with the second order schemes
in both RKRD frameworks, see Figs. 4, 5 and 6.

As expected, the N scheme gave a solution free of spurious oscillations (it is positive),
though more diffusive than schemes for which results are shown. The solution obtained
with the aid of the LDA scheme, Fig. 4, exhibits oscillations near discontinuities (again,
as expected). Compared to the explicit RKRD approach, these oscillations are much more
pronounced when the implicit RKRD framework is used, suggesting a reduction in the
numerical dissipation incurred. Other schemes showed far less sensitivity to whether the
RKRD discretization was explicit or implicit. The implicit and explicit RKRD-BLEND
schemes performed much better than the implicit and explicit RKRD-LDA schemes, respec-
tively, in the sense that blending smooths the solutions and the resulting approximations have
smaller under/over-shoots. Although less diffusive then the N scheme, The BLEND scheme
is less diffusive than the N scheme, but not completely oscillation-free. To summarise, the
BLEND scheme gives the best trade-off between being oscillation-free and second order
accurate. In terms of accuracy the implicit framework is more accurate, but more prone to
numerical oscillations than its explicit counterpart.

Finally, we want to comment on scaling and performance of the linear solver that was
applied to solve linear systems resulting from the implicit RKRD discretization. As men-
tioned earlier, only GMRES preconditioned with ILU was used. To guarantee convergence,
the linear solver was set to iterate until the relative tolerance,

rtol = ||r ||l2

||b||l2
,

reached 10−8. In the above, r is the current residual and b is the right-hand-side vector (since
the initial estimate was set to zero, b is also the initial residual). For all test cases and for
all schemes the linear solver converged, on average, in less than 10 iterations, with the final
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Fig. 4 2d Burgers’ equation: implicit (top) and explicit (bottom) RKRD-LDA schemes. Left: contours at time
t = 1. Middle: solution along line y = 0.3 and along the symmetry line, y = x + 0.1. Right: minimum and
maximum values of the solution

residual equal to roughly 10−11. Some sample results are given in Table 1. The behaviour
of the iterative solver when the BLEND scheme is used may seem odd as the number of
iterations needed for convergence for the first and the second stage of the Runge–Kutta time-
stepping differs by around 100 %. This is due to the fact that during the first stage the blending
parameter picks the first order N scheme most of the time and the system of equations is very
close to a diagonal matrix. The opposite situation is taking place during the second stage.

7.2 The Euler Equations

In the case of the Euler equations three distinct test problems were implemented:

– Double Mach Reflection (the solution exhibits strong shocks);
– Mach 3 Flow Over a Step (the solution exhibits strong shocks);
– Advection of a Vortex (the analytic solution is C2 regular).

Shocks appearing in the Double Mach Reflection and Mach 3 test cases were too strong for
the LDA scheme to cope with. This being the case, only the RKRD-BLEND scheme was
considered in these cases.

Double Mach Reflection

This problem was originally introduced by Woodward et al. in [44]. It constitutes a very
severe test for the robustness of schemes designed to compute discontinuous flows. The flow

123



J Sci Comput

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

RKRD−SU

−1 −0.5 0 0.5 1

0

0.25

0.5

0.75

1

x
u

y = 0.3
symm. line

RKRD−SU

umin umax

-0.167 1.058

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

explicit RKRD−SU

−1 −0.5 0 0.5 1

0

0.25

0.5

0.75

1

x

u

y = 0.3
symm. line

explicit RKRD−SU

umin umax

-0.140 1.017

Fig. 5 2d Burgers’ equation: implicit (top) and explicit (bottom) RKRD-SU schemes. Left: contours at time
t = 1. Middle: solution along line y = 0.3 and along the symmetry line, y = x + 0.1. Right: minimum and
maximum values of the solution

consists of the interaction of a planar right-moving Mach 10 shock with a 30◦ ramp. In the
frame of reference used, the x axis is aligned with the ramp. The computational domain is the
rectangle [0, 4] × [0, 1], with the ramp starting at x = 1

6 and stretching till the right-hand-
side corner of the domain (x = 4, y = 0). The simulations were run until time T = 0.2
on unstructured meshes with topology similar to that in Fig. 7. At the initial state, the shock
forms a 60◦ angle with the x axis. See Fig. 8 for the geometry and initial values of the solution.
The C F L number was set to 0.9.

For this test case it is customary to plot contours of the density field. These are pre-
sented in Fig. 9. Only the region between x = 0 and x = 3 is displayed, although the
grid continues to x = 4. The air ahead of the shock remains undisturbed and the shorter
domain makes the presentation clearer. All the considered schemes successfully captured
the interaction between the shock and the ramp (see [7,13] and [44] for reference results).
As expected, refining the mesh increased the resolution and the accuracy with which that
interaction was resolved. In all cases, the BLEND scheme gave a solution exhibiting higher
resolution and thus capturing the shocks more accurately than the N scheme (results not
shown). The coarsest mesh was insufficient to capture the contact emanating from the
triple point and refining it led to a significant improvement. The explicit RKRD-BLEND
and implicit RKRD-BLEND schemes, gave comparable results, shown in Fig. 9, how-
ever the one obtained with the aid of the explicit RKRD-BLEND scheme is of noticeably
higher resolution. This is probably due to the fact that in the case of the implicit RKRD-
BLEND scheme values on the diagonal of the blending matrix � (cf. Eq. (27)) were set

123



J Sci Comput

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

RKRD−BLEND

−1 −0.5 0 0.5 1

0

0.25

0.5

0.75

1

x

u

y = 0.3
symm. line

RKRD−BLEND

umin umax

-0.017 0.915

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

explicit RKRD−BLEND

−1 −0.5 0 0.5 1

0

0.25

0.5

0.75

1

x

u
y = 0.3
symm. line

explicit RKRD−BLEND

umin umax

-0.011 0.914

Fig. 6 2d Burgers’ equation: implicit (top) and explicit (bottom) RKRD-BLEND schemes. Left: contours at
time t = 1. Middle: solution along line y = 0.3 and along the symmetry line, y = x + 0.1. Right: minimum
and maximum values of the solution

Table 1 Performance of the GMRES solver when applied to the linear systems resulting from the second
order RKRD discretisations (Test Case B)

6,272 25,088 100,352 401,408 1,605,632

LDA GMRES iter. 8.52/8.52 7.95/7.95 7.76/7.76 7.74/7.74 7.63/7.63

||rF ||2 1.39e−10 1.9e−11 1.92e−11 4.8e−12 6.55e−12

BLEND GMRES iter. 4.30/7.56 4.44/8.21 4.33/8.68 3.29/7.82 4.27/8.57

||rF ||2 9.84e−11 2.09e−11 2.18e−11 1.03e−11 1.03e−11

SU GMRES iter. 7.76/7.78 6.41/6.41 6/6 5.88/5.88 5.87/5.87

||rF ||2 2.4e−11 8.78e−11 8.61e−12 1.59e−12 5.13e−13

The table shows the average number of iterations it took to reach the stopping criterion during the first/second
stage of the Runge–Kutta time-stepping and the l2 norm of the final residual (when GMRES converged at
the final time-step) at the second stage of the Runge–Kutta time-stepping (denoted by ||rF ||2). Results are
given for the meshes used earlier in the grid convergence analysis (with 6,272, 25,088, 100,352, 401,408 and
1,605,632 elements, cf. top row of the table)

to the maximum value (i.e. the preference was given to the first order N scheme). Other-
wise, instabilities would stop the algorithm from completing the simulation. The results in
Fig. 9 are comparable with those obtained in [13] and [44] on meshes with similar resolu-
tion.
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Fig. 7 The coarsest grid for the Double Mach Reflection test case, 7,865 cells
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Fig. 8 The geometry and initial condition for the Double Mach Reflection test case

Mach 3 Flow Over a Step This test was originally introduced in the paper by Emery [23]
and more recently reviewed by Woodward et al. in [44]. The problem begins with uniform
Mach 3 flow in a wind tunnel containing a step. The wind tunnel is 1 length unit wide and 3
length units long. The step is 0.2 length units high and is located 0.6 length units from the
left-hand end of the tunnel (see Fig. 10 for the geometry and the initial condition). The inflow
and outflow conditions are prescribed at the left and right boundaries (y = 0.0 and y = 3.0),
respectively. The exit boundary condition has no effect on the flow, because the exit velocity
is always supersonic. Initially the wind tunnel is filled with a gas, which everywhere has
density 1.4, pressure 1.0, and velocity (3, 0). Gas with this density, pressure, and velocity
is continually fed in from the left-hand boundary. Along the walls of the tunnel reflecting
boundary conditions are applied. The corner of the step is the centre of a rarefaction fan
and hence is a singular point of the flow. Following Woodward and Colella [44], in order to
minimize numerical errors generated at this singularity, additional boundary conditions near
the corner of the step were prescribed. For every boundary cell E located behind the step and
such that, ∀x ∈ E, 0.6 ≤ x ≤ 0.6125, all the variables were reset to their initial values. This
condition is based on the assumption of a nearly steady flow in the region near the corner. The
simulations were carried out on an unstructured mesh with 71,080 nodes with the reference
length set to approximately 1

80 at the beginning and the end of the domain and 1
1,000 at the

corner of the step. The zoom of the mesh near the singularity point is illustrated in Fig. 11.
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Fig. 9 Double Mach reflection: density contours for the explicit (left) and implicit (right) RKRD-BLEND
schemes for meshes of 7,865 cells, for which the mesh referenbce size is h = 1/30 (top), 55,927 cells, for
which the reference mesh size is h = 1/80 (middle) and 278,141 cells, for which the reference mesh size is
h = 1/190 (bottom)
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p = 1 , ρ = 1.4 , u = 3 , v = 0

Fig. 10 Geometry and the initial condition for the Mach 3 test case

The C F L number was set to 0.8 for the explicit framework and 0.5 for the implicit approach.
In the latter case, when the CFL was set to 0.8, negative densities appeared in the numerical
solution at t ≈ 2.35 since the implicit scheme generates slightly lower numerical dissipation
(as noted when approximating the scalar equations).

Density contours at times t = 0.5, t = 1.5 and t = 4.0 obtained with the aid of explicit
RKRD-BLEND and implicit RKRD-BLEND schemes are plotted in Fig. 12. All the figures
show a sharp resolution of the shocks and are comparable to results that one can find in the
literature obtained on meshes with similar resolution (see, for instance, [7,26] and [15]). The
implicit RKRD-BLEND scheme captured the Mach stem more accurately, see Fig. 12. In
both the implicit and explicit case the values on the diagonal of the blending matrix � (cf.
Eq. (27)) were set to maximum (i.e. the preference was given to the first order N scheme).
Otherwise, instabilities close to the corner of the step would prevent the algorithms from
completing the simulations.
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Fig. 11 The zoom of the grid used for the Mach 3 Flow Over a Step test case near the singularity point
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Fig. 12 Mach 3 flow over a step: density contours for the explicit (left) and implicit (right) RKRD-BLEND
schemes at time t = 0.5 (top), t = 1.5 (middle) and t = 4.0 (bottom)

Advection of a Vortex The following problem was originally introduced in [22]. Its main
appeal is the fact that the exact solution to this test case is known. The problem was solved on
a rectangular domain [0, 2]×[0, 1] with an inflow boundary on its left side (x = 0.0), outflow
at the right end of the domain (x = 2) and solid wall boundary conditions at the bottom and
the top. The density for this test was constant and set to ρ = 1.4 throughout the domain. The
centre of the vortex, (xc, yc), was initially set to (0.5, 0.5) and was then advected during the
simulation with the mean stream velocity vm = (6, 0). The flow velocity was given by the
mean vm and the circumferential perturbation, i.e. v = vm + vp , with:

vp =
{

15 (cos(4πr)+ 1) (−y, x) for r < 0.25,

(0, 0) otherwise,

with r = √
(x − xc)2 + (y − yc)2. The pressure, similarly to the velocity vector, was given

by its mean value pm = 100 plus perturbation, i.e. p = pm + pp :

pp =
{
Δp + C for r < 0.25,

0 otherwise,
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Fig. 13 The coarsest structured (left) and unstructured (right) grid used in the grid convergence analysis for
the Advection of a Vortex test case

Table 2 The minimum and maximum values of the pressure obtained with the aid of the LDA, N and BLEND
schemes using the explicit (ex) and implicit (im) RKRD frameworks

Scheme N ex BLEND im BLEND ex LDA im LDA exact

pmin 98.77133 94.11941 93.5180 93.06300 92.90018 93.213

pmax 100.1191 100.1159 100.0004 100.0766 100.0803 100

with Δp + C defined so that the solution is C2 regular:

Δp = 152ρ

(4π)2

(
2 cos(4πr)+ 8πr sin(4πr)+ cos(8πr)

8
+ πr sin(8πr)+ 12π2r2

)
.

The regularity is guaranteed by choosing C such that p|r=0.25 = pm = 100.With the above
setup the maximal Mach number in the domain is M = 0.8. The simulation was run until
time T = 1

6 .

The first set of experiments was carried out on a structured mesh with topology as in Fig. 13
with 161×81 nodes. The computations were performed with C F L = 0.8. In Table 2 values
of the maximum and the minimum values of the pressure obtained are given. Isolines of the
pressure inside and in the close vicinity of the vortex are shown in Fig. 15. The N scheme was
also used and gave the most smeared out and the least accurate results of all the schemes (and
so are not shown here). The minimum value of the solution in this case is much higher than the
exact one. The solutions produced with the explicit RKRD-BLEND scheme was much better
in this respect, however noticeably worse than those obtained with the (implicit and explicit)
RKRD-LDA and implicit RKRD-BLEND schemes. The solution obtained with the implicit
RKRD-BLEND scheme most closely resembles the exact solution, shown in Fig. 14. No
clear superiority of either the explicit or implicit frameworks was noticed, though the implicit
RKRD-BLEND scheme gave a somewhat smoother solution than its explicit counterpart. It
should be noted, though, that in this section the implicit RKRD-BLEND scheme was set in
such a way that the preference was given to the LDA scheme (cf. Sect. 6.2). In [22] similar
experiments for this test problem were carried out (i.e. investigation of contour plots and the
maximum/minimum values of the numerical solutions). Values presented in Table 2 show
similar behaviour, but contour plots presented here (in particular those obtained with the aid
of explicit and implicit RKRD-LDA schemes and implicit RKRD-BLEND) are much more
faithful to the exact solution than those presented in the literature [22].

The grid convergence analysis was performed to investigate the order of accuracy of the
implicit/explicit RKRD-LDA and RKRD-BLEND schemes. Errors were measured by means
of the usual L∞ norm and the L2 and L1 norms of the relative pressure error:
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Fig. 14 Travelling Vortex:
pressure contours for the exact
solution, 25,600 cells
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exact

εp =
∣∣∣∣

pexact − papprox

pm

∣∣∣∣ ,

in which pexact and papprox are the values of the analytical and numerical (approximate)
pressure, respectively. Instead of calculating the error in the whole domain, only nodes inside
and in the close vicinity of the vortex, i.e. nodes for which:

r =
√
(x − xc)2 + (y − yc)2 ≤ 0.35

were considered. This approach guaranteed that there was no interference between boundary
and interior nodes and that the imposition of boundary conditions did not affect the results.
The experiments were performed on a set of structured and unstructured meshes (topology
as in Fig. 13), for which the reference length was varied from approximately 1

10 to 1
160 in

the case of unstructured meshes and from 1
20 to 1

320 in the case of structured grids. The
C F L number was reduced to 0.4 and 0.1 for the explicit and implicit RKRD frameworks,
respectively. Recall that it was set to 0.8 to produce the contour plots, i.e. Fig. 15. Such a
modification was necessary in order to demonstrate the accuracy for the coarsest meshes and
to obtain results exhibiting second order convergence. The simulations were run until time
T = 0.08 rather than T = 1

6 (i.e. making the vortex travel from (0.5, 0.5) to (0.98, 0.5)
instead of (1.5, 0.5) and reducing the influence of the boundaries). The results for both the
explicit and implicit RKRD frameworks on unstructured meshes are presented in Fig. 16.
The results obtained on structured meshes are similar. In all cases second order accuracy is
clearly seen in the L2 norm of the error. It is only partially observed in the L∞ norm, which
is less forgiving. In [7] the authors presented errors only in the L2 norm (comparable to
those obtained here) claiming that the behaviour of their schemes (i.e. the explicit RKRD
framework) is quantitatively and qualitatively very similar in all three norms considered:
L2, L1 and L∞. However, the configuration they used was somewhat different, i.e. periodic
boundary conditions and a shorter domain were used. Both the implicit and explicit RKRD-
LDA scheme exhibited a small drop in the order of accuracy when moving to the finest
meshes. For all the experiments except those on the coarsest meshes, the implicit framework
was more accurate then its explicit counterpart.
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Fig. 15 Travelling vortex: pressure contours, on a mesh of 25,600 cells, for the explicit (left) and implicit
(right) RKRD-LDA (top) and RKRD-BLEND (bottom) schemes

To investigate the overhead related to solving linear systems (and using PETSc) in the case
of the implicit framework, selected execution times for the implicit and explicit frameworks
are presented in Table 3. The clock() function from the C Programming Language Standard
Library was used. The overhead that the implicit framework introduced is strictly related to
solving two linear systems at each time-step: one at each stage of the Runge–Kutta time-
stepping. This includes allocating the memory for the linear system, M (cf. Formulation (9)),
assembling it and finally inverting to get the solution at the next time-step. All of these tasks
were performed in one update procedure, all other parts of the code being shared between the
implicit and explicit frameworks. In the case of the explicit RKRD framework, the linear
system Mex (cf. Formulation (18)) is diagonal and one can immediately calculate the solution
at the new time-step, i.e. wn+1, based on the solution at the current time, i.e. wn . Table 3
contains two sets of times (evaluated on five consecutively refined meshes) for the implicit
and explicit RKRD-LDA schemes, chosen to represent the implicit and explicit RKRD
frameworks, respectively. The first value (Time 1) represents the amount of time (in seconds)
taken for one time-step (two Runge–Kutta stages), i.e. the whole process of calculating wn+1

based on wn . The second value (Time 2) represents the time taken for one update procedure
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Fig. 16 Grid convergence for the implicit and explicit RKRD schemes (C F L = 0.1) schemes for the
Advection of a Vortex test case. Errors calculated within a sub-domain surrounding the vortex at T = 0.08.
Plots shown for the RKRD-LDA (left) and RKRD-BLEND (right) schemes with errors in the L∞ (top) and
L2 (bottom) norms

Table 3 Performance of the implicit (im) and explicit (ex) RKRD-LDA methods when applied to the Advec-
tion of a Vortex test case

#Cells 474 1,856 7,374 29,656 118,522

im LDA GMRES iter. 9.90/9.90 9.85/9.85 9.98/9.98 7.16/7.16 10.41/10.41

L2 Error 1.4219e−03 5.7804e−04 1.5207e−04 2.9426e−05 9.0165e−06

Time 1 0.120e−2 4.709e−2 1.946e−1 7.359e−1 3.305

Time 2 4.662e−3 1.818e−2 7.592e−2 2.822e−1 1.309

ex LDA L2 Error 1.2164e−03 1.2843e−03 6.5866e−04 1.5420e−04 2.5926e−05

Time 1 2.628e−03 1.087e−02 4.3921e−02 1.760e−01 7.072e−01

Time 2 0.0 1.7e−5 1.720e−04 5.08e−04 1.885e−03

The table shows (1) the average number of iterations taken to reach the stopping criterion during the first/second
stage of the Runge–Kutta time-stepping (the implicit scheme only), (2) L2 errors and (3) the amount of time
(in seconds) for: one time-step (both stages, Time 1) and the update procedure (setting and solving the linear
system for one stage, Time 2). Results are given for the unstructured meshes used in the grid convergence
analysis (with 474, 1,856, 7,374, 29,656 and 118,522 cells, cf. top row of the table and Fig. 16)

(within one Runge–Kutta stage), that is creating and inverting the mass matrix, M, and then
using it and wn to calculate wn+1. In the case of the explicit RKRD framework the mass
matrix is diagonal and hence its assembly and inversion is simple. The implicit RKRD-LDA
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scheme takes, on average, approximately four times longer to obtain the desired solution.
For both schemes the execution time increases by a factor of four when the mesh is refined.
We emphasise that the above is not an attempt to perform a thorough profiling or comparison
of the implicit and explicit frameworks. Results from Table 3 are presented here to draw
a general picture and to serve as guidance when considering these schemes in future. The
implementation has not been optimised and the tolerance specified to signify convergence of
the GMRES iteration in PETSc could be relaxed without significant impact on the accuracy
of the results. Also, more efficient techniques than GMRES might be considered, e.g. a direct
solver might be faster for 2D simulations on these meshes. The investigation of such issues
is also the subject of future work.

Experiments were performed on a Desktop PC equipped with an HT Intel Xeon core and
twelve gigabytes of operating memory. All presented execution times are averages calculated
during the corresponding simulation (the Advection of a Vortex test case, simulation run until
time T = 0.08). The results show that the implicit RKRD-LDA, even though in most cases
it is more accurate than its explicit counterpart, is relatively slow compared to the explicit
RKRD-LDA scheme. A more thorough and extensive study would require optimisation of
both implementations.

8 Conclusions

In this paper we introduced a new class of numerical approximations to time-dependent
hyperbolic PDEs, namely the framework of Runge–Kutta residual distribution methods. The
proposed framework facilitates construction of second order accurate schemes and this was
confirmed experimentally. The non-linear RKRD-BLEND scheme, although not completely
oscillation-free, gave very encouraging results in terms of monotonicity. In particular it coped
well with all the severe test cases based on the system of non-linear Euler equations.

A thorough comparison with the explicit RKRD schemes of Ricchiuto and Abgrall [7]
was carried out, in which it was shown that the new framework gives significantly more
accurate results on the same meshes. However, this is counterbalanced by the additional
work required to invert the mass matrices at each time-step and the reduced stability of the
schemes in the vicinity of strong shocks. Whether the new schemes are more efficient or not
depends on the magnitude of the improvement in accuracy and is problem-dependent.

Future work will include incorporating discontinuous-in-space data representation follow-
ing the methodology of [27,28] and Abgrall [6]. This will aid the construction of a localised
approximation for which there will be no need to solve a global linear system. Another possi-
bility that will be considered and which is expected to lead to a construction of a second order
accurate and positive scheme is a genuinely non-linear RKRD-BLEND scheme. Recall that
in this paper the blending parameter was designed in such a way that the resulting discrete
system of equations was linear. By substituting δuk instead of δuk into the definition one
possibly will get a positive scheme.

Finally, the schemes presented in this paper are, at most, second order accurate. In prin-
ciple, it should be possible to extend these approaches to higher orders of accuracy using
strategies that have been applied to other types of residual distribution scheme. For the time-
stepping, higher order Runge–Kutta schemes can be used [38] as they have been within
the explicit RKRD framework [7]. A higher order spatial discretisation simply requires
the application of a linearity preserving distribution scheme to a residual evaluated from
a higher order polynomial interpolant. Such an interpolant can be defined by sub-dividing
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each element uniformly into sub-elements, in the manner of Pk Lagrange elements [3], or
reconstructing higher order derivative information at the element vertices [11]. The higher
order spatial representation incurs a formal loss of positivity, so the fact that the linearised
nature of the mass matrices also removes this property would be of less importance in such
situations. The construction and application of robust, higher than second order, residual
distribution schemes of all types is a subject of ongoing work.
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42. Warzyński, A., Hubbard, M.E., Ricchiuto, M.: Discontinuous residual distribution schemes for time-
dependent problems. In: Li J., Yang, H.T., Machorro, E. (ed.) Recent Advances In Scientific Computing
and Applications, Contemporary Mathematics, vol. 586, pp. 375–382 (2013)
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