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1. Introduction

1.1. Di↵use-interface tumor-growth models

Di↵use-interface tumor-growth models have been studied recently in several
articles.39,18,28,27,29 We refer to the reviews in Refs. 17, 19, 33. The basic model is
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composed of a fourth order parabolic equation for the tumor cell phase u : ⌦ ! R
coupled to an elliptic equation for the nutrient phase � : ⌦ ! R:

ut = �(�"�1f(u)� "�u) + "�1p0�u (1.1a)

0 = �� � "�1p0�u, (1.1b)

where "2 is the di↵usivity corresponding to the surface energy, the positive constant
p0 is a proliferation growth parameter, and f is a bistable function.

Introducing the chemical potential µ : ⌦ ! R, given by

µ := �"�1f(u)� "�u,

(1.1a)-(1.1b) becomes

ut = �µ+ "�1p0�u, (1.2a)

µ = �"�1f(u)� "�u, (1.2b)

0 = �� � "�1p0�u. (1.2c)

The above system models the evolution of the first stage of a growing tumor.35

In this stage a tumor grows because of the consumption of nutrients that di↵use
through the surrounding tissue. This stage is referred to as avascular growth, as the
tumor has not yet acquired its own blood supply to nurture itself. Consumption
of nutrients is modeled in (1.2a) and (1.2c) via the reactive terms. To describe the
evolution of the tumor boundary a di↵use-interface description is employed. This is
classically modeled in (1.2a) with a di↵usion via the chemical potential µ which de-
pends in a nonlinear manner on u and contains the higher-order regularization "�u,
see (1.2b).

Di↵use-interface tumor-growth models fall within the broader class of multicon-
stituent tumor-growth models based on continuum mixture theory.4,9,6 The deriva-
tion of di↵use-interface models within continuum mixture theory has been reviewed
in Ref. 33, and requires the set up of balance laws for each constituent as well as the
specification of constraints on the constitutive choices imposed by the second law of
thermodynamics. Typically, only the cellular and fluidic constituents of a tumor are
modeled as parts of a mixture, while nutrients are considered separately. Recently
however, a di↵use-interface tumor growth model has been proposed that incorpo-
rates all constituents within the mixture and is proven to be thermodynamically
consistent; see Ref. 28. In fact, the model is of gradient-flow type.

The model from Ref. 28 is a modification of (1.2) and it is given by:

ut = �µ+ "�1p(u)(� � �µ) (1.3a)

µ = �"�1f(u)� "�u (1.3b)

�t = �� � "�1p(u)(� � �µ) (1.3c)

where � > 0 is a small regularization parameter, and the growth function p(u) is
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Fig. 1. Example of the bistable function f(s).

defined by

p(u) :=

(
2p0

p
W (u) u 2 [�1, 1]

0 elsewhere.
(1.4)

Here W (u) := �
R u
�1 f(s) ds is the classical Cahn–Hilliard double well free-energy

density. We assume that the bistable function f(u) has two stable roots ±1, an
unstable root 0 and mean zero:

R 1
�1 f(s)ds = 0. See for an example Fig. 1.

Note that in (1.3a)–(1.3c) we have chosen a particular space–time scaling de-
pendent on ", which in our opinion is one of the interesting cases. In particular, the
reactive interaction between u and � responsible for growth, the di↵usion of �, as
well as curvature e↵ects will be shown to survive in the limit. The current study is
most likely very useful in the study of other possible scalings.

The above model has the following multi-constituent interpretation: a tumorous
phase u ⇡ 1, a healthy cell phase u ⇡ �1, and nutrient-rich extracellular water
phase � � 0. We refer to Ref. 28 for the interpretation of � as part of a mixture.

Note that, compared to (1.2a)-(1.2c), the reactive terms have been modified to
be thermodynamically consistent. They include a regularization part �µ and they
have been localized to the interface (since p(u) is nonzero if u 2 (�1, 1)); see Ref. 28
for more details. The unknown pair (u,�) is a dissipative gradient flow for the energy
functional

E(u,�) :=
Z

⌦

⇣"
2
|ru|2 + 1

"
W (u) +

�2

2�

⌘
.

We refer to Theorem 1.1 for the proof of this property in a slightly more general
context.

Note that there are various scalings of interest (cf. for instance Ref. 12) and that
the one chosen in the definition of E(u,�) above is only one of them. Furthermore,
an important extension of the above energy includes e↵ects due to chemotaxis. We
shall not consider chemotaxis in this work, as this deserves a completely dedicated
study of its own.
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In this work, we shall be interested in the singular limit " # 0 of (1.3a)-
(1.3c) together with homogeneous Neumann boundary conditions. We furthermore
shall be interested in numerical simulations which validate the identified singu-
lar limit and which go beyond the assumptions underlying the theory. We note
that many articles involving singular limits have appeared over the years3,15,34,2,13

including overviews25,32,31 and numerical studies24,14. Articles involving formal
asymptotics1,11,12 are of particular interest for the analysis in for this paper.

1.2. The main results

We have to deal with a fourth order equation, at least if we substitute (1.3b) into
(1.3a), which is a generalization of the Cahn-Hilliard equation. In this form, it seems
complicated to deduce the singular limit; on the other hand, it is quite standard
to pass to the limit in the Allen-Cahn equation and thus in associated phase-field
models as well. More precisely, one knows how to pass to the limit as "! 0 in the
equation

↵ut = �u+
1

"2
�
f(u) + "µ

�
,

namely equation (1.5b) below (cf. section 3.2). This motivates us to first consider
the corresponding phase field approximation (1.5a)-(1.5e) and pass to the limit as
" ! 0 in this problem. Setting ↵ = 0 in the corresponding result then yields the
limit of the original Cahn-Hilliard type system.

It will turn out that the problems in both cases ↵ > 0 and ↵ = 0 are gradient
flows and that the corresponding limit problems as " # 0 are also gradient flows.
This will be discussed in the sequel.

In order to study the singular limit of Problem (1.3a)-(1.3c) as " # 0, we therefore
introduce the following phase-field model

↵µ"
t + u"

t = �µ" + "�1p(u")(�" � �µ") in ⌦⇥ (0,+1),

"�1µ" � ↵u"
t = �"�2f(u")��u" in ⌦⇥ (0,+1),

�"
t = ��" � "�1p(u")(�" � �µ") in ⌦⇥ (0,+1),

(1.5a)

(1.5b)

(1.5c)

together with the boundary and initial conditions

@µ"

@⌫
=
@u"

@⌫
=
@�"

@⌫
= 0 on @⌦⇥ (0,+1),

↵µ"(·, 0) = ↵µ"
0, u"(·, 0) = u"

0, �"(·, 0) = �"
0, on ⌦.

(1.5d)

(1.5e)

Here, ⌦ is a smooth bounded domain of RN (N � 2), ⌫ is the outer unit normal vec-
tor to @⌦ and ↵ is a positive constant. We denote by (P") the problem (1.5a)-(1.5e).
Setting ↵ = 0 in the singular limit of Problem (P"), we will obtain the singular limit
of Problem (1.3a)-(1.3c). Problem (P") possesses the Lyapunov functional

E"(u, µ,�) :=

Z

⌦

⇣"
2
|ru|2 + 1

"
W (u) +

↵µ2

2
+
�2

2�

⌘
.
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We will prove in section 2 that Problem (P") is a gradient flow associated to the
functional E"(u, µ,�).

Theorem 1.1. Let (u", µ",�") be a smooth solution of Problem (P"). Then

E"(u", µ",�") is decreasing along solution orbits.

We will show in the following that, if in some sense

µ" �! µ, u" �! u, �" �! �,

then the triple (µ, u,�) is characterized by a limit free boundary problem, where the
interface motion equation appears as the limit of the equation (1.5b). A rigorous
proof of the convergence of the solution of the equation (1.5b) may for instance be
found in Ref. 1. According to Ref. 1, the function u only takes the two values �1
or 1 and the interface which separates the regions where {u = �1} and {u = 1}
partially moves according to its mean curvature.

Assumption on initial conditions: We assume that as " # 0,

µ"
0 �! µ0, u"

0 �! u0, �"
0 �! �0,

in some sense and that there exists a closed smooth hypersurface without boundary
�0 ⇢⇢ ⌦ which divides ⌦ into two subdomains ⌦+(0) and ⌦�(0) such that

u0 =

8
>><

>>:

�1 in ⌦�(0),

1 in ⌦+(0).

(1.6)

We also assume that ⌦+(0) is the region enclosed by �0 and that ⌦�(0) is the region
enclosed between @⌦ and �0.

Now, we are ready to introduce a free boundary problem namely the singular
limit of Problem (P") as " # 0:

u(x, t) =

(
1 in ⌦+(t), t 2 (0, T ]

�1 in ⌦�(t), t 2 (0, T ]

↵Vn = �(N � 1)+ Cµ on �(t), t 2 (0, T ]

↵µt + ut = �µ+ 2
p
2p0(� � �µ)�0(x� �(t)) in ⌦⇥ (0, T ],

�t = �� � 2
p
2p0(� � �µ)�0(x� �(t)) in ⌦⇥ (0, T ],

(1.7a)

(1.7b)

(1.7c)

(1.7d)

together with the boundary and initial conditions

@µ

@⌫
=
@�

@⌫
= 0 on @⌦⇥ (0, T ],

↵µ(·, 0) = ↵µ0, �(·, 0) = �0, on ⌦,

�(0) = �0,

(1.7e)

(1.7f)

(1.7g)
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Here, �(t) ⇢⇢ ⌦ is a closed hypersurface; ⌦+(t) is the region enclosed by �(t);
⌦�(t) = ⌦ \ (⌦+(t) [ �(t)); �0 is the Dirac distribution; Vn : �(t) ! RN is the
normal velocity of the evolving interface �(t),  is the mean curvature at each point
of �(t) and

C =

Z 1

�1

p
W (s)/2 ds

��1

.

We denote by (P0) the problem (1.7a)-(1.7g) and define

�T :=
[

t2(0,T ]

�(t)⇥ {t}.

Definition 1.1. We say that the triple (�T , µ,�) is a solution of Problem (P0) if

(1) the set
[

0tT

�(t)⇥ {t} is smooth, namely �(t) is a smooth hypersurface which

lies entirely within ⌦ for all t 2 [0, T ] and �(t) varies smoothly in time;
(2) for all test functions

 2 FT := { 2 C2,1(⌦⇥[0, T ]) such that
@ 

@⌫
= 0 on @⌦⇥[0, T ] and  (T ) = 0},

we have

Z T

0

Z

⌦
(�↵µ� u) t �

Z

⌦
(↵µ0 + u0) (0)

=

Z T

0

Z

⌦
µ� + 2

p
2p0

Z T

0

Z

�(t)
(� � �µ) , (1.8)

and
Z T

0

Z

⌦
�� t �

Z

⌦
�0 (0) =

Z T

0

Z

⌦
�� � 2

p
2p0

Z T

0

Z

�(t)
(� � �µ) .

Now, in order to state the next result, we need some notations. Let n+(t), n�(t)
be the outer unit normal vectors to @⌦+(t) and @⌦�(t), respectively. Note that
n+ = �n� on �T , so we may define n := n+ = �n� on �T . We define [[·]] the jump
across �(t), by [[�]] := �+ � ��, where �± should be understood as the following
limit

�±(·) := lim
⇢!0�

�(·+ ⇢n±(t)) on �(t).

We also define

Q+
T :=

[

t2(0,T ]

⌦+(t)⇥ {t}, and Q�
T :=

[

t2(0,T ]

⌦�(t)⇥ {t}.
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Theorem 1.2. Assume that Problem (P0) possesses a solution (�T , µ,�) such that

�T is smooth on the time interval (0, T ) and that µ and � are smooth up to �T on

both sides of �T . Then the triple (�T , µ,�) satisfies:

↵µt = �µ in Q+
T [Q�

T ,

�t = �� on Q+
T [Q�

T ,

[[µ]] = [[�]] = 0 on �T ,

[[
@µ

@n
]] = �2Vn + 2

p
2p0(� � �µ) on �T ,

[[
@�

@n
]] = �2

p
2p0(� � �µ) on �T ,

↵Vn = �(N � 1)+ Cµ on �T ,

(1.9a)

(1.9b)

(1.9c)

(1.9d)

(1.9e)

(1.9f)

together with the boundary and initial conditions

@µ

@⌫
=
@�

@⌫
= 0 on @⌦⇥ (0, T ],

µ(·, 0) = µ0, �(·, 0) = �0, on ⌦,

�(0) = �0.

(1.9g)

(1.9h)

(1.9i)

In this case, we say that (�T , µ,�) is a classical solution of Problem (P0) on the

time interval [0, T ].

Problem (P0) possesses the Lyapunov functional

E(�, µ,�) :=
2

C

Z

�
1 d�+

Z

⌦

⇣↵µ2

2
+
�2

2�

⌘
,

which is analogous to the Lyapunov functional satisfied by Problem (P").

Theorem 1.3. Let (�T , µ,�) be a classical solution of Problem (P0). Then

E(�, µ,�) is decreasing along solution orbits.

Finally, we will formally prove the following result.

Theorem 1.4. Let (µ", u",�") be solution of Problem (P"). We suppose that Prob-

lem (P0) possesses a unique classical solution on the interval [0, T ]. If "! 0,

µ" �! µ, u" �! u, �" �! � in a strong enough sense,

then (�T , µ,�) coincide with the classical solution of Problem (P0) and u is given

by (1.7a).

We note that the singular limit corresponds to a moving boundary problem
which is similar to other sharp-interface tumor-growth models.26,8,20,7,10,39,18 The
interesting characteristic of the current singular limit is that the reactive terms of
the phase-field model collapse to the interface in the limit, which is di↵erent than
in some other models where the reactive terms remain as bulk contributions.
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The current identified limit is consistent with the multi-constituent mixture in-
terpretation. Indeed, in the di↵use-interface model, the tumor-cell concentration
and the healthy-cell concentration add up to a fixed cell concentration: pure tu-
mor cells where u = 1, pure healthy cells where u = �1, and a mixture at di↵use
interfaces.28 This means that in pure phases we have a full single-constituent cell
concentration. As a consequence, in a pure tumor phase the tumor concentration
can not increase further. Tumor growth thus happens within the di↵use interface,
where the tumor-cell concentration can increase at the cost of healthy cells (pro-
vided, of course, su�cient nutrients are available). Upon collapsing the thickness
of the di↵use interface, one thus expects a Dirac-delta term at the interface to be
responsible for front propagation.

The moving boundary problem (1.9) may be simplified by setting some param-
eters to zero or infinity (formally). In particular, two interesting simplifications are
possible. The first one is when �(t) propagates because of nonzero � at �(t), and
� satisfies a steady interface problem. This is a so-called tumor-front propagation
with quasi-steady nutrient evolution. The second one is when �(t) propagates sim-
ply because of a constant nonzero � = �0. These two simplifications allow for direct
comparisons with numerical simulations of the di↵use-interface model. We will take
up such a comparison in Section 4 with 2-D and 3-D numerical simulations using
the energy-stable scheme from Ref. 40. We verify the convergence of the di↵use-
interface model to its sharp-interface limit, and explore a situation with topological
changes which is not covered by Theorem 1.2.

The remainder of the paper is organized as follows: In Section 2 we prove The-
orem 1.1, Theorem 1.2 and Theorem 1.3; In Section 3, we formally justify Theo-
rem 1.4. Finally in Section 4 we present numerical experiments.

2. Proof of the main results

2.1. Proof of Theorem 1.1

It is su�cient to prove that

d

dt
E"(u

", µ",�")  0. (2.1)
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For simplicity, we write u, µ,� instead of u", µ",�". Now, the inequality (2.1) follows
from the following computations:

d

dt
E"(u, µ,�) =

Z

⌦

⇣
"rurut + "�1W 0(u)ut + ↵µµt +

��t
�

⌘

=

Z

⌦

⇣
[�"�1f(u)� "�u]ut + ↵µµt +

��t
�

⌘

=

Z

⌦

⇣
(µ� ↵"ut)ut + ↵µµt

⌘
+

Z

⌦

�

�

⇣
�� � "�1p(u)(� � �µ)

⌘

= �
Z

⌦
↵"u2

t +

Z

⌦
µ(ut + ↵µt) +

Z

⌦

�

�

⇣
�� � "�1p(u)(� � �µ)

⌘

= �
Z

⌦
↵"u2

t +

Z

⌦
µ
⇣
�µ+ "�1p(u)(� � �µ)

⌘

+

Z

⌦

�

�

⇣
�� � "�1p(u)(� � �µ)

⌘

= �
Z

⌦
↵"u2

t �
Z

⌦
|rµ|2 �

Z

⌦

|r�|2

�

+ "�1

Z

⌦
p(u)

⇣
µ(� � �µ)� �

�
(� � �µ)

⌘

= �
Z

⌦
↵"u2

t �
Z

⌦
|rµ|2 �

Z

⌦

|r�|2

�
� "�1

Z

⌦
p(u)

⇣p
�µ� �p

�

⌘2

 0.

2.2. Proof of Theorem 1.2

First, we recall that n+(t), n�(t) are the outer unit normal vectors to @⌦+(t) and
@⌦�(t), respectively and n := n+ = �n� on �T . We define Vn = V.n+, where V is
the velocity of displacement of the interface �T .

2.2.1. Equations for µ

We recall that u, µ satisfy

Z T

0

Z

⌦
(�↵µ� u) t �

Z

⌦
(↵µ0 + u0) (0)

=

Z T

0

Z

⌦
µ� + 2

p
2p0

Z T

0

Z

�(t)
(� � �µ) , (2.2)

for all  2 FT . We define the terms A1, A2 and the di↵usion term B by

A1 :=

Z T

0

Z

⌦
�↵µ t, A2 :=

Z T

0

Z

⌦
�u t, and B :=

Z T

0

Z

⌦
µ� .
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Analysis of the terms A1 and A2: Our analysis of the terms A1 and A2 relies
on the Reynolds transport theorem, by which we have

d

dt

Z

⌦±(t)
� =

Z

⌦±(t)

⇣
�t + � t

⌘
±
Z

�(t)
Vn�

± ,

for all smooth function  and for function �. These equations for the integrals over
⌦±(t) yield

d

dt

Z

⌦+(t)[⌦�(t)
� =

Z

⌦+(t)[⌦�(t)

⇣
�t + � t

⌘
+

Z

�(t)
Vn[[�]] .

Hence we haveZ

⌦+(t)[⌦�(t)
�� t =

Z

⌦+(t)[⌦�(t)
�t +

Z

�(t)
Vn[[�]] � d

dt

Z

⌦+(t)[⌦�(t)
� . (2.3)

In our case, we choose � := ↵µ in (2.3) and integrate from 0 to T . This yields

A1 =

Z T

0

Z

⌦+(t)[⌦�(t)
↵µt +

Z T

0

Z

�(t)
Vn[[↵µ]] �

Z T

0

d

dt

Z

⌦+(t)[⌦�(t)
↵µ 

=

Z T

0

Z

⌦+(t)[⌦�(t)
↵µt +

Z T

0

Z

�(t)
↵Vn[[µ]] +

Z

⌦+(0)[⌦�(0)
↵µ(0) (0). (2.4)

Similarly, we apply the formula (2.3) for � := u to obtain

A2 =

Z T

0

Z

⌦+(t)[⌦�(t)
ut +

Z T

0

Z

�(t)
Vn[[u]] +

Z

⌦+(0)[⌦�(0)
u(0) (0)

= 2

Z T

0

Z

�(t)
Vn +

Z

⌦+(0)[⌦�(0)
u(0) (0). (2.5)

Analysis of the term B: We write B as the sum

B =

Z T

0

⇣Z

⌦+(t)
µ� +

Z

⌦�(t)
µ� 

⌘
.

Integration by parts yields
Z

⌦�(t)
µ� = �

Z

⌦�(t)
rµr +

Z

�(t)

@ 

@n�µ�

=

Z

⌦�(t)
�µ �

Z

�(t)

@µ�

@n� �
Z

@⌦

@µ

@⌫
 +

Z

�(t)

@ 

@n�µ�

=

Z

⌦�(t)
�µ +

Z

�(t)

@µ�

@n
 �

Z

@⌦

@µ

@⌫
 �

Z

�(t)

@ 

@n
µ�

and
Z

⌦+(t)
µ� =

Z

⌦+(t)
�µ �

Z

�(t)

@µ+

@n
 +

Z

�(t)

@ 

@n
µ+

which implies that
Z

⌦+(t)[⌦�(t)
µ� =

Z

⌦+(t)[⌦�(t)
�µ �

Z

�(t)
[[
@µ

@n
]] +

Z

�(t)

@ 

@n
[[µ]]�

Z

@⌦

@µ

@⌫
 .
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Integrating this identity from 0 to T , we obtain

B =

Z T

0

Z

⌦+(t)[⌦�(t)
�µ 

�
Z T

0

Z

�(t)
[[
@µ

@n
]] +

Z T

0

Z

�(t)

@ 

@n
[[µ]]�

Z T

0

Z

@⌦

@µ

@⌫
 . (2.6)

Conclusion: Combining (2.2), (2.4) (2.5) and (2.6), we then have for all  2 FT ,

Z T

0

Z

⌦+(t)[⌦�(t)
↵µt +

Z T

0

Z

�(t)
Vn(↵[[µ]] + 2) 

+

Z

⌦+(t)[⌦�(t)
↵(µ(0)� µ0) (0) +

Z

⌦+(t)[⌦�(t)
(u(0)� u0) (0)

=

Z T

0

Z

⌦+(t)[⌦�(t)
�µ �

Z T

0

Z

�(t)
[[
@µ

@n
]] +

Z T

0

Z

�(t)

@ 

@n
[[µ]]�

Z T

0

Z

@⌦

@µ

@⌫
 

+

Z T

0

Z

�(t)
2
p
2p0(� � �µ) . (2.7)

By using test functions with suitable supports, namely  2 C1
0 (Q+

T ) and  2
C1

0 (Q�
T ), we deduce that

↵µt = �µ in Q+
T [Q�

T . (2.8)

Similarly, by taking  2 C1
0 (QT ) such that

@ 

@n
= 0 on �T (we refer to Remark 2.1

below for the construction of such functions), we obtain

Vn(2 + ↵[[µ]]) = �[[
@µ

@n
]] + 2

p
2p0(� � �µ) on �T . (2.9)

Now, we take  2 C1
0 (QT ) to deduce that
Z T

0

Z

�(t)

@ 

@n
[[µ]] = 0 for all  2 C1

0 (QT ). (2.10)

Therefore,

[[µ]] = 0 on �T . (2.11)

It follows from (2.9) and (2.11) that

2Vn = �[[
@µ

@n
]] + 2

p
2p0(� � �µ) on �T .

Now, for the initial conditions, we use the test function  2 FT such that  = 0 on
@⌦⇥ (0, T ) to obtain

u(0) + ↵µ(0) = u0 + ↵µ0,

which in view of (1.6) implies that

µ(0) = µ0, u(0) = u0
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Finally, the remaining term in (2.7) allows us to conclude that

@µ

@⌫
= 0.

Therefore, µ satisfies the equations:

↵µt = �µ in Q+
T [Q�

T ,

2Vn = �[[
@µ

@n
]] + 2

p
2p0(� � �µ) on �T ,

[[µ]] = 0 on �T ,

together with the boundary condition and the initial condition:

@µ

@⌫
= 0, µ(0) = µ0.

Remark 2.1. Let e 2 C1
0 (QT ). In the following, we construct a function  2

C1
0 (QT ) such that

@ 

@n
|�T = 0 and  = e on �T . (2.12)

Let ed(x, t) be the signed distance function to �(t) (see (3.3) below). Since[

0tT

�(t)⇥ {t} is smooth, there exists � small enough such that ed(x, t) is smooth

in

V := {(x, t) 2 ⌦⇥ [0, T ], |ed(x, t)| < �};

moreover for all (x, t) 2 V there exists a unique (y, t) in �(t) ⇥ {t} such that
|ed(x, t)| = |x� y| and (red(x, t), t) = n(y, t). More precisely,

(y, t) = J(x, t) := (x�red(x, t)ed(x, t), t),

where the projection operator J is a smooth map from V into RN+1. We define  
on V by

 (·) := e (J (·)).

Then  is smooth on V and (2.12) holds. Moreover, we can extend  to a smooth
function on QT .

2.2.2. Equations for �

Since the computations in this section are similar to the previous ones, we will only
give a sketch of the necessary steps. For  2 C1

0 (QT ), we have
Z T

0

Z

⌦
�� t =

Z T

0

Z

⌦
�� � 2

p
2p0

Z T

0

Z

�(t)
(� � �µ) . (2.13)

We define two terms

C :=

Z T

0

Z

⌦
�� t and D :=

Z T

0

Z

⌦
�� .
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One can easily deduce that

C =

Z T

0

Z

⌦+(t)[⌦�(t)
�t +

Z T

0

Z

�(t)
Vn[[�]] ,

and

D =

Z T

0

Z

⌦+(t)[⌦�(t)
�� �

Z T

0

Z

�(t)
[[
@�

@n
]] +

Z T

0

Z

�(t)

@ 

@n
[[�]].

It follows that

Z T

0

Z

⌦+(t)[⌦�(t)
�t +

Z T

0

Z

�(t)
Vn[[�]] =

Z T

0

Z

⌦+(t)[⌦�(t)
�� 

�
Z T

0

Z

�(t)
[[
@�

@n
]] +

Z T

0

Z

�(t)

@ 

@n
[[�]]� 2

p
2p0

Z T

0

Z

�(t)
(� � �µ) .

and hence we have

�t = �� in Q+
T [Q�

T ,

[[
@�

@n
]] = �2

p
2p0(� � �µ) on �T ,

[[�]] = 0 on �T ,

This concludes the proof of Theorem 1.2

2.3. Proof of Theorem 1.3

We prove below that

d

dt
E(�, µ,�)  0. (2.14)
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The inequality (2.14) follows from the following computations and Theorem 4.3
p.355 and (4.12) p.356 in Ref. 21:

d

dt
E(�, µ,�)

=
2

C

Z

�
(N � 1)Vn +

Z

⌦+[⌦�

⇣
↵µµt + ��1��t

⌘

=
2

C

Z

�
[Cµ� ↵Vn]Vn +

Z

⌦+[⌦�

⇣
↵µµt + ��1��t

⌘

=

Z

�
2µVn �

Z

�

2↵

C V 2
n +

Z

⌦+[⌦�

⇣
µ�µ+ ��1���

⌘

=

Z

�
µ
⇣
� [[

@µ

@n
]] + 2

p
2p0(� � �µ)

⌘
�

Z

�

2↵

C V 2
n +

Z

⌦+[⌦�

⇣
µ�µ+ ��1���

⌘

=

Z

�
2
p
2p0µ(� � �µ)�

Z

�

2↵

C V 2
n �

Z

⌦+[⌦�
|rµ|2 +

Z

⌦+[⌦�
��1���

=

Z

�
2
p
2p0µ(� � �µ)�

Z

�

2↵

C V 2
n �

Z

⌦+[⌦�
|rµ|2

�
Z

⌦+[⌦�

|r�|2

�
+

Z

�
��1�[[

@�

@n
]]

which in turn implies that

d

dt
E(�, µ,�)

=

Z

�
2
p
2p0

⇣
µ(� � �µ)� ��1�(� � �µ)

⌘

�
Z

�

2↵

C V 2
n �

Z

⌦+[⌦�
|rµ|2 �

Z

⌦+[⌦�

|r�|2

�

= �
Z

�

2↵

C V 2
n �

Z

⌦+[⌦�
|rµ|2 �

Z

⌦+[⌦�

|r�|2

�
�

Z

�
2
p
2p0

⇣p
�µ� �p

�

⌘2

 0.

3. Formal derivation of Theorem 1.4

This section is devoted to prove formally theorem 1.4. We shall derive in turn
equations for u,�(t), µ,�.

3.1. Equation for u

First, we formally show that u only takes two values ±1. To that purpose, we rewrite
Equation (1.5b) in the form

↵u"
t = �u" + "�2f(u") + "�1µ".

By setting ⌧ := t/"2, we obtain

↵u"
⌧ = "2�u" + f(u") + "µ".
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When " is small, we neglect the e↵ect of di↵usion term "2�u" and of the term "µ"

with respect to the term f(u"), which yields the ordinary di↵erential equation

↵
du"

d⌧
⇠= f(u"). (3.1)

Note that ⌧ ! 1 as " ! 0. Remembering that ±1 are two stable zeros of this
equation. We formally deduce that as " # 0

8
>><

>>:

u"(x, t) approaches � 1 if u"(x, 0) < 0

u"(x, t) approaches 1 if u"(x, 0) > 0.

(3.2)

This implies that the function u which is the limit of u" only takes two values ±1.

3.2. Formal derivation of the interface equation

We define

⌦�(t) = {x 2 ⌦ : u(x, t) = �1}, ⌦+(t) = {x 2 ⌦ : u(x, t) = 1},

and

�(t) := ⌦\(⌦�(t) [ ⌦+(t)).

Since roughly speaking, the regions {u = �1} and {u = 1} are the ”limit” of the
regions {u" ⇡ �1} and {u" ⇡ 1} as " ! 0, �(t) can be considered as the limit as
"! 0 of �"(t) which is the interface between the two regions

{x 2 ⌦ : u"(x, t) ⇡ �1} and {x 2 ⌦ : u"(x, t) ⇡ 1}.

We recall that 0 is an unstable equilibria of Equation (3.1), and define

�"(t) = {x 2 ⌦ : u"(x, t) = 0} for each t � 0.

In what follows, we will use a formal asymptotic expansion to derive the equation
describing �(t). We need some preparations.

1. Signed distance function: We assume that the interface �(t) is a smooth, closed
hypersurface without boundary of RN . Further, we suppose that ⌦+(t) is the region
enclosed by �(t) and that ⌦�(t) is the region enclosed between @⌦ and �(t). Let
d̃(x, t) be the signed distance function to �(t) defined by

d̃(x, t) =

8
>><

>>:

dist(x,�(t)) for x 2 ⌦�(t),

� dist(x,�(t)) elsewhere.

(3.3)

Note that d̃ = 0 on �T and |rd̃| = 1 in a neighborhood of �T .

2. Outer expansion: It is reasonable to assume that outside a neighbourhood of �T ,
u" has the expansion

u"(x, t) = ±1 + "u±
1 (x, t) + "2u±

2 (x, t) + . . . (3.4)
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3. Inner expansion: Near �T , we assume that u" has form

u"(x, t) = U0(x, t, ⇠) + "U1(x, t, ⇠) + "2U2(x, t, ⇠) + . . . (3.5)

Here Uj(x, t, z), j � 0 are defined for x 2 ⌦, t � 0, z 2 R and ⇠ := d̃(x, t)/".

4. Normalization conditions: The stretched space variable ⇠ gives exactly the
right spatial scaling to describe the rapid transition between the regions {u" ⇡ �1}
and {u" ⇡ 1}. We normalize U0 in such a way that

U0(x, t, 0) = 0.

5. Matching conditions: For ⇠ ! ±1, we require two expansions (3.4) and (3.5)
to be consistent, i.e.

U0(x, t,�1) = 1, U0(x, t,+1) = �1;

and

Uk(x, t,�1) = u+
k (x, t), Uk(x, t,+1) = u�

k (x, t)

for all k � 1.

Formal interface motion equation We will substitute the inner expansion (3.5)
into (1.5b). We will then compare the terms of the same order to determine equa-
tions of U0 and U1. To that purpose, we start by some computations.

u"
t = U0t + U0z

edt
"

+ "U1t + U1z
edt + . . . ,

ru" = rU0 + U0z
red
"

+ "rU1 + U1zred+ . . . ,

�u" = �U0 + 2
red
"

·rU0z + U0z
�ed
"

+ U0zz
|red|
"2

+ "�U1

+ 2red ·rU1z + U1z�ed+ U1zz
|red|
"

+ . . . ,

f(u") = f(U0) + "f 0(U0)U1 +O("2),

µ" = µ+O(").

Substituting u"
t ,�u", f(u"), µ" in (1.5b), collecting all terms of order "�2 then yields

8
>><

>>:

U0zz + f(U0) = 0

U0(�1) = 1, U0(0) = 0, U0(+1) = �1.

(3.6)

This problem has a unique solution U0. Furthermore, U0 is independent of (x, t),
i.e. U0(x, t, z) = U0(z) and thus, we write U 0

0, U
00
0 instead of U0z, U0zz. We have the

following lemma.
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Lemma 3.1. The solution U0 of equation (3.6) also fulfills the di↵erential equation

U 0
0 = �

p
2W (U0).

As a consequence,
R
R(U

0
0(z))

2 dz can be written in the form:
Z

R
(U 0

0(z))
2 dz =

p
2

Z 1

�1

p
W (s) ds.

Proof. Multiplying the above mentioned di↵erential equation (3.6) for U0 by U 0
0,

we get

U 00
0 U

0
0 + f(U0)U

0
0 = 0. (3.7)

Keeping in mind that W 0(u) = �f(u), (3.7) can be read as
✓
(U 0

0)
2

2

◆0

� (W (U0))
0 = 0. (3.8)

Integrating this equation from �1 to z, we obtain

(U 0
0(z))

2

2
= W (U0(z)). (3.9)

Moreover, U0 is non increasing, therefore, we deduce that

U 0
0(z) = �

p
2W (U0(z)).

Consequently, we have
Z

R
(U 0

0(z))
2 dz = �

Z

R
U 0
0(z)

p
2W (U0(z)) dz =

p
2

Z 1

�1

p
W (s) ds.

This completes the proof of Lemma 3.1.

We now collect the terms of order "�1 in the substituted equation (1.5b). Because
we have |red| = 1 in a neighbourhood of �(t), we obtain

U1zz + f 0(U0)U1 = U 0
0(↵edt ��ed)� µ. (3.10)

A solvability condition for this equation is given by the following lemma.

Lemma 3.2 (see Lemma 2.2 in Ref. 1). Let A(z) be a bounded function for

z 2 R. Then the existence of a solution � for the problem
(
�zz + f 0(U0(z))� = A(z) , z 2 R
�(0) = 0,� 2 L1(R)

(3.11)

is equivalent to
Z

R
A(z)U 0

0(z) dz = 0. (3.12)

Therefore, the existence of a solution U1 of (3.10) is equivalent to
Z

R

h
(U 0

0)
2(z)(↵edt ��ed)(x, t)� µ(x, t)U 0

0(z)
i
dz = 0 (3.13)
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for all (x, t) in a neighbourhood of the interface �T . Thus,

(↵edt ��ed)(x, t) =
µ(x, t)

R
R U 0

0(z) dzR
R (U 0

0(z))
2 dz

= � 2µ(x, t)
R
R (U 0

0(z))
2 dz

. (3.14)

It follows from Lemma 3.1 that

(↵edt ��ed)(x, t) = �
p
2µ(x, t)

R 1
�1

p
W (s) ds

. (3.15)

Note that, on �(t) we have n = n+|� = red,  =
div(n)

N � 1
=

�ed
N � 1

, and d̃t = �Vn.

Therefore, we deduce that �(t) satisfies indeed the interface motion equation (1.7b):

↵Vn = �(N � 1)+

p
2µ

R 1
�1

p
W (s) ds

= �(N � 1)+ Cµ on �T ,

where C :=
hR 1

�1

p
W (s)/2 ds

i�1
.

3.3. Equations for µ,�

We will suppose that the following convergence holds in a strong enough sense:

µ" �! µ, �" �! �

as " # 0 and derive the limit of the reaction term in (1.5a) and (1.5c). To that
purpose, we first prove a stronger version of Lemma 2.1 by Du et al. in Ref. 22 (see
also Refs. 5, 30).

Lemma 3.3. Let � ⇢⇢ ⌦ be a smooth hypersurface without boundary, d be the

signed distance to �, and let g 2 L1(R). Furthermore, let �" 2 L1(⌦) and V ⇢ ⌦
be a neighborhood � such that

k�"kL1(⌦)  C,

�" is continuous on V,

�" �! � uniformly in V.

We then have

lim
"#0

1

"

Z

U
g
�
d(x)/"

�
�"(x) dx =

Z 1

�1
g(⌧) d⌧

Z

�
�

for a small enough neighborhood U ⇢ V of �.

Proof. For simplicity, we prove this lemma in the three-dimensional case and as-
sume that the hypersurface � has a parametrization ↵. More precisely, we assume
that there exists an open set W of R2 such that the mapping ↵ from W onto � is
smooth and that ↵�1 is continuous from � onto W . We write the function ↵ as

↵(z1, z2) = (↵1(z1, z2),↵2(z1, z2),↵3(z1, z2)) for all (z1, z2) 2 W.
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For � > 0 small enough, we consider ⌘ from W ⇥ [��, �] to R3, which satisfies
(
⌘⌧ (z1, z2, ⌧) = rd(⌘(z1, z2, ⌧)),

⌘(z1, z2, 0) = ↵(z1, z2).

We write

⌘(z1, z2, ⌧) = (⌘1(z1, z2, ⌧), ⌘2(z1, z2, ⌧), ⌘3(z1, z2, ⌧))

with ⌘i : W ⇥ [��, �] ! R. We define U := ⌘({W ⇥ [��, �]}) and choose � small
enough so that U ⇢ V . Note that

d

d⌧
d(⌘(z1, z2, ⌧)) = rd(⌘(z1, z2, ⌧))⌘⌧ (z1, z2, ⌧) = |rd(⌘(z1, z2, ⌧))|2 = 1,

and that d(⌘(z1, z2, 0)) = d(↵(z1, z2)) = 0. Thus we conclude that d(⌘(z1, z2, ⌧)) =
⌧ . We define J(z1, z2, ⌧) as the determinant of the Jacobian matrix of ⌘ at (z1, z2, ⌧)
and perform the change of coordinates ⌘(z1, z2, ⌧) = x to obtain

Z

U
g

✓
d(x)

"

◆
�"(x) dx

=

Z �

��
d⌧

Z

W
g

✓
d(⌘(z1, z2, ⌧))

"

◆
�"(⌘(z1, z2, ⌧))|J(z1, z2, ⌧)|dz1dz2

=

Z �

��
d⌧

Z

W
g
⇣⌧
"

⌘
�"(⌘(z1, z2, ⌧))|J(z1, z2, ⌧)|dz1dz2.

By applying the change of coordinates ⌧ = "e⌧ , we have
Z

U
g

✓
d(x)

"

◆
�"(x) dx

="

Z �
"

� �
"

de⌧
Z

W
g (e⌧)�"(⌘(z1, z2, "e⌧))|J(z1, z2, "e⌧)| dz1dz2.

Therefore,

A" :=
1

"

Z

U
g

✓
d(x)

"

◆
�"(x) dx

=

Z 1

�1

Z

W
1(� �

" ,
�
" )
(e⌧) g (e⌧)�"(⌘(z1, z2, "e⌧))|J(z1, z2, "e⌧)|de⌧dz1dz2.

In the following, we will apply the dominated convergence theorem to deduce the
limit of A" as " # 0. Set

H"(z1, z2, e⌧) := 1(� �
" ,

�
" )
(e⌧) g (e⌧)�"(⌘(z1, z2, "e⌧))|J(z1, z2, "e⌧)|.

For � �
"  e⌧  �

" , we have ��  "e⌧  �, so that for all " > 0
���1(� �

" ,
�
" )
(e⌧) |J(z1, z2, "e⌧)|

���  sup
z1,z22W, ��⌧�

|J(z1, z2, ⌧)| =: C1.
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Moreover, k�"kL1(⌦)  C for all " > 0, therefore,

|H"(z1, z2, e⌧)|  C|g(e⌧)| on W ⇥ R. (3.16)

Next, since �" converges uniformly to � on U and since J is continuous, we have
for all e⌧ 2 R, (z1, z2) 2 W ,

1(� �
" ,

�
" )
(e⌧)�"(⌘(z1, z2, "e⌧)) ! �(⌘(z1, z2, 0)) = �(↵(z1, z2)),

J(z1, z2, "e⌧) ! J(z1, z2, 0),

as " # 0. It follows that as " # 0,

H"(z1, z2, e⌧) ! g(e⌧)�(⌘(z1, z2, 0))|J(z1, z2, 0)| for all e⌧ 2 R, (z1, z2) 2 W. (3.17)

Combining (3.16) and (3.17), we have

lim
"#0

A" =

Z 1

�1
g(e⌧)de⌧

Z

W
�(↵(z1, z2))|J(z1, z2, 0)| dz1dz2. (3.18)

Next, we computes |J(z1, z2, 0)|. For this purpose, we write

@⌘

@z1
= (

@⌘1
@z1

,
@⌘2
@z1

,
@⌘3
@z1

),

@⌘

@z2
= (

@⌘1
@z2

,
@⌘2
@z2

,
@⌘3
@z2

),

@⌘

@⌧
= (

@⌘1
@⌧

,
@⌘2
@⌧

,
@⌘3
@⌧

).

Note that
@⌘

@⌧
(z1, z2, 0) is the outer normal vector to � at the point ⌘(z1, z2, 0) =

↵(z1, z2) and that {@⌘
@u

(z1, z2, 0),
@⌘

@v
(z1, z2, 0)} is a basis of the tangent space of �

at point ⌘(z1, z2, 0) = ↵(z1, z2). Therefore,

|J(z1, z2, 0)| =
����(
@⌘

@z1
^ @⌘

@z2
).
@⌘

@⌧

���� =
����
@⌘

@z1
^ @⌘

@z2

����

����
@⌘

@⌧

����

=

����
@⌘

@z1
^ @⌘

@z2

���� |rd(⌘(z1, z2, 0))| =
����
@⌘

@z1
^ @⌘

@z2

���� (z1, z2, 0)

=

����
@↵

@z1
^ @↵

@z2

���� (z1, z2)

where ^ is the vector product. This together with (3.18) implies that

lim
"#0

A" =

Z 1

�1
g(e⌧)de⌧

Z

W
�(↵(z1, z2))

����
@↵

@z1
^ @↵

@z2

���� dz1dz2.

On the other hand, in view of the definition of the integral of surface (see Eq. (131),
p. 283 in Ref. 36), we have

Z

�
� d� =

Z

W
�(↵(z1, z2))

����
@↵

@z1
^ @↵

@z2

���� dz1dz2.
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Therefore,

lim
"#0

A" =

Z 1

�1
g(e⌧)de⌧

Z

�
�

which completes the proof of the lemma.

Application to reaction term: Now we apply Lemma 3.3 to formally compute
the limit as " # 0 of

1

"

Z T

0

Z

⌦
p(u")(�" � �µ") , for  2 FT .

Because of the outer and inner expression of u" in (3.4) and (3.5), we deduce that
for " small enough

u"(x, t) ⇡

8
>>><

>>>:

±1 if (x, t) is far from �T

U0(
d̃(x, t)

"
) if (x, t) is closed to �T .

Therefore

p(u"(x, t)) ⇡

8
>>><

>>>:

0 if (x, t) is far from �T

p(U0(
d̃(x, t)

"
)) if (x, t) is closed to �T .

Thus we can apply Lemma 3.3 by setting

g(⇠) := p(U0(⇠)) and �" := (�" � �µ") ,

where  2 FT . This yields

P 0( (t)) := lim
"#0

1

"

Z

⌦
p(u")(�" � �µ") = lim

"#0

1

"

Z

U(t)
p(u")(�" � �µ") 

=

Z 1

�1
p(U0(⇠)) d⇠

Z

�(t)
(�(t)� �µ(t)) (t),

where U(t) is a small enough neighborhood of �(t). Recalling that in view of the
definition of p and of Lemma 3.1

p(U0) = 2p0
p
W (U0) = �

p
2p0 U

0
0,

we get

P 0( (t)) = �
p
2p0

Z 1

�1
U 0
0(⇠) d⇠

Z

�(t)
(�(t)� �µ(t)) (t)

= 2
p
2p0

Z

�(t)
(�(t)� �µ(t)) (t).



October 4, 2014 13:13 WSPC/INSTRUCTION FILE FALDITGM

22 D. Hilhorst, J. Kampmann, T.N. Nguyen & K.G. van der Zee

Hence, we formally conclude that, for all  2 FT

lim
"#0

1

"

Z T

0

Z

⌦
p(u")(�" � �µ") = 2

p
2p0

Z T

0
dt

Z

�(t)
(�(t)� �µ(t)) (t). (3.19)

Conclusion: Now, we recall the definition of a weak solution of the equation for
µ":

Z T

0

Z

⌦
(�↵µ" � u") t �

Z

⌦
(↵µ"

0 + u"
0) (0)

=

Z T

0

Z

⌦

⇣
µ"� + "�1p(u")(�" � �µ") 

⌘

for  in FT and take the limit "! 0 on both sides, to obtain in view of (3.19)

Z T

0

Z

⌦
(�↵µ� u) t �

Z

⌦
(↵µ0 + u0) (0)

=

Z T

0

Z

⌦
µ� + 2

p
2p0

Z T

0
dt

Z

�(t)
(� � �µ)(t) (t).

This together a similar argument for the equation for � completes the proof of
Theorem 1.4.

4. Numerical experiments

In this section we briefly explore the main theoretical result (Theorem 1.4) with
2-D and 3-D numerical experiments. In these experiments we compare numerical
simulations obtained for the di↵use-interface model for various " > 0 with the sharp-
interface limit evolution. For simplicity, we shall restrict ourselves to cases for which
we can obtain the exact solution for the sharp-interface model. This spares us from
having to discretize the sharp-interface model.

We restrict ourselves to the parameter values ↵ = � = 0, but include an ad-
ditional parameter � � 0 to control the inertia of the nutrient. We thus consider:

ut = �µ+ "�1p(u)� , (4.1a)

µ = �"�1f(u)� "�u , (4.1b)

��t = �� � "�1p(u)� . (4.1c)

In particular, we focus on the two limiting cases for �, because they allow for an
exact solution of the corresponding sharp-interface limit. For � = 0, the nutrient
evolution is said to be quasi-static, while for � ! 1 the nutrient is simply constant
and equal to its initial condition.
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4.1. Discretization of the di↵use-interface model

Because (4.1) is a sti↵ system for small ", one has to be careful in choosing a
time discretization: naive schemes have severe stability requirements. We therefore
adopt the recently proposed second-order time-accurate convex-splitting scheme,
see Ref. 40, which for (4.1) is given by:

uk+1 � uk

⌧
= �µ̃+ "�1p̃k+1/2 �

k+1 + �k

2
,

µ̃ = �"�1f̃k+1/2 � "�
uk+1 + uk

2
� ↵1⌧�(uk+1 � uk) + ↵2⌧(u

k+1 � uk) ,

�
�k+1 � �k

⌧
= �

�k+1 + �k

2
� "�1p̃k+1/2 �

k+1 + �k

2
,

for k = 0, 1, 2, . . ., and where ⌧ is the time-step size (assumed constant).
This scheme is essentially a Crank–Nicolson scheme with special treatment of

the nonlinear terms, in particular, the free energy W (u) is split into a convex Wc(u)
and concave part �We(u) thereby inducing a splitting of f(u) = fc(u)�fe(u), which
are treated in a more implicit and explicit manner, respectively:

f̃k+1/2 := fc(u
k+1)� uk+1 � uk

2
f 0
c(u

k+1)� fe(u
k)� uk+1 � uk

2
f 0
e(u

k) .

The nonlinearity coming from p(u) is treated by extrapolation:

p̃k+1/2 := p( 32u
k � 1

2u
k�1) ,

where for the first time step (k = 0), we take u�1 = u0.
The parameters ↵1 and ↵2 are stabilization parameters. For the system with � >

0 and � = 1, it is proven in Ref. 40 that for ↵1 and ↵2 su�ciently large, the above
scheme is stable in the sense that the Lyapunov functional E" decreases along time-
discrete solution orbits. The case � = 0 is open, but numerical results seem to
indicate the the scheme’s stability is independent of �. We refer to Ref. 40 for more
details on and properties of the scheme.

For the discretization in space, we employ centred finite di↵erences with grid-
size h, although one may also employ a spectral method or Galerkin finite element
method; see for the latter, e.g., Ref. 28.

4.2. Test case I: Growing circular tumor

For the first test case, we consider a growing circular tumor, which start at radius ⇢0,
and a quasi-static nutrient evolution (� = 0).

4.2.1. Exact solution of sharp-interface limit

Before going into the comparison, let us first describe the exact solution of the sharp-
interface limit. When it comes to the sharp-interface model, the initial condition is
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given by (in polar coordinates):

�(0) = �0 = {r = ⇢0} ,

or in terms of the radius ⇢(t) of the tumor:

⇢(0) = ⇢0 . (4.2a)

For � = 0, one may verify that the sharp-interface limit in Theorem 1.2 simplifies
to (note that µ reduces to a constant in space for constant ):

�� = 0 in Q+
T [Q�

T , (4.2b)

[[�]] = 0 on �T , (4.2c)

Vn = �
p
2p0� on �T , (4.2d)

[[
@�

@n
]] = �2

p
2p0� on �T , (4.2e)

To close the above system we need to specify a suitable boundary condition
for �. We assume that the boundary condition is a (time-dependent) axi-symmetric
Dirichlet condition:

�(x, t) = �D
�
|x|, t

�
, on @⌦⇥ (0, T ] . (4.2f)

Because of axi-symmetry, the initial circular tumor will indeed remain circular and
its radius evolves according to:

⇢0(t) = �Vn . (4.2g)

Eqs. (4.2a)–(4.2g) fully specify the sharp-interface model in terms of {⇢,�}. Its
solution can be found in an exact manner for a smart choice of �D. To be precise,
we shall describe a manufactured solution which satisfies all equations except (4.2f),
but which then of course specifies �D. The manufactured solution for � consists of
two parts (automatically satisfying (4.2b) and (4.2c)):

�(r, t) =

8
<

:

�⇢(t) r  ⇢(t) ,

�R � log(r/R)

log(⇢(t)/R)
(�R � �⇢(t)) r > ⇢(t) ,

where �R > 0 and R > ⇢0 are fixed constants. The constant �⇢(t) is fixed by
requiring (4.2e) leading to

�⇢(t) =
�R

1� 2
p
2p0⇢(t) log(⇢(t)/R)

.

Finally, ⇢(t) is determined by solving (numerically) the ODE that is obtained by
combining (4.2g) and (4.2d), with the initial condition (4.2a).

Figure 2 shows the evolution of ⇢(t) for various settings of the parameters �R
and R. It can be seen that the growth is more pronounced for larger values of �R
and for smaller values of R.

Figure 3 shows for one particular set of parameters the evolution of the tumor,
as well as the corresponding axi-symmetric distribution of �. Notice that at each
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Fig. 2. Test case I: Sharp-interface limit. The radius ⇢(t) of a circular tumor which starts at
radius ⇢0 = 1/4, and grows under the influence of a quasi-static nutrient evolution. Three param-
eters influence the growth: The left graph shows the evolution for parameter value R = 10 and
various �R, and the right graph for the parameter value �R = 2 and various R. The proliferation
parameter is fixed throughout: p0 = 1.
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Fig. 3. Test case I: Sharp-interface limit. The left graph shows the tumor at various time instances
for ⇢0 = 1/4, p0 = 1, R = 10, and �R = 2. The right graph shows the corresponding axi-symmetric
nutrient distribution �(r, t).

time � contains two parts: a constant part within the tumor, and a nonconstant
part exterior to the tumor.
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Table 1. Test case I: Di↵use-interface model. Settings in the
numerical simulations.

Model IC / BC Discretization

" = 0.15, 0.1, 0.05 ⇢0 = 1/4 ⌦ = (�1, 1)⇥ (�1, 1)
W (u) = 1

4 (1� u2)2 �R = 2 T = 0.075
f(u) = �W 0(u) R = 10 ⌧ = 0.001
p0 = 1 h = 0.003125
p(u): see Eq. (1.4) ↵1 = ↵2 = 2
� = 0

Fig. 4. Test case I: Di↵use-interface model solutions u at t = 0.075 for " = 0.15, 0.1, and 0.05. The
black circle indicate the sharp-interface solution at t = 0.075.

4.2.2. Comparison with di↵use-interface model

We now compare the above exact solution with simulations of the di↵use-interface
model. System (4.1) (with � = 0) is considered on a square domain subject to nat-
ural boundary conditions on @⌦ for u and µ, and the Dirichlet boundary condition
in (4.2f) for �. The initial condition for u is given by:

u(r, 0) = � tanh
⇣r � ⇢0
"
p
2

⌘
.

Details of the choices of all functions and parameters in the numerical simulation
can be found in Table 1.a

In Figure 4, we show a comparison of the sharp- and di↵use-interface solutions
at the final time, T = 0.075, for various ". The colors in these plots display the
value for u, while the black circle shows the sharp-interface model. It is clear from
the plots that for smaller " the layers get thinner and converge to the black circle.

The convergence of the di↵use-interface model can be seen more clearly in Fig-
ure 4.2.2, which shows the (numerical) radius of the di↵use-interface model versus

aEven though the computational domain is a square, the BCs are such that the PDE solution is
axi-symmetric. Numerical approximations, however, are not exactly axi-symmetric, but we have
ensured that they are su�ciently accurate. For example, to compute the radius, we determined
the zero level set of the discrete phase field, and computed the average distance of the zero level
set to the origin. With the employed mesh, the deviation of the average was less than 0.001.
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Fig. 5. Test case I: Convergence of the radius of the di↵use-interface model to its identified limit.

time, for various ". From this figure it can be concluded that the di↵use-interface
model converges indeed to our identified limit. While the comparison is, in principle,
valid for all times (since no singularity occurs at any time), it should be remarked
that for small " the simulations are quite sensitive to discretization errors. Such
errors may grow at an exponential rate in time (see, e.g., Refs. 23, 38 for a dis-
cussion on this), which means that, in practice, comparisons can be made only at
(relatively) short time intervals.

4.3. Test case II: Merging tumors

In the second test case we consider two separately growing circular (in 2-D) and
spherical (in 3-D) tumors, that eventually merge into one. We assume � ! 1, so
that � = �0 = constant throughout the evolution.

Since � is constant, the sharp-interface model for spherical tumors now reduces
essentially to (4.2d):

Vn = �
p
2p0�0 . (4.3)

This is known simply as front propagation, which propagates the tumor boundary
at a constant velocity.

Let us remark that the presented theory on the sharp-interface limit holds only
for smoothly evolving interfaces, and, as such, does not include topological changes.
Nevertheless, the sharp interface model of front propagation does allow for an ex-
tension beyond topological changes (using viscosity solutions); see, e.g., Ref. 37. We
have simply taken the velocity at kinks (when two interfaces touch) as the average
of the velocities at both sides. In this manner, it is possible to compare the sharp-
and di↵use-interface solution beyond topological changes. The aim of this test case
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Table 2. Test case II: Di↵use-interface model. Settings in the numerical simulations
in 2-D and 3-D (N = 2 and N = 3, respectively).

Model IC / BC Discretization

" = 0.2, 0.1, 0.05 (N = 2), " = 0.1 (N = 3) �0 = 2 ⌦ = (�1, 1)N

W (u) = 1
4 (1� u2)2 R1 = 1/6 T = 0.075

f(u) = �W 0(u) R2 = 1/4 ⌧ = 0.00025
p0 = 1 d = 1/5 h = 0.025 (N = 2)
p(u): see Eq. (1.4) h = 0.05 (N = 3)
� ! 1 ↵1 = ↵2 = 2

is to demonstrate that both evolutions are very similar, even beyond singularities,
which are not covered by the presented theory.

We assume that the two tumors initially have a radius R1 and R2, and have a
gap d between them. The initial condition for u in the di↵use-interface model in
2-D is set as:

u0(x1, x2) = 1� tanh

q�
x1 � 1

2

p
2(R1 +

d
2 )
�2

+
�
x2 +

1
2

p
2(R1 +

d
2 )
�2 �R1

"
p
2

� tanh

q�
x1 +

1
2

p
2(R2 +

d
2 )
�2

+
�
x2 � 1

2

p
2(R2 +

d
2 )
�2 �R2

"
p
2

,

while in 3-D it is set as:

u0(x1, x2, x3) =

1� tanh

q�
x1 � 1

2

p
2(R1 +

d
2 )
�2

+
�
x2 +

1
2

p
2(R1 +

d
2 )
�2

+ x2
3 �R1

"
p
2

� tanh

q�
x1 +

1
2

p
2(R2 +

d
2 )
�2

+
�
x2 � 1

2

p
2(R2 +

d
2 )
�2

+ x2
3 �R2

"
p
2

. (4.4)

The numerical settings are given in Table 2.
Figure 6 displays the solutions obtained with the di↵use-interface model, for

various ", and by front propagation (see (4.3)). From this figure, one can see that the
di↵use-interface model seems to converge towards its identified limit, even beyond
the topological change.

Figure 7 shows a 3-D di↵use-interface simulation which is the 3-D analogue of
the previous 2-D simulation at " = 0.1 (middle row in Figure 6). The 3-D evolution
by front-propagation is also visible in Figure 7 (bottom row). In general, compared
to the sharp-interface model, one may observe a blending/smoothing of the two
spheres in the di↵use-interface model which seems to decrease with ".
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Fig. 6. Test case II: Two merging tumors in 2-D simulated with the di↵use-interface model with
" = 0.2 (top row), " = 0.1 (middle row), and " = 0.05 (bottom row). The columns represent
subsequent time instances t = 0, 0.025, 0.05 and 0.075. The black curves are obtained from the
sharp-interface model described by front-propagation.

5. Conclusions

As a conclusion, we have presented a formal asymptotic method for deriving the
sharp-interface limit of a di↵use-interface tumor growth model. This limit depends
on the precise scaling which we have considered, and we have chosen the scaling
corresponding to the case where the mean curvature of the tumor boundary explic-
itly appears in the limit problem. Moreover, in the limit, the reactive terms of the
model collapse to the interface, which is di↵erent than in other models where the
reactive terms remain as bulk contributions.

Whereas the tumor growth model has the form of a generalized Cahn–Hilliard
equation, we have first embedded it into a phase-field model (↵ > 0) for which
we found it more intuitive to derive the corresponding limit problem. Setting the
parameter ↵ to zero in the corresponding result then yields the limit of the original
Cahn-Hilliard type system. Even if it is not vital for results presented in this paper,
it is nevertheless interesting to note that the introduction of the phase-field model
gives the model a parabolic structure with respect to µ which can be useful for the
analysis of such systems.16
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Fig. 7. Test case II: Two merging tumors in 3-D simulated with the di↵use-interface model with
" = 0.1. The columns represent subsequent time instances t = 0, 0.025, 0.05 and 0.075. The top
row displays a cut-away view of the phase-field u, the middle row shows the zero-level set {u = 0},
and the bottom row displays the sharp-interface model described by front-propagation (see (4.3)).
This simulation is a three-dimensional analogue of the one depicted in the middle row of Fig. 6.

A validation of the identified limit model was carried out by comparing its
solutions in simplified settings with numerical computations of the di↵use interface
model for decreasing values of ". With this work, we have provided a unification
of modeling frameworks for tumor growth by connecting mixture-based di↵use-
interface models to those with evolving sharp boundaries. We hope that this helps
researchers in mathematical oncology in understanding and applying models, and
developing better algorithms.
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