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Abstract 

Nicotinamide adenine dinucleotide (NAD) belongs to the family of naturally occurring 

adenine dinucleotides, best known for their various intracellular roles. However, there is 

evidence that they can also be released from cells to act as novel extracellular signalling 

molecules. Relatively little is known about the extracellular actions of NAD, especially in 

the cardiovascular system. The present study investigated the actions of NAD in the rat 

thoracic aorta, porcine coronary artery and porcine mesenteric arteries, mounted in 

organ baths for isometric tension recording. In the rat thoracic aorta and porcine 

coronary artery, NAD caused endothelium-independent concentration-dependent 

vasorelaxations which were unaffected by palmitoylCoA, a P2Y1 receptor antagonist, but 

which were blocked by CGS15943, a non-selective adenosine receptor antagonist. In the 

porcine coronary artery, NAD-evoked relaxations were abolished by SCH58261, a 

selective A2A receptor antagonist. In the rat thoracic aorta, NAD evoked relaxations were 

attenuated by A2A receptor antagonism with SCH58261, but were unaffected by an A2B 

receptor antagonist, MRS1754. In contrast, in the porcine mesenteric artery, NAD 

evoked endothelium-independent contractions, which were unaffected by a P2 receptor 

antagonist, suramin, or by NF449, a P2X1 receptor antagonist, but were attenuated 

following P2X receptor desensitization with -meATP. In conclusion, the present results 

show that NAD can alter vascular tone through actions at purine receptors in three 

different arteries from two species; its molecular targets differ according to the type of 

blood vessel.   
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Introduction 

P1 and P2 receptors for purine and pyrimidine nucleosides and nucleotides are widely 

distributed in the cardiovascular system and are involved in diverse functions including 

regulation of vascular contractility, growth and inflammation [1-4]. P1 receptors mediate 

the actions of adenosine, and P2X and P2Y receptors mediate the actions of ATP, ADP, 

UTP, UDP and UDP-sugars. There are four adenosine receptors (A1, A2A, A2B and A3), 

seven P2X receptors (P2X1-7) and eight P2Y receptors (P2Y1,2,4,6,11,12,13,14). Nicotinamide 

adenine dinucleotide (NAD) and NAD phosphate (NADP), and their reduced forms NADH 

and NADPH, belong to the family of naturally occurring adenine dinucleotides. These 

molecules are best known for their various intracellular roles, including actions as 

coenzymes, involvement in post-translational modification of proteins, and as substrates 

for NADPH oxidases [5-7]. However, there is evidence that they can also be released 

from cells to act as novel extracellular signalling molecules. NAD (Figure 1) is released in 

a variety of smooth muscle tissues during stimulation of nerves, including those in 

canine mesenteric artery and urinary bladder of human, mouse and dog [8-11]. 

Moreover, transporters for NAD, including connexin 43, have been identified that 

mediate both intercellular and intracellular transport of NAD through membranes [12-

14], although this is controversial [15].  

Relatively little is known about the extracellular actions of NAD, especially in the 

cardiovascular system, but evidence obtained primarily in tissues outside the 

cardiovascular system indicates that NAD can act at cell surface purine receptors. Many 

of the actions of NAD can be explained through activation of adenosine receptors [16-

18]. NAD can be cleaved by ectoenzymes; nucleotide 

phosphodiesterase/pyrophosphatase I (E-NPP, CD203 family) allows the production of 

AMP, which can be hydrolyzed to adenosine by ecto-5′-nucleotidase (CD73). The ecto-

enzyme CD38 degrades NAD to yield ADP-ribose (ADPR), cyclic ADP-ribose (cADPR) and 

nicotinic acid adenine dinucleotide phosphate (NAADP), and its cell surface location 

suggests an important role in recycling of extracellular nucleotides [12, 19, 20]. NAD has 

also been identified as an agonist at P2Y1 receptors in HEK cells and mouse colonic 

muscle [10], P2Y11 receptors in human granulocytes [21], and P2X receptors in human 

monocytes (P2X1 and possibly also P2X4 and P2X7) [22]. Multiple purine receptors are 

co-expressed in blood vessels; vasocontraction is typically mediated by P2X1, P2Y2, P2Y4 

and P2Y6 receptors expressed on the smooth muscle, while vasorelaxation is mediated 

by endothelial P2Y1, P2Y2 and P2Y6 receptors, and by A2A and A2B receptors expressed on 

the endothelium and smooth muscle [3]. Hence the vascular actions of NAD cannot be 

predicted, but must be determined empirically. 
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In this study, responses to NAD in rat thoracic aorta, porcine mesenteric artery and 

porcine coronary artery were investigated using selective P1 and P2 receptor 

antagonists. We have recently shown that palmitoyl CoA (PaCoA) is an antagonist at 

P2Y1 receptors in the rat thoracic aorta and porcine mesenteric artery [23]. Hence, 

PaCoA was used to characterise the responses to NAD in different blood vessels, 

specifically to investigate the possible involvement of P2Y1 receptors. It has previously 

been shown that vasorelaxant P2Y1, P2Y2 and A2 receptors are expressed on the 

endothelium of the rat thoracic aorta [24, 25]. Porcine coronary arteries are reported to 

express vasorelaxant P2Y1, A1, A2A and A2B receptors [26-31]. Little is known about 

purine receptor expression in the porcine mesenteric artery, however, ADP mediated 

relaxations through P2Y1 receptors have been reported [23]. The present results show 

that NAD can alter vascular tone through actions at purine receptors in three different 

arteries from two species; its actions differ according to the type of blood vessel, since 

NAD evoked P2X-like receptor-mediated contraction in the porcine mesenteric artery, 

but A2A receptor-mediated relaxation in the porcine coronary artery and rat thoracic 

aorta. 

 

Materials and Methods 

Porcine mesenteries and hearts, obtained from a local abattoir (Woods abattoir, 

Clipstone, Mansfield, Nottinghamshire) and male Wistar rats (200-250 g), obtained from 

Charles River (England, UK), were used in this study. Porcine first order mesenteric 

arteries and coronary arteries were dissected out and stored overnight in Krebs-

Henseleit solution (at 4o C) for use the following day. Rat thoracic aorta were dissected 

out, and rings (3-4 mm in length) from these and the porcine mesenteric and coronary 

arteries were mounted for isometric recording in Krebs-Henseleit solution, oxygenated 

(95% O2, 5% CO2) and incubated at 37o C as described previously [23]. Rat thoracic 

aortae were initially tensioned to 1 g and allowed to equilibrate for 30 min after which a 

further 1 g of tension was applied and the rings left to equilibrate for a further 30 min. 

Porcine coronary and mesenteric arteries were tensioned to 10 g and allowed to 

equilibrate for 1 h. After equilibration, arteries were contracted twice to KCl (60 mM), 

with washout after each addition, to act as an internal standard. Subsequently, arteries 

were preconstricted using methoxamine for the rat thoracic aorta and U46619, a 

thromboxane A2 mimetic, for porcine mesenteric and coronary arteries. Once a stable 

pre-contracted tone had been achieved, stepwise cumulative addition of NAD (0.1 µM- 1 

mM) to the preparations was carried out, in the absence and presence of selective 

antagonists. The antagonists/blockers used were: PaCoA (10 µM) (a putative 
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endogenous antagonist of P2Y1 receptors), CGS15943 (10 µM; an adenosine receptor 

antagonist), SCH58261 (100 nM; a selective A2A receptor antagonist), suramin (100 µM; 

a P2 receptor antagonist), αβ-meATP (10 µM; a P2X receptor agonist and desensitizing 

agent), and NF449 (10 µM; a P2X1 receptor antagonist). These compounds were added 

10 min before methoxamine or U46619 addition, and so were in contact with the tissue 

for at least 30 min before addition of NAD. In some preparations, the endothelium was 

removed by gentle rubbing with the success of the treatment evaluated by testing 

responses to acetylcholine in the rat aorta and substance P in the porcine arteries as 

described previously [23]. U46619 and substance P were used in the pig arteries, 

because they respond poorly to methoxamine and acetylcholine (used in the rat aorta). 

Materials 

Krebs-Henseleit buffer was composed of the following (mM); NaCl 118, KCl 4.8, 

CaCl2.H2O 1.3, NaHCO3 25.0, KH2PO4 1.2, MgSO4.7H2O 1.2 and glucose 11.1. The 

supplier for chemicals in this work was Sigma Chemical Company, except for SCH58261 

which was a gift from Schering Plough, Milan, Italy, and NF449 which was from Tocris 

Bioscience. All drugs were dissolved in water except for CGS15943 and SCH58261, 

which were dissolved in DMSO.  

Statistical analysis 

Responses are expressed as a percentage of the methoxamine- or U46619-induced tone. 

Data are expressed as mean ± SEM. Two way ANOVA with a Bonferroni post-hoc test 

was used for statistical comparisons. P < 0.05 was taken as statistically significant.  

 

Results 

KCl (60 mM) produced sustained contractions in the segments of rat thoracic aorta, 

porcine mesenteric artery and porcine coronary artery with mean responses of 0.91  

0.08 g (n=35), 9.21  0.43 g (n=20), and 9.96  0.20 g (n=32), respectively.  

Effect of NAD in precontracted rat thoracic aorta, porcine mesenteric artery and 

porcine coronary artery 

In the rat thoracic aorta, NAD evoked concentration-dependent relaxations (Figure 2a, 

4). The response to NAD did not reach a maximum response at concentrations up to 1 

mM, but almost fully reversed the methoxamine-induced precontraction allowing the 

calculation of an approximate pEC50 value of 4.24 ± 0.19 (n = 9). Endothelium removal 
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had no significant effect on the NAD induced relaxations (two way ANOVA, P> 0.05) 

(Figure 2a). 

In porcine mesenteric artery segments precontracted with U46619, NAD evoked 

concentration dependent contractions with a maximal contraction at 300 µM (Figure 2b, 

6). The highest concentration of NAD used (1 mM) caused a reduced contraction of the 

porcine mesenteric artery. Non-linear analysis allowed computation of an Rmax value of 

46 ± 8 %, pEC50 value of 4.54 ± 0.22 and a Hill slope of 1.05 ± 0.12 (n=12). 

Endothelium removal had no significant effect on the NAD-induced responses (Figure 

2b). 

In porcine coronary artery segments precontracted with U46619, NAD evoked 

concentration dependent relaxations (Figure 2c). The response to NAD did not reach a 

maximum response, so Rmax, pEC50 or Hill slope could not be calculated. Endothelium 

removal produced no significant effect on the NAD induced relaxations (Figure 2c). 

In porcine mesenteric artery and porcine coronary artery segments, endothelium 

removal was assessed using substance P (10 nM), while acetylcholine (100 nM) was 

used to assess endothelium removal in the rat thoracic aorta. Any relaxation in response 

to substance P/acetylcholine of less than 10% of the U46619/methoxamine contraction 

was considered an indication of successful removal of the endothelium. In endothelium-

denuded porcine mesenteric artery and porcine coronary artery, there was an absence of 

the transient relaxation in response to substance P (6 ± 1 % (n = 6) and 2 ± 1 % (n = 

5), respectively) that was seen in control porcine mesenteric and porcine coronary artery 

segments (60 ± 1 % (n = 11) and 70 ± 1 % (n = 6), respectively). In rat thoracic aorta 

there was only a very slight relaxation (2 ± 0.4 %, n = 7) in response to acetylcholine in 

endothelium-denuded vessels compared to the profound relaxation evoked in controls 

(65 ± 0.4 %, n = 10). 

Effect of P1 and P2 receptor antagonists on responses to NAD in the rat 

thoracic aorta 

Since NAD is able to act as an agonist at the P2Y1 receptor, PaCoA was used to 

investigate whether NAD activates P2Y1 receptors in the rat thoracic aorta. PaCoA had no 

significant effect on the vasorelaxant response to NAD (P> 0.05, two way ANOVA) 

(Figure 3a).  

Since NAD is able to act as an adenosine receptor agonist, CGS15943 (1 µM; a non-

selective adenosine receptor antagonist) was also investigated, which significantly 

inhibited the NAD evoked relaxations (Figure 3b). SCH58261 (100 nM; an A2A receptor-

selective antagonist) was used, which also significantly decreased the NAD evoked 
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relaxations with a calculated pKB value of 7.25 ± 0.24 (Figure 3c). A representative trace 

showing the inhibitory effect of SCH58261 on responses to NAD is shown in Figure 4. 

The possible involvement of A2B receptors was also investigated using MRS1754 (1 µM; a 

selective A2B receptor antagonist), which had no significant effect on NAD-evoked 

relaxations (Figure 3d). 

These experiments in rat thoracic aorta were carried out in methoxamine-precontracted 

tissues. In the absence of antagonists, methoxamine caused a sustained contraction to 

68  6% (n=13) of the KCl response. The bath concentration of methoxamine required 

to produce this level of contraction was 1.4  0.2 µM (n= 13). In the presence of PaCoA, 

SCH58261 and CGS15943, the level of tone was 70  6% (n= 6), 74  5% (n = 15) and 

59  4% (n= 5) of the KCl contraction, respectively. There was no significant difference 

between the percentage contractions obtained to methoxamine in the presence of the 

antagonists and the control (P> 0.05, one way ANOVA). In the presence of PaCoA, 

SCH58261 and CGS15943, the mean bath concentration of methoxamine required to 

precontract the arteries was also unchanged when compared to the control (one way 

ANOVA, P>0.05). 

Effect of P1 and P2 receptor antagonists on responses to NAD in porcine 

mesenteric artery 

To test for any involvement of P2 receptors in the NAD-mediated contractile response of 

the porcine mesenteric artery, suramin (100 µM; a P2 receptor antagonist) was 

employed; it had no significant effect except at the highest NAD concentration where 

suramin prevented the reduction in NAD-evoked contraction (Figure 5a). In contrast, αβ-

meATP (10 µM; a P2X receptor desensitizing agonist) caused a significant inhibition of 

the NAD evoked responses (Figure 5b, 6). αβ-meATP markedly inhibited or abolished the 

NAD responses of the mesenteric arterial preparations (thus an EC50 value could not be 

calculated). A mean contraction of 45  10 % and 17  7 % (n= 7, n=8, respectively) at 

300 µM NAD was found in the absence and presence of αβ–meATP, respectively. NF449 

(10 µM; P2X1 receptor antagonist) had no significant effect on the contractile response 

to NAD; mean contraction was 36 ± 5 % and 37 ± 7 % (n = 9) in the absence and 

presence of NF449, respectively.   

Since multiple contractile and relaxant purine receptors are typically expressed on blood 

vessels, we hypothesised that the contractile actions of NAD could be augmented 

following antagonism of NAD-mediated vasorelaxation. Since NAD can act as an agonist 

at the P2Y1 receptor, the effect of PaCoA was investigated. PaCoA at 10 μM had no 

significant effect on the response to NAD (P>0.05, two way ANOVA) (Figure 7a). NAD 

can also act at P1 receptors, hence the effects of CGS15943 (10 µM; a non-selective 
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adenosine receptor antagonist) and SCH58261 (100 nM; a selective A2A receptor 

antagonist) were investigated; neither had any significant effect on the response to NAD 

(Figure 7b, c). Adenosine produced concentration-dependent relaxation of the porcine 

mesenteric artery with an Rmax of 87 ± 4%, and a pEC50 of 3.87 ± 0.07 (n = 6). 

The above experiments in porcine mesenteric artery were carried out in vessels 

precontracted with U46619. In the absence of antagonists, U46619 caused a sustained 

contraction to 75  4 % (n= 7) of the KCl response. The concentration of U46619 

required to produce this level of contraction was 131  18 nM (n= 7). In the presence of 

PaCoA, SCH58261, suramin and αβ-meATP, U46619 elicited 65  9 % (n= 7), 63  5 % 

(n= 4), 50  10% (n= 4) and 58  3% (n= 8) of the KCl contraction, respectively, which 

was not significantly different from the control (P>0.05, one way ANOVA). The 

concentration of U46619 required to produce these contractions was unchanged (P> 

0.05, one way ANOVA). In the presence of CGS15943, a higher concentration of U46619 

(763 ± 259 nM, n = 6) was required to precontract the preparations compared to that 

used in the absence of CGS15943 (531 ± 216 nM, n = 7). There was no significant 

difference in the level of tone elicited in the absence and presence of CGS15943 at 55  

6% (n = 7) and 49  10% (n = 6) of the KCl contraction, respectively. There was no 

significant difference in the level of tone elicited in the absence and presence of NF449, 

at 61 ± 5 % and 62 ± 6 % (n = 9), respectively.  

Effect of P1 and P2 receptor antagonists on responses to NAD in porcine 

coronary artery 

Since NAD can act as an agonist at the P2Y1 receptor, PaCoA (10 µM) was used to 

investigate whether NAD activates P2Y1 receptors in the porcine coronary artery. PaCoA 

had no significant effect on the vasorelaxant response to NAD (P>0.05, two way ANOVA) 

(Figure 8a). To characterise the NAD-evoked relaxations, we used CGS15943 (10 µM; 

adenosine receptor antagonist) which, with the exception of the response to the highest 

concentration of NAD (1 mM), abolished the NAD evoked relaxations (Figure 8b). In the 

presence of CGS15943, contractions were observed at 10-100 µM of NAD; these were 

unaffected by the P2X1 receptor antagonist NF449 (10 µM) (data not shown). SCH58261 

(100 nM; selective A2A receptor antagonist) abolished the NAD-evoked relaxations 

(Figure 8c, 9).  

The above experiments in porcine coronary artery were carried out in U46619-

precontracted tissues. In the absence of antagonists U46619 caused a sustained 

contraction to 60  6% (n=9) of the KCl response. The concentration of U46619 required 

to produce this level of contraction was 145  62 nM (n= 9). In the presence of PaCoA 

and SCH58261 U46619 elicited 65  5% (n=5) and 76  2% (n=6) of the KCl 



9 
 

contraction, respectively, which was not significantly different from the control (one way 

ANOVA, P>0.05). The mean bath concentration of U46619 required was unchanged (one 

way, ANOVA P>0.05).  

In the presence of CGS15943, a higher concentration of U46619 was required to 

precontract the PCA preparations; for these experiments, 175 ± 79 nM (n = 7) of 

U46619 was needed to achieve 57  7% (n = 7) of the KCl contraction in controls, while 

773 ± 204 nM (n = 6) of U46619 was needed to elicit 24  4% (n = 6) of the KCl 

contraction in the presence of CGS15943. Both the level of contraction to U46619 and 

the concentration of U46619 required to achieve that level were significantly different 

from the control (P< 0.05, one way ANOVA). 

 

Discussion 

The effects of NAD on the rat thoracic aorta, porcine mesenteric artery and porcine 

coronary artery were examined. NAD evoked vasorelaxations through actions at smooth 

muscle A2A adenosine receptors in the rat thoracic aorta and porcine coronary artery. In 

the porcine mesenteric artery, however, NAD caused vasoconstriction, which was 

mediated through P2X receptors. NAD, therefore, evokes different effects (relaxation or 

contraction) in different blood vessels acting via different receptors. 

In the rat thoracic aorta and porcine coronary artery, NAD caused endothelium-

independent vasorelaxations. The effect of PaCoA, a P2Y1 receptor antagonist [23, 32, 

33], on the NAD-evoked relaxations was investigated, since NAD can act as an agonist at 

P2Y1 receptors [10]. PaCoA had no significant effect on the NAD-evoked relaxations, 

which, together with the fact that these relaxations were endothelium independent (P2Y1 

receptors are expressed on the endothelium in the rat aorta, see Introduction), indicates 

that P2Y1 receptors do not mediate these vasorelaxations. NAD has previously been 

shown to act as an agonist at adenosine receptors, without specification of which 

subtype was involved [16-18]. Hence, P1 receptor antagonists were initially used to 

characterise the NAD-mediated relaxations, followed by the use of more selective 

adenosine receptor antagonists. CGS15943, a non-selective adenosine receptor 

antagonist, significantly reduced the NAD evoked relaxations indicating the involvement 

of adenosine receptors. SCH58261, a selective A2A receptor antagonist, also significantly 

reduced the NAD-evoked relaxations, which indicates that NAD-evoked relaxations in the 

rat thoracic aorta and porcine coronary artery are mediated through A2A adenosine 

receptors. In contrast to the porcine coronary artery, relaxations to NAD in the rat 

thoracic aorta were not abolished in the presence of SCH58261, which may indicate the 
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involvement of other adenosine receptors in addition to A2A receptors. An A2B adenosine 

receptor antagonist, MRS1754, had no significant effect on the NAD-evoked relaxations 

in the rat thoracic aorta, which appears to exclude an involvement of A2B adenosine 

receptors. In the rat thoracic aorta, NAD had an approximate pEC50 value of 4.24. This is 

similar to the pD2 value reported by Burnstock and Hoyle [16] for NAD-evoked 

relaxations in the guinea-pig taenia coli at P1 receptors (4.18), but is somewhat different 

from the pEC50 value identified by Mutafova-Yambolieva et al. [10] for NAD-evoked 

calcium responses in HEK cells at P2Y1 receptors (6.1). The potency differences 

presumably reflect simple differences in the receptors being activated. In rat thoracic 

and porcine coronary arteries NAD appears to act at adenosine receptors, specifically as 

an A2A receptor-selective agonist. 

In the rat thoracic aorta and porcine coronary artery, NAD evoked relaxations were 

mediated mainly via actions at smooth muscle A2A receptors. This may be by NAD 

activating A2A receptors directly, by causing a release of adenosine, or by being broken 

down into adenosine. NAD is suggested to be broken down to adenosine to exert its 

effects in the guinea-pig taenia coli [16]. However, NAD was reported to evoke the 

release of adenosine in rat vas deferens, guinea-pig taenia caecia and bladder [34]. We 

have previously shown in the porcine coronary artery that ADP may mediate relaxation 

through release of adenosine with subsequent actions on smooth muscle A2A receptors 

[31]. Hydrolysis of NAD could be investigated using selective inhibitors of CD38 (an 

NAD-glycohydrolase), such as β-araF-NAD [35], but unfortunately these are not 

commercially available.  

 

In the porcine mesenteric arteries, NAD caused an endothelium-independent 

vasoconstriction up to a concentration of 300 µM. The P2 receptor antagonist suramin 

had no significant effect on these contractile responses to NAD. αβ-meATP (a P2X 

receptor desensitizing agonist) caused a significant attenuation of the NAD-evoked 

contractions, suggesting activation of a suramin-insensitive P2X receptor. αβ-meATP has 

been shown to produce transient contractile responses in porcine mesenteric arteries, 

indicating that rapidly desensitizing P2X1 receptors are expressed in these arteries [36]. 

The responses to NAD in the porcine mesenteric arteries, however, were not completely 

abolished in the presence of αβ-meATP. It was reported previously that rat large 

mesenteric arteries have a 25-100-fold lower sensitivity to αβ-meATP as an agonist than 

smaller arteries, and are insensitive to suramin, which is not characteristic of P2X1 

receptors [37]. Moreover, NF449, a P2X1 receptor antagonist, had no significant effect 

on the contractile response to NAD. The fact that cumulative contractile response curves 

could be generated in the porcine mesenteric arteries indicated a relative lack of 

desensitization, which is also inconsistent with NAD actions at rapidly desensitizing P2X1 
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receptors. Since relatively large mesenteric arteries were also used in this study this 

could suggest that, as in the rat large mesenteric arteries, non-P2X1 receptors or 

heteromeric P2X receptors are involved, but the response could also involve P2Y 

receptors. In our porcine mesenteric artery segments, the pEC50 for NAD was 4.54. NAD 

has been identified as an agonist at P2X1, P2X4 and P2X7 receptors in human 

monocytes [22], and NADPH mediated contractions of rat aorta were mediated via P2X1 

receptors [38], but there are no reported potency estimates for NAD acting through P2X 

receptors in the literature.  

 

In a number of cell types extracellular NAD signals through conversion into cADPR, which 

in turns mobilises intracellular Ca2+ [12, 14, 39-41]. In human monocytes, exposure to 

NAD resulted in activation of P2X receptors and a rapid increase in [Ca2+]i caused by an 

influx of extracellular Ca2+ independent of intracellular Ca2+; the possibility of NAD acting 

through a degradation product was ruled out using selective inhibitors of CD38 and a 

stable NAD analogue [22, 42]. Pfister et al. analyzed the NAD degradation products in 

human monocytes, and found that NAD was mainly degraded to ADP-ribose, 

nicotinamide, and minor amounts of AMP, ADP, and cADPR, but adenosine was not 

detected [43]. These metabolites can all have extracellular actions mediated through 

different purine receptors. Neither ADP nor AMP are agonists at P2X receptors, but ADP-

ribose (but not nicotinamide), mimicked the effect of NAD at P2X receptors in human 

monocytes [42]. Thus, ADP-ribose, formed from metabolism of NAD, is potentially 

involved in the vasocontractile responses that we observed in the porcine mesenteric 

arteries.  

 

Since multiple contractile and relaxant purine receptors are expressed on blood vessels, 

we hypothesised that the contractile actions of NAD in the porcine mesenteric artery 

could be augmented following antagonism of opposing NAD-mediated vasorelaxation. 

However, neither CGS15943 nor SCH58261 had a significant effect on the contractile 

response to NAD in the porcine mesenteric artery, indicating a lack of involvement of 

adenosine receptors. The reduction in NAD-evoked contraction which occurred at the 

highest concentration of NAD (1 mM) was blocked by suramin suggesting that it may be 

mediated through P2 receptors. PaCoA did not mimic the effect of suramin, suggesting 

that NAD fails to act through P2Y1 receptors in this tissue, either directly, or for example 

through metabolism to ADP-ribose which has been shown to be a ligand for the P2Y1 

receptor [44]. Thus, further investigation is needed as to whether a metabolite of the 

NAD, for example, ADP or ATP, may be responsible for this relaxation, or whether NAD 

itself activates suramin-sensitive P2Y receptors.  
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The actions of NAD in the porcine mesenteric arteries are clearly different to those in the 

rat aorta and porcine coronary artery, and also to mesenteric arteries in other species. 

We showed that adenosine produces concentration-dependent vasorelaxation of the 

porcine mesenteric artery, which is important because this shows that the pronounced 

differences in vasomotor responses of NAD between the different blood vessels are not 

simply due to a differential expression of adenosine receptors. In the rat mesenteric 

arterial bed, NAD did not elicit vasocontraction, but caused vasorelaxation, and inhibited 

sympathetic and sensory neurotransmission, effects which were antagonised by 8-para-

sulphophenyltheophyline and potentiated in the presence of an adenosine deaminase 

inhibitor, indicating an involvement of adenosine and adenosine receptors [18]. These 

effects of NAD mimic the actions of adenosine in the rat mesenteric arterial bed 

indicating a likely involvement of postjunctional vasorelaxant A2B receptors and 

prejunctional A1 receptors [45, 46]. NAD also inhibited neuronal noradrenaline release in 

the dog mesenteric artery [8], an effect likely mediated via A1 adenosine receptors given 

their widespread occurrence prejunctionally on sympathetic perivascular nerves [3]. 

Thus, NAD actions in the porcine mesenteric artery appear to deviate from those in other 

arteries for reasons which are currently unclear. It would be interesting to carry out a 

comparative investigation of ectoenzyme expression of the porcine mesenteric and other 

arteries. 

The most robust evidence for a physiological role for extracellular NAD is as a 

neurotransmitter in nerves of the gastrointestinal tract and bladder [11]. Whether this is 

relevant for the sparsely innervated rat thoracic aorta and porcine coronary artery 

remains to be determined, but it could be relevant for sympathetic neurotransmission in 

the porcine mesenteric artery; it would be interesting to determine whether there is a 

role for NAD as a neurotransmitter in porcine mesenteric arteries, as shown in canine 

mesenteric arteries [8]. Extracellular signalling of NAD could also be important in 

pathophysiological conditions leading to cell lysis during tissue injury and inflammation, 

conditions which are known to release other purine nucleotides [3]. 

In conclusion, there are clear differences in the actions of NAD in the porcine mesenteric 

artery compared to the rat thoracic aorta and porcine coronary artery; in both rat 

thoracic aorta and porcine coronary artery, NAD mediates relaxation through P1 

receptors, while in porcine mesenteric artery NAD causes contraction which appears to 

involve P2 receptors whose identity remains to be defined. The suggestion that NAD may 

be broken down to adenosine to act through P1 receptors may indicate higher levels of 

ectonucleotidases in rat thoracic aorta and porcine coronary artery than in the porcine 

mesenteric artery. 
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Figure legends 

Figure 1 Chemical structure of nicotinamide adenine dinucleotide. 

Figure 2.The effect of nicotinamide adenine dinucleotide (NAD) in segments from: A) rat 

thoracic aorta (RTA), B) porcine mesenteric artery (PMA), C) porcine coronary artery (PCA). 

Arteries were precontracted with methoxamine (A) and U46619 (B,C). Responses were 

evaluated in endothelium intact vessels (Control) and in those in which the endothelium had 

been removed (Denuded) in each of the RTA, PMA and PCA (n= 7-10, n= 6-11, n= 5-6, 

respectively). Results are mean  SEM. 

Figure 3. Relaxatory responses in the rat thoracic aorta to nicotinamide adenine 

dinucleotide (NAD) in the presence of A) PaCoA, B) CGS15943, C) SCH58261 and D) 

MRS1754. Vessels were precontracted with methoxamine. Results are shown as mean  

SEM (n=5-6, n=4-5, n=12-15 and n=4-8, respectively). * P < 0.5, ** P < 0.01, *** P < 

0.001. 

Figure 4. A representative trace for the relaxatory responses to cumulative addition of 

increasing concentrations of nicotinamide adenine dinucleotide (NAD) in the rat thoracic 

aorta in the absence (Control, upper trace) and the presence of SCH58261 (SCH58261, 

lower trace). Vessels were precontracted with methoxamine. 

Figure 5. The contractile response of porcine mesenteric artery to nicotinamide adenine 

dinucleotide (NAD) in the absence and presence of A) suramin, B) α,β-meATP. The arteries 

had been precontracted with U46619. Results are shown as mean  SEM (n=4, n= 7-8, 

respectively). ** P < 0.01, *** P < 0.001. 

Figure 6. A representative trace for the contractile response to nicotinamide adenine 

dinucleotide (NAD) of porcine mesenteric artery in the absence (Control, upper trace) and 

presence of αβ-meATP (αβ-meATP, lower trace). The arteries had been precontracted with 

U46619.  

Figure 7. The porcine mesenteric artery contractile response to nicotinamide adenine 

dinucleotide (NAD) in the presence of A) PaCoA, B) CGS15943, C) SCH58261 (n=7, n=8, 

n=4, respectively). The arteries had been precontracted with U46619. Results are shown as 

mean  SEM. 

Figure 8. The porcine coronary artery relaxation to nicotinamide adenine dinucleotide 

(NAD) in the presence of A) PaCoA, B) CGS15943, C) SCH58261. Preparations were 
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precontracted with U46619. Results are shown as mean  SEM (n=5, n=6, n=6 

respectively). * P < 0.5, ** P < 0.01, *** P < 0.001. 

Figure 9. A representative trace for the porcine coronary artery relaxation to nicotinamide 

adenine dinucleotide (NAD) in the absence (Control, upper trace) and presence of 

SCH58261 (SCH58261, lower trace). Vessels were precontracted with U46619.  
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Figure 1 Chemical structure of nicotinamide adenine dinucleotide. 
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