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The complexity of hyperspectral time of flight secondary ion mass spectrometry (ToF-SIMS)

datasets makes their subsequent analysis and interpretation challenging, and is often an impasse to

the identification of trends and differences within large sample-sets. The application of multivariate

data analysis has become a routine method to successfully deconvolute and analyze objectively

these datasets. The advent of high-resolution large area ToF-SIMS imaging capability has enlarged

further the data handling challenges. In this work, a modified multivariate curve resolution image

analysis of a polymer microarray containing 70 different poly(meth)acrylate type spots (over a

9.2� 9.2 mm area) is presented. This analysis distinguished key differences within the polymer

library such as the differentiation between acrylate and methacrylate polymers and variance spe-

cific to side groups. Partial least squares (PLS) regression analysis was performed to identify corre-

lations between the ToF-SIMS surface chemistry and the protein adsorption. PLS analysis

identified a number of chemical moieties correlating with high or low protein adsorption, including

ions derived from the polymer backbone and polyethylene glycol side-groups. The retrospective

validation of the findings from the PLS analysis was also performed using the secondary ion images

for those ions found to significantly contribute to high or low protein adsorption. VC 2015 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1116/1.4906484]

I. INTRODUCTION

The application of time of flight secondary ion mass spec-

trometry (ToF-SIMS) analysis has been successfully applied

throughout a range of scientific disciplines for the analysis

of both inorganic and organic sample types.1–3,6 For chemi-

cal analysis by ToF-SIMS, hyperspectral images are pro-

duced where each individual pixel contains a full mass

spectrum. A typical image rastered over 500 lm � 500 lm

at 256� 256 resolution results in 65 536 separate spectra,

which themselves contain hundreds of ion peaks4 of signifi-

cant intensity. For example, if the spectrum were to contain

1000 ions of interest this would lead to >65 � 106 separate

data points for a typical sampled area. Automated multiple

area acquisition and image stitching now routinely produces

images of tens of millimeters, which proportionally increases

the dataset size. Traditionally, the complexity of these data-

sets has proven a barrier to the uptake of the technique; how-

ever, the increasing application of multivariate analysis has

significantly improved the ability to interpret successfully

these datasets as detailed in a recent review by Graham

et al.4 and previously applied to ToF-SIMS and other mass

spectrometry data.5,6

One sample type particularly relevant to ToF-SIMS chem-

ical imaging is the polymer microarray system, whereupon

hundreds to thousands of unique polymers are printed onto a

substrate at addressable locations.7–10 Polymer microarrays

have become a key tool for materials discovery projects and

have been widely used to assess a number of material–biolog-

ical applications including stem cells,11–13 bacteria,14–16 and

cell sorting.17–20 The large number of material interactions

that can be rapidly assessed using polymer microarrays has

resulted in surface structure–property models that describe

the biological performance of materials based upon a meas-

ured physical property. To achieve this, high throughput

surface characterization of polymer microarrays has been a

necessary development and has been achieved for various

techniques including x-ray photoelectron spectroscopy,

ToF-SIMS8,9 water contact angle (WCA)21,22 atomic force

microscopy,23 surface plasmon resonance,24 and force

measurements.25 Partial least square (PLS) regression has

been highly successful at correlating a univariate property,

such as cell number, with a multivariate data set, such as

the hundreds of secondary ions produced in ToF-SIMS

spectra.26,27 This method was initially validated for a large

polymer library by linking ToF-SIMS spectra with WCA,28

and has been successfully applied to predict the stem cell

attachment to polymers11,12 and bacterial attachment14 from

the chemical information represented in ToF-SIMS spectra.

Importantly, these have identified relationships between sur-

face chemistry and various biological responses. As technical

advances in ToF-SIMS enable the analysis of increasingly

complex organic samples, including polymers29 and biologi-

cal materials,30 the multivariate data analysis (MVA) techni-

ques used to assess the data must also be advanced. Large

area imaging has increased the potential size of the hyperspec-

tral imaging datasets, for example, a relatively modest analy-

sis area of 10� 10 mm imaged at a resolution of 500 pixelsa)Electronic mail: david.scurr@nottingham.ac.uk
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per mm would comprise 25 � 106 pixels. With the example

of 1000 secondary ions of interest this would result in a total

number of data-points of 25 � 109. In this range, the ability

to perform MVA analysis is hindered by conventional com-

puting systems and data processing methodologies.

The potential of employing high-performance computing

to undertake multivariate curve resolution (MCR) image

analysis has been previously demonstrated by the authors,31

as applied to ToF-SIMS data of eight polymer microarray

printed spots combined to form a single composite hyper-

spectral image (consisting of a 524 288 pixel area). In this

present study, a modified MCR imaging analysis approach

has allowed the successful deconvolution of a polymer

microarray consisting of 70 distinct polymer chemistries

without a need for postacquisition data binning or a reduc-

tion in the acquired spatial resolution. Importantly, for the

wider uptake of this method, this modified approach can be

performed using a high-specification (8–16 GB, multicore)

desktop computer in addition to a high performance compute

cluster.

II. EXPERIMENT

In this paper, a poly(meth)acrylate microarray consisting

of 70 unique polymer spots was contact printed with repli-

cates and was subsequently analyzed using ToF-SIMS and a

protein binding assay. The ToF-SIMS data for the native

array were analyzed using MCR image analysis. The ToF-

SIMS and protein adsorption data for each individual poly-

mer spot were then correlated using PLS regression analysis.

A. Microarray printing

Polymer microarrays were formed as previously described

in detail elsewhere32,33 using a XYZ3200 dispensing work-

station (Biodot). Epoxy-functionalized glass slides (Genetix)

were dip coated in 4% (w/v) poly(hydroxy ethylmethacry-

late) (pHEMA) (Sigma, cell culture tested) in ethanol at a

withdrawal rate of approximately 30 mm/s. The slides were

held horizontally for 1 min to allow solvent evaporation and

then placed in a drying rack for 3 days. Polymerization solu-

tion composed of 75% (v/v) monomer (Sigma) in dimethyl-

formamide (DMF) with 1% (w/v) photoinitiator 2,2-

dimethoxy-2-phenylacetophenone was printed onto the

pHEMA coated slides using 946PM6B pins (ArrayIt) at

O2< 2000 ppm, 25 �C, 40% humidity. After printing each

material, slides were irradiated with a long wave UV source

for 30 s. Slides were irradiated for a further 10 min once all

materials had been printed. Once array formation was com-

plete the slides were vacuum extracted at <50 mTorr for 7

days. The specific chemistry and relevant CAS number for

the 71 spots printed is shown in the supplementary Table

SI.1.34

B. Protein adsorption

Polymer microarrays were immersed in 25 lg/ml tetrame-

thylrhodamine isothiocyanate labeled albumin (Sigma) in

phosphate buffer saline (Gibco) at pH 7.4. The array was

incubated with protein for 1 h under stagnate conditions at

37 �C before washing twice for 1 min with ultrapure water

(18.2 MX), blotting, and overnight drying. Fluorescence

images of the slide were acquired using an array scanner

(Genepix) using a 532 nm laser, 5 lm pixel size. The slide

was also imaged prior to protein adsorption to measure back-

ground fluorescence. The fluorescence from each polymer

spot was quantified by subtracting the fluorescence from an

array going through the same procedure but with no protein

from the fluorescence measured after protein adsorption

from eight replicate samples.

C. ToF-SIMS analysis

ToF-SIMS analysis of the native array was performed

using an IONTOF (GmbH) ToF-SIMS IV instrument utilizing

a 25 keV Bi3
þ primary ion source. An area of 9.2� 9.2 mm

was analyzed using the macroraster (large area) scanning fa-

cility encompassing the entire 70 polymer spot microarray in

the “high-current bunched” mode. Data were acquired with a

single scan of the analysis area at a resolution of 100 pixels

per mm and 15 pulses per pixel. Owing to the insulating na-

ture of the sample, charge compensation was applied in the

form of a low energy (�20 eV) electron flood gun. Both posi-

tive and negative secondary ion data was collected; however,

for brevity, only the negative data will be discussed in the

work.

ToF-SIMS data analysis was performed using SurfaceLab6

(IONTOF GmbH) instrument software. In order to identify

secondary ion peaks predominantly relating to the polymer

chemistry, the 70 spot areas were selected using the region of

interest (ROI) polyline selection tool and the total ion image

data in the SurfaceLab6 instrument software. This data was

used to generate a peak list comprising all secondary ions of

significant intensity. The peak list was generated using the

search function in SurfaceLab6 instrument software with a

selection threshold of >100 counts. This peak list of 706 ions

was then used to retrospectively rebuild the secondary ion

images and to export specific ion intensities for each inde-

pendent spot region. The secondary ion images were then

Poisson corrected (SurfaceLab6 instrument software) and

exported as text files for MCR analysis. However, where pos-

sible an advanced deadtime correction should be applied to

such data.35 The ion intensities for the individual polymer

spots were exported and normalized to total ion count values

prior to subsequent PLS analysis.

III. MULTIVARIATE DATA ANALYSIS

A. Multivariate curve resolution image analysis

MCR analysis was performed using a modified version of

the Alternating Least Squares MCR package (MCR-ALS

version 0.0.4)36 in the R software environment (R version

3.1.0)37 on a Dell C6220 computer server (a head node

of the University of Nottingham’s High-Performance

Computer), with two 8-core processors (Intel Sandybridge

E5–2670 2.6 GHz) and 128 GB RAM running Scientific

Linux release 6. This single node could be considered as
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equivalent to the processing power of a high-specification

(large memory, multicore) desktop computer. The Poisson-

corrected38 ToF-SIMS image data of 706 ion intensities

from the array of 920� 920 positions amounted to 4.45 GB

of 64-bit data. Whilst R and the MCR-ALS package can pro-

cess such data on this single node, it requires up to 60 GB of

memory to do so and runs unacceptably slowly, with each of

often 50 or so cycles of alternating MCR taking over 10 min

to complete. To overcome these restrictions we implemented

the workflow below to partition the analysis across smaller,

independent compute tasks, which can be computed in paral-

lel on a compute cluster where available, or serially on a sin-

gle computer as done in this example.

The alternating least-squares approach to MCR iterates

the solution of “scores” (abundance or class maps) then

“loadings” (ion intensities) until the residual sum-of-the-

square (RSS) difference between experimental and model

data fails to fall significantly further. The first iteration

requires a guess of either the component scores maps or their

ion loadings, and the success of MCR-ALS to derive the sep-

arate component scores and loadings depends on the quality

of this initial estimate. Extracting a large number of compo-

nents from such data often leads to computational errors (nu-

merical singularities) unless the initial estimate is good. To

extract the components from the data, we first recognized

that the location of the components in the map was not ini-

tially a concern, so we generated a sampled subset of the

data as 115� 115 spectra of 706 ions by summing each

8� 8 pixel block in the original data. This combined data

contains all of the total ion counts and hence all of the com-

ponents of the original (the spatial distribution within these

combined areas is recovered later). We first performed

MCR-ALS on this reduced pixel data (1/64th the size of the

original) to find two components, which was readily

achieved with random starting scores and loadings in less

than 60 s, this process is illustrated in the supplementary ma-

terial as Fig. SI-1(a). The two maps were then segmented to

identify the location of the components by maximum-

entropy thresholding to generate binary image maps of

where each component was present in the scan [Fig. SI-

1(b)]. We assumed that the map that contained the most

number of separate domains of at least 50% the size of the

largest in their map was that most likely to reflect the pres-

ence of at least two components. The map was split into two

generating a third [Fig. SI-1(c)]. These three maps were then

used for a new round of MCR-ALS [Fig. SI-1(d)], this time

searching for three components. The complete cycle could

be repeated over 100 times with each application deconvolv-

ing the data into one more component. As each application

for MCR-ALS is starting from a reasonable estimation of the

final scores distribution, the time taken to complete each

round was also in the order of 60 s.

Having determined the components (a factor analysis can

be undertaken by plotting the final RSS at the end of each

component MCR and performing a Cattell scree test to esti-

mate their number) their location in the data can be deter-

mined by using them as the start of a further round MCR-

ALS. Here, the original ToF-SIMS data were tessellated into

16 blocks, each 230� 230 pixels, and a single iteration of

MCR-ALS undertaken to indicate the spatial distribution of

the components in the full-resolution image data.

B. Primary least squares regression analysis

Correlations between ToF-SIMS spectra and protein

adsorption were assessed using PLS regression analysis as

previously described.20 In total, 706 negative ions were

selected from a group of 70 polymers from the array. Ion

peak intensities were dead time corrected,39 normalized to

the respective total secondary ion counts to remove the influ-

ence of primary ion beam fluctuation, mean-centered, and

square root mean scaled prior to analysis.4,38,40 PLS analysis

was carried out using PLS Toolbox 5.2 software

(Eigenvector). The dataset was randomly split into a training

group, containing 75% of the samples, and a test set, con-

taining the remaining 25% of samples. A “leave one out”

cross validation method was used in the PLS regression anal-

ysis of the training set. The PLS model for the training set

was validated by applying it to the test set. A sparse subset41

of SIMS ions was produced for the final PLS model by ini-

tially producing a PLS model with all 706 peaks. Any peaks

with a regression coefficient below 10% of the maximum

regression coefficient calculated were removed and the PLS

model was recalculated. This was repeated four times, after

which 62 peaks were selected and used to produce a final

model.

IV. RESULTS AND DISCUSSION

A. Array formation

A polymer microarray containing 70 distinct homopoly-

mer chemistries (Table SI-1) was produced as illustrated

schematically in Fig. 1(a) to evaluate the potential applica-

tion of large area MCR imaging analysis of ToF-SIMS

hyperspectral data. The polymer library consisted of a range

of mono- and multifunctional polyacrylates and poly(me-

th)acrylates with a diverse range of hydrocarbon pendant

groups. An overall assessment of the array printing quality

was established by ToF-SIMS analysis using a selection of

secondary ion images, including the total secondary ion

image [Fig. 1(b)]. The “patchwork” appearance of the total

ion image with demarcation gridlines at 500 lm intervals is

an artifact of the image stitching process. The high quality of

the array printing was determined by both optical micros-

copy (data not shown) and ToF-SIMS imaging analysis, with

spot areas generally exhibiting good circularity and chemical

uniformity. All 70 distinct spot regions corresponding to 70

unique polymers were observed along with a spot (71) where

the solvent (DMF) was printed without a monomer. The

appearance of the spot within the secondary ion images is

likely due to topographical changes due to DMF remodeling

of the pHEMA substrate. A relatively minor amount of

chemical leaching29 can be seen emanating from two spots,

32 and 35, which illustrates a “halo” around the edge of the

spots [Fig. 1(b)].
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B. MCR imaging analysis

A variety of analytical methodologies have been applied

in the deconvolution of the ToF-SIMS data acquired from

polymer microarray systems, one of the most effective meth-

ods being MCR image analysis.5,31,42 MCR image analysis

was performed on the poly(meth)acrylate microarray dataset

using a component number of 19, which was selected by the

evaluation of the RSS, shown in Fig. SI-2. The scores images

and loadings for all 20 components are shown in the supple-

mentary material (Figs. SI-3 and SI-4, respectively) and

illustrate the clear discrimination of a variety of chemistries

specific to both polymer backbone and pendant groups as

well as the pHEMA slide background (component 15). As a

discussion of the key trends identified by the MCR image

analysis, four components (11, 12, 17, and 19) have been

presented in detail. The scores images and significantly

loaded ions for these components are shown in Figs. 2(a)

and 2(b), respectively. In the MCR analysis, each ion within

the mass spectra is assigned a positive loading, the magni-

tude of which indicates how strongly correlated a particular

ion is with a particular component. A secondary ion image

for an example ion that was significantly loaded for each

component is shown in Fig. 2(c).

The high intensity areas of component 17 correlated with

the position of the monoacrylates within the array [shown in

Fig. 1(a)]. The ion most highly loaded for this component

was an acryloyl ion C3H3O2
�, which likely originates from

the polyacrylate backbone. Therefore, component 17 repre-

sents the monoacrylate chemistry within the polymer library.

To validate the model the secondary ion images were

assessed, and a pattern similar to that seen in component 17

[Figs. 2(a-i)] was observed in all cases, as is shown for the

highly loaded C5H5O� secondary ion image shown in Fig.

2(c-i).

The distribution of component 19 [Fig. 2(a-ii)] correlated

to the positions of the methacrylate polymer spots within the

microarray. For this component a methacryloyl ion,

C4H5O2
�, was observed as the most highly loaded secondary

ion [Fig. 2(b)]. It is therefore likely that this component is

representative of the distribution of the methacrylate poly-

mer backbone within the polymer microarray. As a valida-

tion of the model, the distribution of the significantly loaded

ions for this component were investigated and found to

closely match the MCR scores image for component 18, for

example, the C4H7O4
� ion distribution shown in Fig. 2(c-ii).

The backbone structure within the polymer library is a clear

chemical discriminator and it is thus unsurprising that this

aspect of the polymer chemistry is isolated as an MCR com-

ponent. To complete the assessment of backbone structure,

the position of the multiacrylate polymers is observed to cor-

relate with MCR component 1 (Fig. SI-3).

In addition to identifying differences in the polymer back-

bone structure that are represented in all materials within the

polymer library it was of interest to see whether the MCR

analysis could identify components that represent side group

chemical moieties. Component 13 did not correlate with any

poly(meth)acrylate backbone structure, identifying a similar-

ity in spots 26, 27, 28, 37, and 58 [Fig. 2(c-iii)]. The

C6H6O� phenol ion was strongly loaded for this component.

The spots most intense in the MCR scores image for compo-

nent 13 were 27, 34, 37, and 58, and each of these polymers

contains a phenol moiety within their pendant groups. The

MCR analysis was therefore able to identify a specific chem-

ical similarity between these materials. Two spots, 26 and

28, that do not have a phenol moiety within their pendant

group showed a decreased intensity in component 13 com-

pared with the four spots that contained a phenol group. The

C6H6O� ion observed for these two materials is likely due to

the fragmentation of the cyclic moiety to the resonance

FIG. 1. (a) Schematic illustration of the microarray layout identifying polymer groupings of acrylate, diacrylate, triacrylate, methacrylate, and dimethacrylate

spots and (b) total negative polarity secondary ion image of the 9.2� 9.2 mm array area.
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stabilized phenol ion.43 Other MCR components were found

to correlate with chemical similarities with side-groups, for

example, component 6 (Fig. SI-3) correlated with the poly-

ethylene (PEG) side group located exclusively on polymers

32, 35, and 57.

The full extent to which MCR can deconvolute such com-

plex datasets is epitomized in component 11 [Fig. 2(a-iv)],

which differentiates a single polymer (spot 24) from the

entire array. The highly loaded ion C4H3O2
� [Fig. 2(b)]

likely originates from the acetoacetate group that is unique

to spot 24 [Fig. 2(c-iv)]. Using this modified MCR analysis

has allowed large area ToF-SIMS chemical imaging data to

be successfully deconvoluted without compromising data or

image resolution.

C. Protein adsorption

Further to the data exploration achieved using MCR

image analysis, PLS regression allows the construction of

structure-function models for the adsorption of albumin to

the polymer microarray. The amount of fluorescently labeled

protein strongly adsorbed on each polymer spot was quanti-

fied using a fluorescence scanner and the background fluo-

rescence was removed. All of the data points were above the

limit of detection. The data was then correlated with ToF-

SIMS data extracted from individual spot ROI using PLS

regression. The PLS data is summarized in Fig. 3. The 70

polymers were randomly split into a training (75%) and test

set (25%). Root mean square error of cross validation

FIG. 2. MCR image analysis showing four example scores component images for components: (i) 17, (ii) 19, (iii) 13, and (iv) 11, (b) their corresponding signif-

icantly highly loaded ions and (c) an example corresponding secondary ion image [highlighted in bold in (b)] for the (i) acrylate (C5H5O�), (ii) methacrylate

(C8H7O�), (iii) phenyl side group (C6H6O�), and (iv) acetoacetate side group (C5H7O�) functional polymers.
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(RMSECV) curves were produced using the “leave one out”

method as a guide to the number of latent variables to be

used for the PLS model [Fig. 3(a)]. For further validation,

multiple PLS models were produced from the training set

using different numbers of latent variables, suggested by the

RMSECV curves. These models were applied to the test and

training sets and the R2 value was calculated for the pre-

dicted values compared with the measured values [Fig.

3(b)]. The number of latent variables where the R2 value for

the measured versus predicted curves for the training and

test sets was most similar was used to produce the final PLS

models. A total of 12 latent variables were used to model

protein adsorption. The R2 value for the plot of the predicted

versus the measured curve for protein adsorption was 0.57

for the training set and 0.61 [Fig. 3(c)]. The successful

prediction of protein adsorption to the polymer library, rep-

resentative of a diverse chemical space, by assessing the sur-

face chemistry of the materials represented in ToF-SIMS

spectra is consistent with the established understanding that

material chemistry is determinant on protein adsorption to a

material.44,45

In the PLS model, each ion within the ToF-SIMS spectra

is assigned a regression coefficient [Fig. 3(d)]. The ions that

most strongly influence the model are identified by identify-

ing ions with the largest positive [Fig. 3(e)] or negative [Fig.

3(f)] coefficient.

For the ions found to anticorrelate with protein adsorption

[Fig. 3(e)], the C2H2O2
� ion also exhibited a high loading

value for MCR component 6. This component correlated

with the position of polymers containing a PEG side-group.

FIG. 3. Summary of PLS model used to predict albumin adsorption to the polymer library using conventional analysis. (a) The RMSECV determined for varied

numbers of latent variables. (b) The coefficient of determination (R2) determined for PLS models with varied numbers of latent variables for both the training

(�) and test (�) sets. (c) The measured vs predicted values determined by the PLS model for the training (�, R2¼ 0.57) and test (�, R2¼ 0.61) sets. The y¼ x

line has been drawn as a guide. (d) The regression vector for the PLS model. (e) and (f) Table of the secondary ions with the (e) highest and (f) lowest regres-

sion coefficients.
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This observation is supported by the known antifouling prop-

erties of PEG.46 It is likely that the C2H2O2
� originates from

the PEG moiety and is specific to this group as opposed to

short oligo(ethylene glycol) groups (n¼ 2, 3) for which a

high intensity of this ion was not observed. When comparing

the distribution of the C2H2O2
� ion to the fluorescence heat

map (as shown in Fig. 4) it is clear that the three spots

observed to show high intensities of PEG, 32, 35, and 57,

correspond directly to the three most significantly correlating

polymers with low protein adsorption regions.

The ions C8H3O4
� and C4H3O6

�, which were assigned pos-

itive regression coefficients in the PLS model, were also asso-

ciated with MCR component 1. This component correlated

with multifunctional acrylate polymers (diacrylate, triacrylate,

and dimethacrylate monomers). It is therefore likely that the

ions C8H3O4
� and C4H3O6

� originated from the polymer back-

bone, suggesting that a surface enriched with acrylate backbone

moieties promotes the adsorption of protein. The F� and SO3
�

ions are due to the presence of contaminants on the polymer

microarray. Comparison of the secondary ion images for the

C8H3O4
� and C4H3O6

� with a heat map of protein adsorption

(Fig. 4) revealed a correlation between the location of high pro-

tein adsorption and materials exhibiting high C8H3O4
� inten-

sity. The four polymer spots exhibiting the highest protein

adsorption, 5, 11, 15, and 65, can be clearly observed as some

of the highest intensity regions for the C8H3O6
� ion. An acry-

late backbone has previously been shown to increase the

adsorption of protein to modulate stem cell attachment.11

The ability to validate observations made from such

large datasets using PLS in Fig. 4 is a clear, rapid and novel

approach utilizing the ToF-SIMS imaging data of the

microarray. It is anticipated that this approach would prove

successful for larger datasets including those without the

well-ordered array format. Prior analysis using MCR imag-

ing was also imperative to understanding the resultant PLS

model.

V. SUMMARY AND CONCLUSIONS

In this study, a large area hyperspectral image ToF-SIMS

dataset acquired from a poly(meth)acrylate polymer micro-

array has been successfully deconvoluted using a modified

MCR analysis approach. This methodology can be used with

a high specification desktop computer or with a high per-

formance computer and allows the maintenance of the full

resolution of the hyperspectral image datasets. This has led

to the identification of chemical moieties associated with the

polymer backbone and specific polymer side-groups. Using

PLS regression analysis, the adsorption of protein to the

polymer microarray was successfully predicted using only

surface chemistry as represented by ToF-SIMS spectra with

prior knowledge of the datasets from MCR analysis proving

informative for interpretation. The novel application of the

ToF-SIMS imaging datasets in the retrospective interpreta-

tion and validation of the PLS analysis has been demon-

strated as an important tool for the further study of

increasingly complex, multicomponent organic systems.
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