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Abstract: The diastereo- and enantioselective reductive coupling 

of vinylazaarenes with N-Boc aldimines is described. The 

reactions proceed using chiral Cu–bisphosphine complexes in the 
presence of TMDS as a hydride source to give reductive coupling 
products in moderate to high enantioselectivities. 
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The broad significance of aromatic nitrogen heterocycles 
(azaarenes) in chiral biologically active compounds and 
other functional molecules has prompted our group to 
investigate the potential of C=N-containing azaarenes as 
activating groups in new catalytic enantioselective 
processes.

1,2
 During this program, we have reported 

enantioselective Cu-catalyzed reductions of β,β-
disubstituted alkenylazaarenes

2a
 and Cu-catalyzed 

reductive couplings of alkenylazaarenes with ketones 
(Scheme 1a).

2d
 This latter process enables the synthesis 

of products containing an azaarene and two stereogenic 
centers, including a tertiary alcohol. The ability to 
employ other types of electrophiles would be beneficial 
to expand the range of accessible products.  

Krische and co-workers have described the racemic Rh-
catalyzed hydrogenative coupling of vinylazines with N-
sulfonylaldimines (Scheme 1b),

3
 and we envisaged that a 

related enantioselective variant employing chiral copper 
hydride chemistry

4
 could be developed. Although the 

intermolecular reductive aldol reaction
5
 of α,β-

unsaturated carbonyl compounds, catalyzed by chiral 
copper–hydride complexes, has been successful,

6
 the 

corresponding reductive Mannich reactions
7
 have been 

less well studied.
8
 To date, the only report of 

enantioselective copper-catalyzed reductive Mannich 
reactions is from Kanai, Shibasaki, and co-workers, who 
described the reductive coupling of α,β-unsaturated 
esters with N-phosphinoyl ketimines.

7f
  

Herein, we describe the enantioselective Cu-catalyzed 
reductive coupling of vinylazaarenes with N-Boc 
aldimines. Both vinylazines and vinylazoles are effective 
substrates, and the Boc-protection in the products is 
advantageous for subsequent deprotection. 

Our investigations began with an evaluation of chiral 

 

 

Scheme 1  Existing catalytic reductive coupling reactions of 

alkenylazaarenes. 

 

bisphosphines, reductants, and reaction conditions for 
the copper-catalyzed reductive coupling of 2-
vinylquinoline (1a) with N-Boc aldimine 2a (1.1 equiv), 
which led to the identification of (S)-DTBM-SEGPHOS 
(L1) as an effective chiral ligand. In the presence of 
Cu(OAc)2·H2O (5 mol%), L1 (5 mol%) and 1,1,3,3-
tetramethyldisiloxane (TMDS, 1.2 equiv), the reaction 
proceeded smoothly in THF at room temperature to give 
reductive coupling product 3a as the anti-diastereomer in 
63% yield, >19:1 dr, and 85% ee (Scheme 2).

9,10
 Under 

these conditions, various other vinylazaarenes 1b–1f 
were also effective in reactions with imine 2a, which 
gave products 3b–3f in 58–74% yield and 75–92% ee. 
Besides quinolone (3a), azaarenes that were tolerated 
included quinoxaline (3b), a bromopyridine (3c), a 
phenylpyridazine (3d), benzoxazole (3e), and 
benzothiazole (3f). High diastereoselectivities (≥10:1 dr) 
were observed with vinylazaarenes containing 
benzannulation (3a, 3b, 3e, and 3f), while 2-bromo-6-
vinylpyridine and 3-phenyl-6-vinylpyridazine resulted in 
more modest diastereoselectivities (3c and 3d). In the 
former case, the diastereomers were difficult to separate 
completely, and the minor isomer was formed in a much 
lower enantiomeric excess (20% ee) compared with the 
major isomer (80% ee). 
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Scheme 2  Enantioselective reductive coupling of vinylazaarenes 1a–

1f with N-Boc imine 2a. Reactions were conducted using 0.30 mmol 

of 1a−1f.
 
Unless stated otherwise, yields are of pure isolated major 

diastereomers. Diastereomeric ratios were determined by 
1
H NMR 

analysis of the unpurified reaction mixtures. Enantiomeric excesses 

were determined by chiral HPLC analysis. 
a
 Yield of a 4.3:1 mixture 

of diastereomers. The enantiomeric excess of the minor diastereomer 

is indicated in parentheses. 

 
The reductive coupling of 4-phenyl-2-vinylthiazole (1g) 
with imine 2a proceeded with low enantioselectivity 
using ligand L1. Fortunately, (R,R)-Ph-BPE (L2) 
provided improved results, and gave 3g in 88% yield, 
>19:1 dr, and 87% ee (Scheme 3).

10
 

 

Scheme 3  Reductive coupling of 1g with 2a using ligand L2. 

 

Various other (hetero)aromatic N-Boc aldimines 2b–2l 
also underwent reductive coupling with vinylazaarenes 
1a–1f, giving products 4a–4s in 59–94% ee for the major 
diastereomers (Scheme 4).

10
 The diastereoselectivities of 

these reactions ranged from 1.3:1 dr (4i) to >19:1 dr (4a–
4c, 4e, 4f, and 4r). Compared with the results shown in 
Scheme 2 and with similar reactions using ketones as 
electrophiles,

2d
 these reactions often provided lower 

yields of the reductive coupling products due to more 
prevalent side-reactions, such as simple reduction of 
both reaction partners without C–C bond formation. 
Although no definitive trends could be deduced from the 
particular combinations of substrates that resulted in the 
highest enantioselectivities, values of 85% ee or higher 
were observed in several cases (4a, 4c, 4d, 4i, 4k, and 
4q–4s). With respect to the imine, a range of substituents  

  

Scheme 4  Enantioselective reductive coupling of vinylazaarenes 1a–

1f with various N-Boc imines. Reactions were conducted using 0.30 

mmol of 1a−1f. Unless stated otherwise, yields are of pure isolated 

major diastereomers. Diastereomeric ratios were determined by 
1
H 

NMR analysis of the unpurified reaction mixtures. Enantiomeric 

excesses were determined by chiral HPLC analysis. Where measured, 

the enantiomeric excess of the minor diastereomer is indicated in 

parentheses. 
a
 Yield of a 4.7:1 mixture of diastereomers. 

b
 Yield of a 

3:1 mixture of diastereomers. 
c
 Yield of a 1.6:1 mixture of 

diastereomers. 

 
(methyl, trifluoromethyl, chloro-, methoxy, dioxolane, or 
boronate esters) at various positions on the phenyl ring 
were tolerated. Furthermore, reactions of imines 
containing 1-naphthyl, 2-naphthyl, or 2-thienyl groups 
were also successful. As observed previously (Scheme 
1), the reactions of 2-bromo-6-vinylpyridine and 3-
phenyl-6-vinylpyridazine generally gave lower 
diastereoselectivities (4g–4l) compared with the other 
vinylazaarenes. Lower diastereoselectivities were also 
obtained with an imine containing a p-pinacol boronic 
ester (4i and 4s). Interestingly, the minor diastereomers 
obtained for products 4g and 4i were obtained in low or 
non-existent enantiomeric excesses. 

Once again, (R,R)-Ph-BPE (L2) was a superior ligand 
compared with L1 in a reductive coupling involving 4-
phenyl-2-vinylthiazole (Scheme 5).

10
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Scheme 5  Reductive coupling of 1g with 2f using ligand L2. 
 

The reaction of 2-vinylbenzothiazole (1f) with an imine 

2m (2.0 equiv) containing an aliphatic substituent 

(cyclohexyl) was also studied (Scheme 6). Although low 

stereoselectivities were obtained using ligands L1 or L2, 

the Josiphos ligand SL-J006-1 (L3) gave improved 

results, and provided two diastereomers of 4u in 73% 

and 16% yields, in 82% and 75% ee for the major and 

minor isomers, respectively. 

 

 

Scheme 6  Reductive coupling of 1f with an aliphatic N-Boc imine 

2m using ligand L3. 
a 

Values in parentheses refer to the yield and 

enantiomeric excess of the minor diastereomer. 

 

Finally, removal of the Boc group from 4a was achieved 

under acidic conditions (using HCl generated by the 

reaction of TMSCl with MeOH), which provided amine 

5 in 90% yield with no loss of enantiopurity (Scheme 7). 

 

  

Scheme 7   Deprotection of 4a. 

 

In summary, the results presented herein demonstrate the 

ability of chiral copper–bisphosphine complexes to 

catalyze the enantioselective reductive coupling of 

vinylazaarenes with hetero(aryl) N-Boc imines. The 

reactions provide reductive coupling products with 

moderate to high enantioselectivities (up to 94% ee). 
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(9) General Procedure for the Reductive Coupling of 

Vinylazaarenes with Imine 2a Using Ligand L1 

 A solution of the appropriate vinylazaarene (0.30 mmol), 

Cu(OAc)2·H2O (3.0 mg, 0.01 mmol), (S)-DTBM-

SEGPHOS (L1) (17.7 mg, 0.015 mmol), and imine 2a (68 

mg, 0.33 mmol) in THF (1.5 mL) was stirred at 0 °C for 

15 min. TMDS (64 μL, 0.36 mmol) was then added 

dropwise over 1 min. The mixture was stirred at 0 °C for 

1 h, then at r.t. for 15 h. The reaction was quenched 

carefully with SiO2 and the resulting suspension was 

stirred for 15 min, before being filtered through a short 

plug of SiO2 using EtOAc as eluent and concentrated in 

vacuo. Purification of the residue by flash column 

chromatography gave the reductive coupling product. 

 Data for 3a: Rf  = (20% EtOAc/petroleum ether); mp 

128-131 C (EtOAc/petroleum ether); [α]D
24 +98.6 (c 

1.10, CHCl3); IR (film): 2970, 2934, 1709 (C=O), 1503, 

1390, 1289, 827, 756, 700 cm-1; 1H NMR (500 MHz, 

(CD3)2CO):  = 8.14 (d, J = 8.4 Hz, 1 H), 8.05 (d, J = 8.3 

Hz, 1 H), 7.88 (d, J = 8.0 Hz, 1 H), 7.75 (ddd, J = 8.4, 

6.9, 1.4 Hz, 1 H), 7.57-7.51 (m, 1 H), 7.33 (d, J = 7.3 Hz, 

2 H), 7.24 (t, J = 8.0 Hz, 3 H), 7.16 (t, J = 7.0 Hz, 2 H), 

5.09 (t, J = 7.7 Hz, 1 H), 3.63-3.54 (m, 1 H), 1.35 (d, J = 

6.9 Hz, 3 H), 1.27 (s, 9 H); 13C NMR (125.8 MHz, 

(CD3)2CO):  = 165.1, 156.0, 148.5, 144.1, 137.0, 130.2, 

129.7, 128.9, 128.6, 128.0, 127.7, 127.5, 126.8, 122.8, 

78.5, 60.2, 48.1, 28.5, 19.6; HRMS (ESI) m/z calcd for 

C23H27N2O2 [M+H]+: 363.2067, found: 363.2067;  HPLC:  

Chiralcel OD-H column (90:10 iso-hexane:i-PrOH, 

1.0 mL/min, 254 nm, 25 °C); tR (major) = 4.6 min, tR 

(minor) = 5.9 min; 85% ee. 

 Data for 3f: Rf  = 0.32 (20% EtOAc/petroleum ether); mp 

142-145 C (EtOAc/petroleum ether); [α]D
24 +55.0 (c 

1.00, CHCl3); IR (film): 2979, 2928, 1713 (C=O), 1498, 

1390, 1365, 1170, 1022, 759, 700 cm-1;  1H NMR (400 

MHz, (CD3)2CO):  = 7.98 (t, J = 8.9 Hz, 2 H), 7.54-7.45 

(m, 1 H), 7.45-7.35 (m, 3 H), 7.30 (t, J = 7.4 Hz, 2 H), 

7.23 (t, J = 7.5 Hz, 1 H), 6.80 (d, J = 7.5 Hz, 1 H), 5.15-

4.90 (m, 1 H), 3.88-3.65 (m, 1 H), 1.37 (d, J = 6.8 Hz, 3 

H), 1.28 (s, 9 H); 13C NMR (125.8 MHz, (CD3)2CO):  = 

174.7, 155.9, 154.1, 142.9, 135.6, 129.1, 128.0, 127.8, 

126.8, 125.7, 123.4, 122.6, 78.9, 60.3, 45.1, 28.5, 19.5; 

HRMS (ESI) m/z calcd for C21H25N2O2S [M+H]+: 

369.1631, found: 369.1634; HPLC: Chiralpak IC column 

(98:2 hexane:i-PrOH, 0.8 mL/min, 280 nm, 25 °C); tR 

(major) = 18.9 min, tR (minor) = 27.9 min; 88% ee. 

(10) Where indicated, the relative and absolute 

stereochemistries of the products were assigned by 
analogy with those of products 3f, 3g, 4d, 4k, 4q, and 4t, 

which were determined by X-ray crystallography (see 
Supporting Information for details). CCDC 1019731–

1019736 contain the supplementary crystallographic data 
for this paper These data can be obtained free of charge 
from the Cambridge Crystallographic Data Centre via  

www.ccdc.cam.ac.uk/data_request/cif or by writing to the 
Cambridge Crystallographic Data Centre, 12, Union 
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