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We investigate low energy limits of massive gauge theories that feature the Vainshtein mechanism,
focussing on the effects of the UV modes that are integrated out. It turns out that the Goldstone
sectors are significantly influenced by the effects from such modes relative to the effective field
theories where the irrelevant operators induced by heavy modes are simply cast aside. The effects
of the consistently retained higher order corrections affect the strong coupling and show that the
nature of the UV completion influences the low energy theory significantly. This casts doubts on the
naively estimated environmental strong coupling scale, and on the effectiveness of the environmental
enhancement of screening. The environmental effects by themselves might not suffice to cure the
bad behavior of the theory beyond the vacuum cutoff.

I. INTRODUCTION

The expansion of the universe appears to be accelerat-
ing. This phenomenon could be accounted for by a small
amount of dark energy, i.e. a tiny cosmological constant,
or alternatively by a modification of General Relativity
(GR) (for recent reviews see [1, 2]). In the latter case,
some kind of ‘screening’ mechanism is needed to retain
the experimental successes of GR in the tested limits.
Many key features of modifications of gravity that ap-
pear in the literature are encapsulated in simpler models
involving a single long range scalar field, ϕ, with nonmini-
mal couplings. In this context, screening mechanisms are
simply understood by considering the dynamics of scalar
fluctuations, δϕ, about some environmentally dependent
background, ϕ̄. At the quadratic order these are typically
described by a Lagrangian of the form

δL = −1
2Z

µν [ϕ̄]∂µδϕ∂νδϕ−
1
2M

2[ϕ̄]δϕ2 + 1
Mpl

δϕδT ,

(1)
where Zµν is an environmentally dependent Z factor that
alters the effective coupling, and M is an environmen-
tally dependent mass. Generically, when Zµν ∼ O(1),
the scalar couples to the fluctuation in the trace of
the energy-momentum tensor, δT , with gravitational
strength. The chameleon mechanism [3] works by ren-
dering the mass M large in the Earth’s environment,
such that the range of the scalar force is less than the
millimetre scale probed by table top tests of gravity. In
contrast, the Vainshtein mechanism [4, 5] exploits an en-
vironmental increase in the Z factor, Zµν � 1 so that the
effective coupling to matter is much weaker than gravity,
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In this paper, we will study Vainshtein screening
in weakly coupled non-Abelian massive gauge theories.
These theories have a strong coupling cutoff at a scale
∼ mA/g, but can be UV completed by the Higgs mech-
anism. Our main interest will be to see the IR effects
of the extra UV modes in the completion, namely the
radial mode. For simplicity, our strategy to analyze the
dynamics will be to focus on the helicity-0 sector of the
gauge theory. By resorting to the Goldstone equivalence
theorem, the dynamics of the helicity-0 sector can be ex-
tracted by the Stuckleberg method, and the transverse
modes can be ignored. The Stuckelberg fields then come
in the form of a non-linear σ-model, which for the sim-
plest massive gauge theory is just SU(2). We will view
this setup as an avatar of what one may expect for mas-
sive gravity, at least in terms of the flavor of problems
one may encounter. While the precise proof that this
is the case is currently absent, heuristics suggests this
philosophy is reasonable. Thus, in practice we will be
focusing on the σ-model scalar field theories, including
the U(1) σ-model as the simplest case, which feature the
Vainshtein mechanism.
The environmental dependence of the Z factor is

achieved in the full theory via derivative self-interactions
of the field. These interactions manifest themselves
through the breakdown of classical perturbation theory:
when the non-linearities kick in and become important,
the Z factor is enhanced. In a static, spherically sym-
metric scenario, for this to occur at a macroscopic scale
beyond the Schwarzschild radius of the source, the scale
suppressing the self-interactions should be well below the
Planck scale Λ� Mpl. Quantum mechanically this sug-
gests that the interaction generically becomes strong at
the same scale Λ, signaling the breakdown of perturbative
unitarity and the limit of the (truncated) effective field
theory (EFT) description. In standard QFT, the appear-
ance of such behavior is taken to point to the necessity of
a Wilsonian completion at the scale Λ, which extends the
low energy theory beyond the cut-off. This generically re-
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quires new degrees of freedom near the cut-off that help
to soften the interactions while maintaining unitarity (for
a textbook discussion see e.g. [6]). A simple example
of this is the Higgs, which preserves unitarity in WW
scattering above the strong coupling scale of the mas-
sive non-Abelian gauge theory. For an illustration of the
equivalent scales at which such a UV completion should
be relevant in a modified gravity context, note that for
Lorentz invariant massive gravity the EFT cut-off is at
the scale Λ3 ∼ (m2Mpl)1/3 [7], which for a Hubble mass
graviton yields the macroscopic scale Λ3 ∼ (1000km)−1.
Of course, having a gravity theory that is only valid

down to 1000km or so is unsatisfactory to say the least.
It has been suggested that the truncated low energy effec-
tive description can be maintained beyond the cut-off, Λ,
in the presence of a non-trivial environment when Vain-
shtein screening is active [8]. This is precisely because
of the enhanced Z factor, which serves to weaken the ef-
fective coupling for fluctuations about the classical envi-
ronment. The interactions describing these fluctuations
now become strong at a much higher scale, Λenv � Λ.
For massive gravity this improved things a little (al-
though not enough), with the environmental strong cou-
pling scale in the field of the Earth rising as high as
Λenv ∼ 1/km [9]. For DGP gravity the environmental
cut-off seems better, near the centimeter scale [8].

Implicit in all of these discussions of environmental
strong coupling scales is the assumption that whatever
completes the theory beyond the scale Λ remains unim-
portant up to the new cut-off Λenv. For example, if we
imagine that a particular theory can be completed by in-
tegrating in a heavy particle with mass m . Λ, then we
are assuming that for some reason this particle remains
more or less inert up to the new strong coupling scale.
This, in fact, seems a bit too optimistic. Indeed, if we
properly integrate out a heavy field, at scales below its
mass we would expect to find many additional higher di-
mensional operators suppressed by the mass (for recent
discussions, see e.g. [10]). Classically, once the first non-
linearity has become important as required by the Vain-
shtein mechanism, it seems likely that these additional
terms will also begin to kick in at some macroscopic scale
at least as big as 1/m, spoiling the classical solution to
the truncated effective theory beyond that scale. If so,
the classical solution may not be reliable, and thus Λenv
calculated in the quadratic truncation may cease to be
physically sensible, having been computed on a wrong
background.

Our purpose here is to explore this in more detail, and
investigate the signatures of a UV completion on the clas-
sical solution with Vainshtein screening. For the exam-
ples that we study, we will find that the truncated low
energy EFT cannot be trusted much beyond the scale
at which Vainshtein screening occurs. Extrapolating this
result one might worry that generic theories with Vain-
shtein screening, including modified gravity, cannot re-
ally be taken seriously beyond the vacuum strong cou-
pling scale until the full effect of their (partial) UV com-

pletion is known. This in fact is not counter to the philos-
ophy of [8], where the argument was not that DGP was
well behaved much above the vacuum strong coupling
scale. On the contrary, the point was that the effects
indicating the breakdown of unitarity of the low energy
theory would merely remain well hidden from the limited
direct tests of GR at short distances.
At first glance, finding a UV completion of a theory

with Vainshtein screening might seem a little optimistic.
Indeed, for the standard set-up in which screening occurs
for static, spherically symmetric profiles around a heavy
source, we typically find that fluctuations about the back-
ground exhibit superluminality [11, 12]. This has been
associated with an inability to find a standard Wilsonian
completion [11] (although see also [13]). Since there
are no complete, compelling alternatives to the Wilso-
nian method to date1, we will look for explicit examples
of low energy theories that feature Vainshtein screening
with a standard Wilsonian UV completion that cures the
aforementioned problems. In detail, for the most part we
will focus on Vainshtein screening in a homogeneous en-
vironment in which the Z factor grows with the energy of
the background. Superluminal pathologies are avoidable
with a proper UV completion, and in the examples we
will consider this will be explicit. We will compare the
dynamics of the truncated low energy EFT, and its UV
completion, assuming the same initial data and the same
energy density. For the UV completion, we will need to
specify initial conditions for the new degrees of freedom
that are now present, and in considering solutions we will
scan over all consistent possibilities.
Our main result is that the two descriptions begin to

deviate significantly from one another whenever the en-
ergy density exceeds the scale at which Vainshtein screen-
ing kicks in. This seems generic, suggesting that classical
solutions to theories with Vainshtein screening cannot
be trusted much beyond the Vainshtein scale, at least
not until the full effect of the (partial) UV completion is
known. Special initial conditions yielding configurations
that appear more stable exist, but they require tuning of
parameters.
The rest of this paper is organized as follows: we begin

in section II with a detailed study of Vainshtein screening
in a simple K-essence like model, admitting a UV com-
pletion in terms of a U(1) Higgs - which is really a UV
completion of a massive Abelian gauge theory (which is,
clearly, not unique). This will represent the main body of
the paper in which generic features are also discussed. We
will show that the classical homogeneous solution for the
truncated low energy EFT cannot be trusted beyond the
cut-off Λ, above which screening is meant to kick in. The
low energy theory merely describes a phase - the Gold-

1 The so-called non-Wilsonian completions [14] attempt to look
to high energies in a way that seems to be different, but an
argument has been offered that such non-Wilsonian completions
are in fact Wilsonian in principle, but incomplete [15].
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stone mode - whereas the full UV description also con-
tains the radial mode that begins to significantly affect
the dynamics for solutions with energy density E � Λ4.
In section III, we perform a similar, although less de-
tailed, analysis for a model of Vainshtein screening that
can be completed in an SU(2) σ-model, which, as noted,
comprises a UV completion of the massive SU(2) gauge
theory. Our results are essentially the same as those in
section II. In section IV, we discuss Einstein-Gauss Bon-
net gravity in D > 4 dimensions, as a stringy extension
of D-dimensional GR. Static spherically symmetric solu-
tions to the latter low energy theory are known to deviate
from their linearized description at the Schwarzschild ra-
dius around a heavy source. This is entirely analogous
to the breakdown of the linearized scalar description in
modified gravity scenarios with a Vainshtein radius. We
then show that the UV correction coming from Gauss-
Bonnet manifests itself at a macroscopic scale just below
the Schwarzschild radius. In section V we summarize our
findings, which suggest that the Vainshtein mechanism
for the cases we explored is not reliable much beyond the
scale of the non-linearities in the truncated low energy
description.

II. VAINSHTEIN & HIGGS: U(1)

It turns out that the important features of the non-
Abelian Vainshtein screening, and its UV completion,
also appear in a much simpler Abelian scenario. With
this in mind, let us start by considering a K-essence like
theory

L = X + ε
X2

Λ4 + 1
Mpl

ϕT, (2)

where X = − 1
2 (∂ϕ)2, ε = ±1, and Λ�Mpl is some scale

associated with the breakdown of perturbative unitarity
for fluctuations about the vacuum. On a non-trivial back-
ground, the fluctuations acquire a Z factor

Zµν = ηµν
(

1 + 2ε X̄Λ4

)
− 2ε∂

µϕ̄∂νϕ̄

Λ4 . (3)

It is instructive to recall the intimate connection between
the breakdown of perturbative unitarity at the scale Λ
and the breakdown of classical perturbation theory in
the presence of a source [7, 16, 17]. For this example,
we have a canonical propagator ∼ 1/p2, where p is the 4-
momentum, and a 4-point self interaction of the field with
a vertex that schematically scales as p4/Λ4. Assuming a
static and spherically symmetric profile, we now consider
the classical field ϕc outside a heavy source of mass M .
Diagrammatically, we can describe this as follows,

= + + . . . (4)

The first diagram contributes the usual profile for a mass-
less scalar ϕclin ∼ M

Mpl

1
r . The next diagram yields a cor-

rection that is easily computed by dimensional analysis,
∆ϕc ∼

(
M
Mpl

)3
1

(Λr)4
1
r . Note that the linearized approxi-

mation becomes a poor one when ∆ϕc/ϕclin ∼ 1, or equiv-

alently when r ∼ rV ∼ 1
Λ

(
M
Mpl

) 1
2 . Below the Vainshtein

radius rV , one should sum all the diagrams in Eq. (4),
which is of course, equivalent to solving the classical field
equations exactly in the presence of the source. In other
words, solve

ϕ′ − εϕ
′3

Λ4 = M

Mpl

1
4πr2 . (5)

It is well known that the solution that asymptotes to
ϕlin = − M

Mpl

1
4πr can only be continuously extended to

much shorter distances when ε = −1. Then the so-
lution is screened for r � rV ∼ 1

Λ

(
M
Mpl

) 1
2 , scaling as

ϕnonlin ∼
(
M
Mpl

Λ4r
)1/3

, and giving a Z factor that goes

as Z ∼
(
rV

r

)4/3 � 1. In contrast, when ε = +1, the
solution runs into a branch-cut singularity close to the
same scale rV . This behavior appears to be generic in
models with Vainshtein screening on static backgrounds.
The sign of the higher dimensional operator that kicks
in at some macroscopic scale around a heavy source is
critical. For one particular sign we can extend the static,
spherically symmetric solution to shorter distances, while
for the other sign the solution is cut-off at the Vainshtein
radius by a branch cut (see, e.g. [5]).

This relation between the existence of scalar profiles
with screening, and the sign of the higher dimensional
operator is reversed when we consider homogeneous but
time dependent configurations. Consider, for example, a
scenario in which the homogeneous scalar is excited from
its trivial vacuum state to one of constant energy density,
E > 0. Then the homogeneous field equations read

1
2 ϕ̇

2 + 3
4ε
ϕ̇4

Λ4 = E . (6)

Now the linearized solution ϕlin =
√

2Et can only be con-
tinuously extended to much higher energy configurations
when ε = +1. This is important since we have screening
for E � Λ4 whence Z ∼

√
E/Λ2 � 1. Here the scale Λ

doubles up as both the Vainshtein scale and the vacuum
strong coupling scale2. If we were to now extract an en-

2 This seems qualitatively different to what happens in the static
spherically symmetric configurations with screening, for which
the Vainshtein radius rV � 1/Λ. However, even in those scenar-
ios, the gradient energy density stored in the field at the Vain-

shtein radius is of order ϕ′2(rV ) ∼
(

M
Mplr

2
V

)2
∼ Λ4.
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vironmental strong coupling scale based on fluctuations
about this energetic background we would find that for
high energies (E � Λ4), the environmental strong cou-
pling scale is given by Λenv ∼ E1/4 � Λ. In contrast, for
ε = −1, the homogeneous solution runs into a branch cut
for E ∼ Λ4 and there is no screening.

Thus, whatever the sign of ε, we can always find some
sort of Vainshtein effect, be it on static or homogeneous
backgrounds. However, analyticity considerations sug-
gest there is only one choice of sign (ε = +1) that can
be consistently extended into the UV beyond the cut-off
Λ by integrating out weakly coupled physics in the usual
way [11] (although see also [13]). In this instance, a pos-
sible UV completion exists in terms of a U(1) σ-model
[11]

L = −(∂ρ)2 − ρ2(∂α)2 − λ(ρ2 − η2)2. (7)

Here the mass of the radial mode m2 = 4λη2. Below
this scale we can integrate out the radial mode. The low
energy effective description is given by [10]

L = η2
[
−(∂α)2 + (∂α)4

m2 +m2O
(
∂6

m6

)]
. (8)

Now canonically normalizing α = ϕ√
2η , we obtain

L = X + X2

Λ4 + . . . (9)

where Λ = √
ηm = m√

2λ1/4 so that at weak coupling
m < Λ. Note that the stability of the Higgs potential
(λ > 0) forces us to take ε = +1 as claimed earlier. Be-
cause of this we will now focus on Vainshtein screening
for homogeneous backgrounds.

The question we would like to ask is: for the same
initial data, when do classical homogeneous solutions,
α̇UV (t), to the UV theory (7) deviate from the solutions,
α̇IR(t), to the following truncated low energy effective
theory:

L = η2
[
−(∂α)2 + (∂α)4

m2

]
. (10)

By “the same initial data”, we mean the same initial
conditions for α̇ in both cases (let α̇IR(0) = α̇UV (0) =
ω), and the same total energy density, E . For the UV
theory we also need to specify initial conditions for ρ.
Now a low energy observer ignorant of the details of the
UV completion has no way of knowing the initial data,
ρ̇(0) = v for the velocity of the radial mode, so we scan
over all the allowed possibilities v2 ∈ [0, v2

max], for some
vmax to be identified shortly. For a given v, the initial
data for ρ(0) = ρ0 can be inferred from the matching of
energy density. We scan over all allowed initial data by
introducing a parameter θ ∈ [0, π/2] and setting v2 =
v2
max sin2 θ.
The dynamics of the low energy effective theory is triv-
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FIG. 1: The maximum value of χ, considering a wide range
of initial data for the radial mode, vs the total energy
density in units of the vacuum strong coupling scale

ial: α̇IR(t) = ω at all times. Furthermore, the energy
density of this solution is given by E = η2ω2 + 3

4λω
4.

The dynamics of the UV theory is marginally more com-
plicated:

ρ̇2 + ρ2α̇2
UV + λ(ρ2 − η2)2 = E

ρ2α̇UV = J, (11)

where the constant angular momentum is given in terms
of the initial data as J = ρ2

0ω. Indeed, we find that
the motion is governed by an effective potential: ρ̇2 +
Veff (ρ) = E , where

Veff (ρ) = w2ρ4
0

ρ2 + λ(ρ2 − η2). (12)

As usual, the angular momentum generates a potential
barrier at small radii. To identify vmax, we evaluate the
energy equation (11) at t = 0, yielding

v2 = E − ρ2
0ω

2 − λ(ρ2
0 − η2)2. (13)

Demanding that the RHS above be maximized as a
function of ρ0, we can show that v2

max = ω4

λ . This repre-
sents the maximum amount of kinetic energy that can be
stored in the radial mode on the initial surface, for a given
angular velocity ω. For a given sin2 θ = v2/v2

max ∈ [0, 1],
we can extract the initial value ρ0 by solving Eq. 13.
Because this equation is quadratic in ρ2

0, there are in
general two roots. However, the smaller of these can
never be positive (as required for real ρ0) at high energies
(E � Λ4, or equivalently w2 � λη2) for any θ ∈ [0, π/2]
so we neglect it. Instead we focus on the larger root

ρ0 = η

√
1 + ω2

λη2

(
cos θ − 1

2

)
, (14)



5

which always yields a real radius for some θ ∈ [0, π/2].
Now that we have set up the initial data in the UV theory
we can evolve the solution for α̇UV (t) and compare it to
our low energy solution α̇IR(t) = ω. For a given total
energy density E , we propose the following measure for
comparing the two theories

χ(E) = max
{∣∣∣∣ α̇2

UV (t)− α̇2
IR(t)

α̇2
UV (t) + α̇2

IR(t)

∣∣∣∣ , t ≥ 0, 0 ≤ θ ≤ π/2
}
.

(15)
If χ(E) & O(0.1) for a given energy density E , we deem
the low energy solution to be a poor approximation to
the full UV solution at those energies. In Fig 1, we plot
χ against E/Λ4, where Λ ∼ ηλ1/4 is the vacuum strong
coupling scale. We immediately see that χ(E) & O(0.1)
whenever E & Λ4. This brings us to our main conclusion:
the classical solutions to the low energy effective action
(10) cannot be trusted in the region where Vainshtein
screening is meant to take place, E � Λ4, rendering the
environmental strong coupling scale dubious.

III. VAINSHTEIN & HIGGS: SU(2)

We now turn our attention to the low energy limit
of a weakly coupled non-abelian massive gauge theory.
Motivated by the helicity-0 sector of massive SU(2), we
consider a class of Lagrangians given by

L = Y + ε
Y 2

Λ4 , (16)

where3 Y = −(∂ϕ)2 − sin2
(
ϕ
η

)
(∂ψ2

1)− cos2
(
ϕ
η

)
(∂ψ2

2).
If the ψi are not allowed to fluctuate this reduces to the
scenario discussed in the previous section, so it should
come as no surprise that a UV completion of the theory
can be found only when ε = +1. This completion is, of
course, the SU(2) σ-model

L = −(∂ρ)2 − ρ2 [∂α)2 + sin2 α(∂β1)2 + cos2 α(∂β2)2]
− λ(ρ2 − η2)2. (17)

Again, if we integrate out the radial mode below the mass
scalem2 = 4λη2, we are left with the following low energy

3 This comes from Y = −∂Φ†∂Φ, with the parameterization

Φ = η

(
sin(ϕ/η)eiψ1/η

cos(ϕ/η)eiψ2/η

)
.
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FIG. 2: The maximum value of χ, for α and β, considering a
wide range of initial data for the radial mode, vs the total
energy density in units of the vacuum strong coupling scale

effective theory describing the Goldstone modes

L = η2

{
−
[
(∂α)2 + sin2 α(∂β1)2 + cos2 α(∂β2)2]

+
[
(∂α)2 + sin2 α(∂β1)2 + cos2 α(∂β2)2]2

m2

}
. (18)

Canonically normalizing α = ϕ/η, βi = ψi/η gives the
action (16) with ε = +1 and Λ = √ηm = m√

2λ1/4 , as
before. Assuming weak coupling in the UV theory gives
Λ < η, and so we may assume that perturbative unitar-
ity breaks down for the low energy theory at Λ. Fur-
thermore, in direct analogy with the previous section, we
find Vainshtein screening (i.e. large Z factors) on homo-
geneous backgrounds whenever the energy density of the
solution E � Λ4.

Once again we ask whether the classical low energy
solution is a good approximation to the classical solution
of the UV complete theory at the scale when screening is
meant to occur. To answer this we apply similar methods
to the previous section, matching initial data in the two
theories, and energy density and then scanning over the
allowed initial data for the radial mode. For simplicity
we concentrate on the solutions for α and β1 only, and
use the same definition of χ(E) for both modes as defined
in (15). Summarizing results, Fig 2 shows that the low
energy classical solution, for both α and β1, ceases to
be a good approximation whenever E & Λ4. Again, this
indicates that the environmental strong coupling scale is
highly questionable.
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IV. VAINSHTEIN SCREENING AND EINSTEIN
GAUSS-BONNET GRAVITY

Let us now return to the case of Vainshtein screen-
ing in gravity. We wish to stress that in fact there is
an analogue of the Vainshtein radius in General Rela-
tivity: the Schwarzschild radius. To see it, consider the
perturbative description of static, spherically symmetric
configurations in D dimensions [18]. Expand the metric
and the Einstein-Hilbert action about Minkowski space,
gµν = ηµν + hµν . Schematically,

MD−2
D

2

ˆ
dDx
√
−gR ∼

ˆ
dDxMD−2

D

[
h∂2h+ h2∂2h+ . . .

]
. (19)

with a coupling to a source given by
´
dDxhµνT

µν . The
potential due to a source of mass M in perturbation the-
ory is obtained by the resummation of the diagrams

= + + . . . (20)

After canonically normalizing the graviton field hµν ∼
M
− 1

2 (D−2)
D ĥµν , we see that each external source yields

a factor of M/M
1
2 (D−2)
D , while each 3-point vertex

brings in a factor of M−
1
2 (D−2)

D . Thus the first di-
agram yields the usual Newtonian potential ĥclin ∼

M

M
1
2 (D−2)

D

r−(D−3), while the second one yields a correc-

tion ∆ĥc ∼ M2

M
3
2 (D−2)

D

r−2(D−3). The perturbative expan-

sion breaks down when ∆ĥc/ĥclin ∼ 1, or equivalently
when

r ∼ rs ∼
1
MD

(
M

MD

) 1
D−3

. (21)

This is precisely the Schwarzschild radius of the source,
which is indeed where the linearized perturbation the-
ory breaks down, and one needs to consider nonlinear
corrections. In standard GR, they - thanks to full 4D
diffeomorphism invariance of the theory - add up to
the full nonlinear Schwarzschild geometry. The explicit
demonstration of this is nontrivial, as found by Duff
[18] and requires regulating the computations using ex-
tended sources, where the environmental effects help at
sub-Schwarzschild/Vainshtein scales (a note of this has
been made by Arnowitt, Deser an Misner in 1960 [19]!).
The ‘strong coupling’ at the ‘Vainshtein/Schwarzschild’
radius then turns out to be merely a coordinate singu-
larity, arising from large blueshifts experienced by in-
falling observers relative to static observers far away. In
this particular example the ‘classical low energy theory’

(linearized GR + leading order non-linear interaction,
∼ h2∂2h) is properly completed into a ‘fully nonlinear
interacting theory’ (GR) without any new degrees of free-
dom ever appearing below the cutoff of the nonlinear the-
ory (aside from the local matter modes that are needed
to describe extended sources, but are already present in
the theory). However, this occurs because the full diffeo-
morphism invariance of GR coupled to matter - a gauge
symmetry - precludes any new degrees of freedom until
the Planck scale. Note, that the key ingredient of this
‘taming’ of the perturbative expansion is played by the
systematic reinterpretation of the perturbative terms as
corrections of the background in the boosted local frame,
since diffeomorphism invariance ensures the universality
of the divergent pieces. The expansion is regulated by
taking extended sources, which are also diffeomorphism-
invariant (ie, obeying stress-energy conservation [19]),
and the series is then properly resummed yielding the
Schwarzschild background. In general, such protection
mechanisms that extend the standard 4D diffeomorphism
invariance are not generically known in commonplace
modified gravity frameworks that go beyond GR, and
it remains unclear whether they exist.

However, although GR allows us to extend the classical
description beyond the Schwarzschild/Vainshtein radius,
it too runs into a strong coupled regime at the scale of
the D dimensional Planck mass, MD. If we now think
of GR itself as our ‘classical low energy theory’ then MD

plays the role of the vacuum strong coupling scale, and
so we now seek to ask what effect any (partial) UV com-
plete has on the classical geometry. In the absence of a
detailed, UV complete, theory of quantum gravity, but
taking string theory as the most promising candidate
for it, we would expect various higher dimension irrel-
evant operators to correct the low energy D dimensional
Einstein-Hilbert action. Among them, the Gauss-Bonnet
term appears to be generic [20],

MD−2
D

2 α′
ˆ
dDx
√
−g
[
RµναβR

µναβ − 4RµνRµν +R2] ,
(22)

where the slope parameter α′ is positive and of the order
l2s , and the string length is ls & 1/MD. In D > 4 di-
mensions, black hole solutions to Einstein-Gauss-Bonnet
gravity [21] are given by a Schwarzschild like metric,
ds2 = −V (r)dt2 + dr2

V (r) + r2dΩD−2 with a potential

V (r) = 1 + r2

2α̃′

[
1−

√
1 + 8α̃′M

(D − 2)ΩD−2M
D−2
D rD−1

]
,

(23)
where α̃′ = (D− 3)(D− 4)α′, and ΩD−2 is the volume of
the unit D−2 sphere. If we expand the square root, then
to leading order we recover the Schwarzschild solution of
D dimensional General Relativity

V (r) ≈ 1− 2M
(D − 2)ΩD−2M

D−2
D rD−3

+ . . . (24)
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However, this expansion is only valid if
8α̃′M

(D−2)ΩD−2M
D−2
D

rD−1 < 1, or in other words it breaks
down at a scale

rGB ∼
1
MD

(
M

MD

) 1
D−1

(α′M2
D)

1
D−1 &

1
MD

(
M

MD

) 1
D−1

.

(25)
The point we want to emphasize is that for a classical
source M � MD, the UV correction to the GR solu-
tion manifests itself at a macroscopic scale rGB which
is within the GR-Schwarzschild radius, rs (the analogue
of the Vainshtein radius), but way beyond the cut-off
1/MD (although rGB is inside the black hole horizon, so
an external observer merely sees a small correction to
the position of the horizon - a weak secondary hair). If
this sort of behavior occurs in modified gravity scenarios
with Vainshtein screening, one might see corrections to
the scalar profile at some macroscopic scale within the
Vainshtein radius but way beyond the cut-off 1/Λ.

V. CONCLUSIONS

Much of the work involving modifications of gravity
refers to the Vainshtein mechanism as the key ingredient
needed to tame the behavior of extra degrees of freedom
in the realms where GR has been experimentally favored.
However, the existing frameworks break down at very
low scales, and it is unclear if they are meaningful micro-
scopically. Thus it is sensible to test Vainshtein screen-
ing in models that are known to have a UV completion,
and hence a healthy short distance behavior. In the ex-
amples we have considered - dealing with the Goldstone
sectors of massive gauge theories - we have encountered
concerning behavior of the low energy theories due to
the degrees of freedom from the UV completion. These
modes - even after being integrated out, but consistently
so - leave their fingerprints in the low energy limits, and
strongly affect the classical solutions in the region where
Vainshtein screening is supposed to occur. This renders
the classical solutions to the truncated EFTs that are
used to exhibit Vainshtein phenomena questionable. As
a corollary to this result, the environmental strong cou-
pling, often taken as the reliable cut-off for the effective

theory, is in fact not only unreliable, but it completely
loses its meaning. In reality, the cut-off to the truncated
EFT should really be taken to be close to the Vainshtein
radius before any UV degrees of freedom have been ex-
cited. If we are to go beyond the Vainshtein radius, then
we seem to have to worry about what those UV degrees
of freedom are doing.

While this behavior seems to occur in the Goldstone
sectors of massive gauge theories, and in Einstein-Gauss-
Bonnet gravity, our evidence is limited to these examples.
However, it seems plausible that such examples are rep-
resentatives of the behavior of massive gravity, and while
we cannot be certain of it, we do think that in all likeli-
hood the spirit of our result extends beyond the specific
scenarios we have considered. In any theory with Vain-
shtein screening there is a breakdown of perturbative uni-
tarity at some low scale Λ due to some higher dimensional
operators. To unitarize the theory we expect new physics
to come in at some scale m . Λ – barring some new
powerful gauge symmetry analogous to diffeomorphism
invariance in GR. Such symmetries do not appear to be
known at the present time. So the breakdown of the cal-
culability will manifest in perturbaton theory as a tower
of higher dimensional operators, in addition to the ones
included in the original theory, suppressed by the same
scale m. Such new terms would correct both the back-
ground and the estimates of the strong coupling scale. In-
deed, in the truncated EFT, Vainshtein screening kicks in
when the higher dimensional operators that are retained
become important. Generically the additional operators
not included in the original theory will become impor-
tant at a scale somewhere between the Vainshtein scale
and m < Λ, in effect lowering the cutoff. Unless such
effects can be reliably suppressed, the benefits of the en-
vironmental suppression of strong coupling effects may
be altogether lost. More work seems to be warranted to
settle this question.
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