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Abstract-- Electrification of heat and transport in addition to 

integration of intermittent renewable resources into the existing 

electricity network is expected to occur in near future. Such a 

transformation is expected to force the operation of the electricity 

power system at different levels to its limits. A novel bottom up 

modelling approach for quantifying temporal variation of electric 

vehicle charging power and energy is presented in this paper 

which can be used to accurately investigate the effect of charging 

different penetration levels of electric vehicles within the low 

voltage distribution network. This EV charging model is further 

used for development of a deterministic control algorithm for 

regulating power flows at the low voltage level.  

Index Terms—Electric vehicle, stochastic load modelling, 

electric vehicle battery, distributed energy resources   

I. INTRODUCTION 

he increasing uptake of electric vehicles is expected to 

have a number of adverse effects on the radial low voltage 

distribution network including [1]:  

 Increased voltage drop at the consumer end of LV feeders 

 Overloading of distribution transformers and feeders  

 Increased network losses 

 Voltage unbalance 

 System frequency deviations 

 Current harmonics and reduced power quality 

The impacts of different penetrations of Electric Vehicle (EV) 

charging on distribution transformers, feeder loading, voltage 

and power losses are investigated in [2]. Simulation results 

presented in [2] demonstrate that the distribution transformer 

and underground cables serving customers will be 

significantly overloaded. In addition to that a high penetration 

of EVs would cause the voltage at the end of the feeders to 

drop below 0.94p.u and increase power loss within the system. 

It is worth noting that quantifying the temporal variation of 

EV load through the relevant modelling technique is an 

essential element for studying the effect of integrating EVs on 

the distribution network operation. In addition to that, 

provided that there is a certain degree of flexibility in the 

charging of each unit, this modelling platform would allow for 

individual EVs to participate in the operation of any active 

management algorithm for regulating power flows at the low 

voltage level. This would in turn significantly reduce the 

negative effects that would otherwise occur if EVs were 

allowed to charge freely. A novel bottom-up modelling 

approach for quantifying the temporal variation of EV 

availability for charging and it’s charging energy requirement 

throughout a day is presented in this paper. The presented EV 

charging model has been utilised for both development and 

testing of the Community Power Flow Control algorithm 

(CPFC) a novel deterministic control algorithm for regulating 

power flow within a section of the distribution networks. The 

structure and the logic behind the CPFC algorithm will be 

presented in a future publication. An overview of some of the 

available modelling techniques for quantifying the temporal 

variation of EV charging requirements has been provided in 

section II. The proposed novel modelling technique for EV 

charging in addition to the simulation result obtained from this 

model, are presented in section III and IV of this paper 

respectively. 

II. LITERATURE REVIEW 

An EV charging model has been presented in [2].This model 

essentially uses two probability distribution functions to 

randomly quantify the “charging start time” and the “State of 

Charge”. However these distributions do not appear to be 

based on any transport data. In addition, this model only 

quantifies charging for the last trip of the day, so visits to the 

house charging point at interim times are not included. A 

similar technique for temporal quantification of EV charging 

has been presented in [3]. This technique uses the National 

Household Transport Survey (NHTS) data set [4], to obtain a 

distribution of “last journey ending time” and “daily driving 

distance” which are then used to randomly quantify the 

vehicle arrival time at the dwelling and its total energy 
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consumption for the day. Similar to [2], this model does not 

attempt to quantify the temporal variation of vehicle 

availability at the dwelling throughout the day. Excluding the 

possibility of charging throughout the day,  as presented in [2], 

[3] is expected to result in overestimation of the charging 

power requirements for the late evening hours. An agent based 

EV model has been presented in [5] which uses random 

distributions to determine individual departure times as well as 

type and detailed location of the next activity in the city. For 

every individual agent, the model generates the total distances 

driven and energy consumed, however no detail about the 

statistical method used for the computation of these variables 

has been provided. As explained above the majority of the 

published modelling approaches are unable to quantify the 

availability of EVs for charging and their charging energy 

requirements. The modelling approach presented in this paper, 

on the other hand, relies on the application of appropriate 

statistical techniques to information extracted from a 

comprehensive and detailed transport data set. This ensures 

that the proposed modelling approach is a reliable and an 

accurate method for stochastic and realistic quantification of 

vehicle availability for charging and journey energy 

consumption.  

III. THE ELECTRIC VEHICLE CHARGING MODEL 

The developed EV charging model comprises two elements. 

The first element is a novel stochastic method for temporal 

quantification of vehicle availability for charging and its 

journey energy consumption. The second element is a lithium 

ion battery model based on an RC equivalent circuit, whose 

state-of-charge is linked to the journey energy consumption. 

The structure behind the two elements of the EV charging 

model in addition to the simulation results obtained from this 

model are included in the next section. 

A. Vehicle availability for charging and journey energy 

consumption model 

A vehicle’s position and commutation throughout a day are 

assumed to be described by stochastic temporal variables with 

a changing likelihood across the day. This is represented by a 

Markov Chain [6] with a discrete state space to define the 

location and hence availability for charging. The state 

transition probability values are extracted from the NHTS data 

set [4], which contains specific information about individual 

journeys that 240,000 participants had taken in a day with a 

one minute resolution. A Monte Carlo technique [7] is then 

applied to the resultant Markov Chain to obtain the state 

transition for every individual vehicle throughout the day. The 

energy consumption for each vehicle trip generated by the 

Monte-Carlo model is estimated by using the NHTS data to 

generate a journey distance from the journey duration. The 

resultant value of journey distance is then multiplied by the 

specific energy consumption rate of the vehicle to quantify the 

energy consumption during the journey. In this model it is 

assumed that charging the vehicle’s battery only takes place 

when the EV is parked at the dwelling. 

1) Construction of the Markov Chain 

In order to quantify the variable likelihood of journeys taken 

throughout a day and the availability of the vehicle at the 

dwelling, the following three states of vehicle mobility have 

been defined: 

 State One – vehicle parked at the dwelling 

 State Two – vehicle on a journey 

 State Three – vehicle parked at a remote location 

other than the dwelling 

Using every participant’s journey diary which contains 

information about every journey’s start and end time, the 

participant’s location and journey distance, it is possible to 

create a daily vehicle mobility profile for every participant. 

This profile indicates how transition occurs between the three 

vehicle mobility states throughout a day. Fig.1 shows an 

example of a vehicle mobility state profile created from the 

diaries of four participants. It is evident that all four 

participants leave their dwellings during the interval 7:25 – 

8:25 hours. They mostly park their vehicle at a remote location 

during mid-day hours (with the exception of a few sporadic 

journeys) and make a return journey back to the dwelling 

during the interval 15:30 – 17:00 hours. Vehicle four then 

takes an additional journey in the evening hours, however the 

remaining vehicles are parked at the dwelling and hence 

available for charging during the evening hours. 

 
Fig.1.Vehicle mobility state profiles obtain from NHTS 

By filtering all the journey diaries obtained from the data set, 

the journey patterns of all participants are obtained in the three 

state vehicle mobility format. Using the filtered data, the total 

number of transitions between every one of the states and its 

two counterpart states is determined, for every minute of a 

day. Having quantified these state transition values for every 

minute of a day, the probability of transition between different 

states is simply calculated using (1). 
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Where 
mntX  is the total number of transitions from state m to 

state n during the one minute interval at time t and 
mt

Y is the 

total number of vehicles in state m at time t. Since three 

vehicle mobility states have been defined in this study, there 

are nine combinations of state transition values for every 

minute, only one of which can occur during any particular one 

minute interval. This is illustrated in Fig.2, which shows the 

three mobility states and the nine possible state transitions at 

time t. Since any transition between state 1 and state 3 has to 

take place via state 2, the probabilities of a direct transition 

between state 1 and state 3 are effectively zero. The obtained 

state transition probability values can be placed in individual 

3×3 sub-matrices, one for every minute of the day. 
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Fig.2.Three mobility states and the different state transition possibilities at 

time t 

Fig.3 shows the state transition probability sub-matrix at 

minute t.  
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Fig.3. State transition probability sub-matrix at minute t 

The columns of this sub-matrix represent the possible 

present states and the rows represent the possible states at the 

next time step. Every matrix element represents the probability 

of transition from the present state to the next state. For 

example   
12tP represents the probability of transition to state 2 

(vehicle starts a journey) if the current state is state 1 (vehicle 

parked at the dwelling). Likewise 
22tP represents the 

probability of remaining in state 2 at time t. This forms the 

basis of a classical Markov Chain with a finite discrete state 

space, in which state transition is dependent on the previous 

state together with the probability of the state changing. 

Repeating the aforementioned procedure for every minute of a 

day, 1440 unique sub-matrixes are created (one for each 

minute of the day), which are then grouped together to form 

the resultant State Transition Probability Matrix (STPM). It is 

worth noting that journey patterns are expected to be different 

between weekdays and weekend days. To accommodate the 

different behaviour patterns between weekday and weekend, 

the original survey data set is divided into two groups and two 

separate state transition probability matrices are created. This 

distinction ensures that the variation of journey probability 

between weekdays and weekend days are incorporated in this 

model. 

2) Application of the Markov chain Monte Carlo 

technique 

The Markov-Chain Monte Carlo technique is a convenient 

way to model the evolution of vehicle states throughout the 

day while respecting the underlying behavioural statistics of 

the entire vehicle population. Since the probability of 

occurrence of state 1 at time 00:00 hour is much higher than 

the probability of occurrence of any other states, it is assumed 

that every vehicle is in state 1 at the start of the simulation. 

The ensuing state transition probabilities at each subsequent 

step can be determined by repeatedly comparing a random 

number with the cumulative elements of the state transition 

probability vector obtained from (3) [7]. The value of the 

random number will then determine the state at the next time 

step. A state transition only occurs if the cumulative 

probability value is greater than the random number, otherwise 

the vehicle stays in its current state during that time step. 
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Here  
tP  is the state transition probability matrix at time t, ts  is 

the state vector containing binary values which represent the 

active state at the current time step and 1tq is the state 

transition probability vector at the next time step. Note that the 

sum of state transition probabilities from any one state to any 

subsequent state must be unity as shown in (4). 
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                                   (4) 

Performing this technique at every minute throughout the 

day using the appropriate elements of the state transition 

probability matrix, results in the synthetic generation of the 

vehicle mobility state profile. Fig.4 shows three examples of 

the resultant vehicle mobility state profiles over a week day. 

 
Fig.4.Three individual vehicle mobility state profile 

 For example it is evident that the third EV takes three 

journeys during the day starting at 08:45, of 35 minutes, 40 

minutes and 15 minutes duration respectively. Most of the 

journey patterns have similar characteristics, with a greater 

likelihood of journeys (i.e. state 2) during the morning and 

evening hours, parking at the dwelling (i.e. state 1) overnight 

and during the early morning hours, and parking at a remote 

location (i.e. state 3) around midday and sometimes during the 

late evening hours. These characteristics reflect the behaviour 

of the population which was used to generate the filtered 

survey data. The duration of each journey is represented by the 

intervals of time spent in state 2, while the vehicle’s 
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availability at the dwelling for charging is represented by the 

intervals of time spent in state 1. Since there is a direct 

correlation between journey distance and journey duration it is 

reasonable to use this correlation in combination with the 

value of journey duration obtained from the mobility state 

profile to estimate the journey distance. In order to generate 

the correlation statistic, the NHTS data is firstly filtered into 

26 journey duration bins each with a 10 minute width, 

followed by further filtration of every duration bin into 300 

distance bins, each with a width of 1 mile. Finally, the 

cumulative probability distribution of journey distance for 

each one of the journey duration bins is obtained from the 

resultant filtered distributions. Having obtained the journey 

duration value from the vehicle mobility state profile, the 

respective cumulative probability distribution is selected. By 

comparing a normally distributed random number (between 0 

and 1) with the selected cumulative probability distribution, an 

estimated journey distance value can be generated, that 

correctly reflects the statistical variation in the underlying 

survey data. Having quantified every journey’s distance, each 

journey’s energy consumption is simply calculated using (5). 

  J JE D ECR                                 (5) 

JE is journey energy consumption in kWh, 
JD  is journey 

distance in miles and ECR is the journey energy consumption 

rate, which in this study is assumed to be constant at 

0.34KhW/mile [8]. For example the application of these steps 

on the mobility profile for vehicle three (shown in Fig.4) 

entails 3.7 kWh, 4.8 kWh and 1.2 kWh of consumed energy 

during the three journeys. 

B. Lithium ion battery and charger model 

A simplistic lithium ion battery model has been presented 

in [9]. This model is essentially based on the operation of 

individual battery cells represented through an equivalent RC 

circuit. As the modelling steps presented in [9] were 

transparent and battery parameters were also available from 

the literature [10], a similar modelling technique has been 

adopted in this project, to represent a lithium ion battery. The 

equivalent RC circuit shown in Fig.5 is used to represent a 

single 6Ah lithium ion battery cell.  

eR tR

cR

cC

bCbU LU

LI

 
Fig.5.RC Equivalent circuit of a lithium ion battery cell 

This circuit consists of two capacitors (
bC ,

cC ) and three 

resistors (
tR ,

eR ,
cR ). The capacitor 

cC , which has a small 

capacitance, mostly represents the surface effects of a battery. 

A large capacitor 
bC represents bulk charge storage within the 

battery. Resistors 
tR ,

eR and
cR are called the terminal 

resistor, the end resistor and the capacitor resistor respectively.  

bU and 
cU are the voltages across 

bC  and 
cC respectively. 

The electrical behaviour of the circuit can be expressed by (6) 

and (7).  
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LU and
LI in (6) and (7) represent the terminal voltage and 

current from the battery cell. Using this battery cell model, a 

number of cells are connected in series to make up the desired 

battery pack capacity. The charging characteristics and 

specification of the Nissan Leaf battery has been obtained 

from [8], and is used in this model. Therefore a 24kWh battery 

pack with a constant charging power of 6.6kW has been 

modelled to represent the EV battery. In order to regulate the 

battery’s charge/discharging power in addition to its state of 

charge, a model for a battery charge controller is required. The 

model presented in [11] has been employed for this purpose. 

Having assumed that the charging power chargingP  is constant 

at 6.6kW, the charging current is simply calculated according 

to (9). This assumes a constant efficiency of 98% for the 

charger ( C ), and 90% for the power electronic rectifier (
PE ) 

[11]. 

 
charging

B

L

A

C PE

P EV
I

V  




 
                         (9) 

BV  represent the voltage across the battery pack which is 

calculated by multiplying the number of battery cells with  

LU obtained from (7). 
AEV is a binary variable representing 

the availability of the EV at the dwelling (i.e. 1 or 0 depending 

on state). The variation of State of Charge (SOC) is simply 

quantified by integrating the value of the battery current 
LI  

over time. The battery charger ensures that the EV battery 

isn’t discharged below 15%, and charged above 80% of its 

maximum SOC. The state of charge of an EV’s battery is 

updated at the end of every journey with a new value 

according to (10). 

 t t x jSOC SOC SOC                    (10) 

t xSOC 
represents the state of charge at the start of the journey 

and 
jSOC is the reduction in state of charge due to the 

journey. Upon entering state 1 the EV starts to charge until 

either the mobility state changes (i.e. EV becomes 

unavailable) or the EV’s battery becomes fully charged. This 

assumes that the EV owner plugs in the EV for charging upon 

arrival at home. 

IV. SIMULATION RESULTS 

After integrating the vehicle mobility model with the battery 

model, the temporal variation of the SOC and charging power 

can be obtained. Fig.6 shows the variation of the SOC for the 
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three EVs shown in Fig.4. The SOC variation shows the 

following three distinctive periods: 

 Increasing SOC as the EV is being charged at the 

dwelling  

 Constant SOC (i.e. less than 80%) as the EV is 

parked at a remote location and not charging 

 Reducing SOC as the EV is on a journey consuming 

energy 

 
Fig.6.SOC variation of three EVs obtained from simulation 

Having quantified the variation of SOC and EV charging 

power, it is possible to include every EV as a shed-able load in 

the CPFC’s operation. However since prolonged EV shedding 

is unrealistic and undesirable to the EV user, different 

shedding bands have been created and randomly assigned to 

different users at the start of every simulation run. It is 

envisaged that every EV user will select the desirable 

maximum and minimum shedding times via a smart meter 

interface.  

V. CONCLUSION 

A novel probabilistic modelling approach for quantifying 

the temporal variation of the power and the energy required 

for charging individual EV units is developed and presented in 

this paper. This model is based on application of a Monte 

Carlo simulation on data extracted from a transport survey. 

Integration of this probabilistic technique with a lithium ion 

battery model permitted the realisation of a stochastic model 

for EV energy requirements. In order to prove the validity of 

the proposed modelling technique for the generation of 

synthetic vehicle mobility patterns, the variation of every state 

probability with time is obtained from the NHTS survey and 

compared with aggregated Monte-Carlo simulation runs. The 

preliminary findings obtained from that investigation shows 

close correlation between the simulation results and will be 

presented in more depth in a forthcoming publication. This EV 

charging model is then used for development of CPFC, a 

novel deterministic control algorithm developed by the 

authors, for regulating power flows within different sections of 

the distribution network. CPFC’s structure and logical 

operation in addition to a comprehensive smart grid control 

framework will be presented in a future publication. 

The presented EV charging model at its current stage merely 

represents every EV as a load since the V2G operation has 

been omitted. Inclusion of V2G is considered an improvement 

to the presented model’s functionality and has been assigned 

as future work. That work will involve devising additional 

conditions for EV charger in order to distinguish between 

charging and V2G modes of operation. 

VI. REFERENCES 

[1] P. Papadopoulos, L. M. Cipcigan, N. Jenkins, and I. Grau, 

"Distribution networks with Electric Vehicles," in Universities 

Power Engineering Conference (UPEC), 2009 Proceedings of the 
44th International, 2009, pp. 1-5. 

[2] P. Papadopoulos, S. Skarvelis-Kazakos, I. Grau, B. Awad, L. M. 

Cipcigan, and N. Jenkins, "Impact of residential charging of 
electric vehicles on distribution networks, a probabilistic 

approach," in Universities Power Engineering Conference 

(UPEC), 2010 45th International, 2010, pp. 1-5. 
[3] L. Kelly, A. Rowe, and P. Wild, "Analyzing the impacts of plug-in 

electric vehicles on distribution networks in British Columbia," in 

Electrical Power & Energy Conference (EPEC), 2009 IEEE, 2009, 
pp. 1-6. 

[4] U. S. D. o. Transportation, "The National Household Travel 

Survey (NHTS)," N. D. Center, Ed., ed. NHTS Data Center, 2009. 
[5] S. Acha, K. H. van Dam, and N. Shah, "Modelling spatial and 

temporal agent travel patterns for optimal charging of electric 

vehicles in low carbon networks," in Power and Energy Society 

General Meeting, 2012 IEEE, 2012, pp. 1-8. 

[6] S. R. Walter R. Gilks, David J. Spiegelhalter, Markov Chain Monte 

Carlo in practice: Chapman and Hall/CRC (1 Dec 1995), 1996. 
[7] H. F. L. Dani Gamerman, "Markov chain Monte Carlo: stochastic 

simulation for Bayesian inference," ed: Chapman and Hall/CRC; 2 

edition (10 May 2006), 2006, p. 344 pages. 
[8] NISSAN. (2012, 11/07/2013). NISSAN LEAF. Available: 

http://www.nissanusa.com/electric-cars/leaf/versions-specs/ 
[9] R. X. a. J. F. Hongwen He *, "Evaluation of Lithium-Ion Battery 

Equivalent Circuit Models for State of Charge Estimation by an 

Experimental Approach," Energies, vol. 4, 2011. 
[10] A. A. P. Valerie H. Johnson, "Temperature-Dependent Battery 

Models for High-Power Lithium-Ion Batteries," 2000. 

[11] J. F. D.P. Jenkins *, D. Kane, "Model for evaluating impact of 
battery storage on microgeneration systems in dwellings," Energy 

Conversion and Management, vol. 49, 2008. 

VI.  BIOGRAPHIES 

Amir Fazeli received the BEng honors degree in 

Electrical and Electronic Engineering from the University 

of Liverpool in 2008, and the MSc in Power Electronics 
and Drives from the University of Nottingham in 2009. In 

March 2013 he completed his PhD studies of Electrical 

and Electronic Engineering at the University of 
Nottingham, where he focused on development of novel 

control techniques for regulating power flow within 

microgrids. In November 2013 Dr. Fazeli joined Alstom Grid Ltd where he is 
currently a research technologist. 

C. Mark Johnson received the B.A. degree in 

Engineering and the PhD degree in Electrical Engineering 
from the University of Cambridge, in 1986 and 1991, 

respectively. In 2006, he was granted a Personal Chair at 

the University of Nottingham, where he is involved in 
power semiconductor devices, power device packaging, 

reliability, thermal management, power module 

technologies, and power electronic applications. Prof. 

Johnson is currently leading the EPSRC National Centre of Excellence for 

Power Electronics. 
 Mark Sumner received his BEng degree in Electrical 

and Electronic Engineering from Leeds University in 

1986. Prof. Sumner received his PhD in 1990, and after 
working at Nottingham as a Research Assistant, was 

appointed Lecturer in October 1992 and Senior Lecturer 

in 2004. In 2011 he was appointment a Professor of 
Electrical Energy Systems at the University of 

Nottingham. 

Edward Christopher obtained his B.Eng degree and PhD 
in Electrical and Electronic Engineering from The 

University of Nottingham in 2003 and 2008 respectively. 

In 2007 Dr. Christopher was employed as a Research 
Fellow in the Power Electronics, Machines and Control 

Group where he worked on power electronics systems for 

automotive, marine and renewable energy applications. In 
2012 he became Lecturer of Renewable Energy 

Integration and Power Electronics. 

http://www.nissanusa.com/electric-cars/leaf/versions-specs/

