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In this article, an environmentally friendly and non vacu-

um electrostatic spray assisted vapour deposition 

(ESAVD) process has been developed as an alternative 

and low cost method to deposit CIGS absorber layers. 

ESAVD is a non-vacuum chemical vapour deposition 

based process whereby a mixture of chemical precursors 

is atomized to form aerosol. The aerosol is charged and 

directed towards a heated substrate where it would un-

dergo decomposition and chemical reaction to deposit a 

stable solid film onto the substrate.  A sol containing 

copper, indium and gallium salts, as well as thiourea was 

formulated into a homogeneous chemical precursor mix-

ture for the deposition of CIGS films. After selenization, 

both XRD and Raman results show the presence of the 

characteristic peaks of CIGSSe in the fabricated thin 

films. From SEM images and XRF results, it can be seen 

that the deposited absorbers are promising for good per-

formance solar cells. The fabricated solar cell with a typ-

ical structure of glass/Mo/CIGSSe/CdS/i-ZnO/ITO 

shows efficiency of 2.82% under 100mW/cm2 AM1.5 il-

lumination. 

  

 

This is the caption of the optional abstract figure. If there 
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1 Introduction Chalcopyrite CuInGaSe2 (CIGS) thin film 

solar cells processed by co-evaporation method have 

reached above 20% power conversion efficiency[1-4], and 

it is one of the most promising commercial solar modules. 

In order to make the CIGS solar industry competitive and 

sustainable in the long-term, CIGS based photovoltaic 

technology using low cost and non-vacuum processes such 

as electrodeposition[5, 6], hydrazine[7, 8], quantum dots[9, 

10], and other wet chemical precursor methods involving 

direct liquid coating of metal salt[11], metal sulfide[12, 13] 

and metal oxide[14] have been developed. Among these 

methods, hydrazine is a relatively very toxic and dangerous 

solvent, which limits the mass production of this method. 

Chalcogenide nanocrystal method normally would involve 

complex chemical synthesis and purification process of 

nanocrystals, it is also rather challenging to be scaled up. 

Electrostatic spray assisted vapour deposition (ESAVD) 

has demonstrated to be suitable for the low cost and non-

vacuum deposition of metal oxide[15, 16], various sul-

phide[17] and chalcogenide[18]. Figure 1 shows the setup 
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of ESAVD deposition. ESAVD is a non-vacuum chemical 

vapour deposition based process in which a mixture of 

chemical precursors is atomized to form aerosol. The aero-

sol is charged and directed towards a heated substrate 

where it would undergo decomposition and chemical reac-

tion to deposit a stable solid film onto the substrate. 

ESAVD is a scalable process and it is a promising way to 

deposit large area oxide or sulphide thin films due to its 

characteristics such as low cost, simplicity, versatility,  and 

environmentally friendly [19]. It can be operated in open 

atmosphere and can easily  be adapted to large area deposi-

tion using multiple spray atomizers. ESAVD process tends 

to use more environmental friendly precursors. Most of the 

precursors would have been reacted and converted to coat-

ings, therefore, the deposition efficiency of ESAVD meth-

od at optimum conditions is relatively high (e.g. above 

90%). CIGS absorbers have been deposited using ESAVD 

method in this work and solar cells have been fabricated to 

determine the efficiency of devices. 

 
Figure 1 A schematic diagram of the setup for the 

ESAVD process. 

2 Experimental In this article, an environmental 

friendly and sustainable ESAVD process has been exploit-

ed and developed for the deposition of CIGS absorber lay-

ers. Metal salts of copper, indium and gallium, as well as 

thiourea based chemical were formulated into a chemical 

precursor mixture. For depositing CIGS films, a mixture of 

solution containing CuCl2, InCl3, Ga(NO3)3 and  thiourea 

was used and the deposition was performed at a tempera-

ture range of 250-450°C. The as-deposited CIGS layers 

were selenized under vacuum at 550°C for 30 minutes in-

side a dedicated graphite box in order to form CIGSSe lay-

er. After selenization, 50nm thick of CdS layer was depos-

ited on top of CIGSSe absorber using chemical bath depo-

sition (CBD) method. CdS deposition was performed using 

a solution containing 0.0015M CdSO4, 1.5M NH4OH, and 

0.075M thiourea. The samples were immersed in a well-

sealed glass bottle in water bath at 60 °C, CdS thin films in 

the thickness range of 40-50nm were deposited.  On top of 

CdS, a bilayer composed of i-ZnO(50nm)/ITO(250nm) 

was sputtered as a window layer. Intrinsic ZnO was RF-

sputtered at room temperature, with RF power density, 

O2/Ar2 flow rates and sputtering pressure at 1.1 W/cm
2
, 

3/11 sccm, and 0.266 Pa respectively. A sintered ceramic 

target with In2O3:SnO2=90:10wt% was used to sputter ITO 

thin films. The sputter deposition was performed under the 

conditions of temperature, RF power density, O2 / Ar2 flow 

rates, and sputtering pressure of 140°C, 1.3 W/cm
2
, 1/8 

sccm, and 0.67Pa, respectively. Finally, on top of ZnO/ITO 

window layer, a patterned Al layer is thermally evaporated 

on top of ITO layer as a front electrode.  The dimension of 

individual solar cells is 4mm x 4mm. 

 
The structural characterization of CIGS/CIGSSe layers 

was carried out using a Siemens D500 X-ray diffraction 

(XRD) system with a copper source (wavelength λ = 1.54 

Ǻ). Raman measurement was carried out using Horiba-

Jobin-Yvon LabRam spectrometer with HeNe (632.8 nm) 

laser excitation. The composition was analysed using 

Fischer XAN250 X-ray fluorescence spectrometer. The 

surface morphology of the films was characterized by FEI 

XL-30 Scanning electron microscopy (SEM). Solar cells 

were measured under AM1.5 simulated solar light with in-

tensity of 100mW/cm
2
. 

 

3 Results and Discussion XRD is used to obtain 

information on crystalline quality and phase purity of 
ESAVD deposited CIGS absorber. The XRD of the as-

deposited layer is shown in Figure 2. The peaks at 2 of 

28.3 and 46.9 belongs to (112) and (204)/(220) orienta-
tions of polycrystalline chalcopyrite CIGS structure, which 

indicates clearly the formation of CIGS in the as-deposited 
films.  

 

Figure 2 XRD of the as-deposited CIGS layer by ESAVD. 

 

Figure 3 shows the XRD of the films after selenization. 

Overall, the characteristic peaks of CIGS phases become 

sharper and narrower which indicated the formation of 
films with better crystallinity. Since Se has larger atomic 
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diameter as compared with S, the two main peaks at 2 of 

28.3 and 46.9 have been shifted to lower 2 of 26.9 and 
44.6, respectively, indicating the incorporation of Se in 

the CIGS crystal structure. The new peak at 53.0 also 

matches the crystal structure of CIGSe. The results indicate 
that CIGSSe structure has been formed after selenization. 

XRD results of CIGS films also show the dominant grow 
in 112 direction after selenization.  

 

 Figure 3 XRD of the ESAVD deposited CIGS absorber layer 

after selenization. 

 

Grain boundaries of CIGSSe layer may act as recom-

bination centres for photogenerated charge carriers result-
ing degradation of device photovoltaic performance. It is 

desirable to have grain sizes about the order of the film 

thickness to minimize such recombination effects. The 
grain size of the CIGSSe film for a high efficiency solar 

cell is usually larger than 1 μm. Figure 4 shows the cross-
section SEM image of ESAVD deposited CIGSSe layer af-

ter selenization. SEM image shows large grains with size 
around hundreds of nm have been obtained in the top layer 

of CIGSSe absorber after selenization and very small 

grains exist at the CIGS/Mo interfaces. The possible rea-
son for these smaller grains might be attributed to the lim-

ited  diffusion of Se through the dense CIGS films. 
 

 

Figure 4 Cross-section SEM image of CIGSSe thin film after 

selenization. 

In order to determine the uniformity of the absorber 

layer, the thickness and composition were measured on 5 

different points including 4 corners and 1 centre point on a 

sample with size of 2 cm × 2 cm by XRF. Table 1 shows 

the XRF measurement revealing that the thickness of 

CIGSSe layer is circa. 1.33 microns before selenization 

and 1.12 microns after selenization. The element atomic 

ratios of Cu, In, Ga, S before selenization are 23.31%, 

30.23%, 9.58%, 36.67%, respectively. After selenization, 

element atomic ratios of Cu, In, Ga, S and Se are 25.30%, 

26.46%, 10.38%, 27.35 and 10.51%, respectively. Relative 

standard deviation (RSD) of thickness and atomic ratios of 

Cu, In, Ga, S, and Se are all below 10% indicating good 

uniformity of the thickness and composition in ESAVD 

deposited CIGSSe film. 

 

Table 1 Thickness and composition of CIGS thin layers 

before and after selenization. 

 
CIGS 

SD 

(%) 

RSD* 

(%) 
CIGSSe 

SD 

(%) 

RSD* 

(%) 

Thickness 1.33 µm 0.04 3.13 1.12 µm 0.073 6.58 

Cu At% 23.31 0.24 1.02 25.30 0.86 3.38 

In At% 30.23 0.74 2.44 26.46 0.96 3.64 

Ga At% 9.58 0.15 1.57 10.38 0.32 3.11 

S At% 36.67 1.10 3.00 27.35 1.97 7.20 

Se At% N/A N/A N/A 10.51 0.93 8.85 

Cu/(In+Ga) 0.59 0.0082 1.39 0.69 0.011 1.59 

Ga/(In+Ga) 0.24 0.0030 1.25 0.28 0.041 1.46 

* SD=Standard Deviation; RSD =relative standard deviation; 

At%=Atomic % 

 

Raman analysis is able to detect and distinguish be-
tween phases which may not be distinguishable by diffrac-

tion techniques through their characteristic scattering peaks. 

In order to clearly identify the secondary phases (if any) 
and to verify the purity of chalcopyrite CIGS phase, Ra-

man was also utilized to characterize CIGSSe thin films. 
Figure 5 shows the as deposited CIGS thin film exhibiting 

two characteristic peaks of CIGS, the peak at 298 cm
-1

 is 
associated with the “A1” mode of lattice vibration for the 

chalcopyrite structures, and another peak at 348 cm
-1

 is as-

sociated with the “E” mode of lattice vibration for the 
chalcopyrite structures. The absence of other Raman peaks 

indicates the purity of the CIGS phase. After selenization, 
due to the incorporation of Se element in CIGS thin film, 

there are four characteristic peaks appeared on Raman 

spectra, two are related to CIGS phase and another two due 
to CIGSe. The Raman peaks at173 cm

-1
 is associated with 

the “A1” mode of lattice vibration for the CIGSe structures, 
and another peak at 222cm

-1
 is associated with the “B2/E” 

mode of lattice vibration for the CIGSe structures.  
 

20 30 40 50 60

0

200

400

600

800

1000

3
1
2
/1

1
6

2
0
4
/2

2
0

1
1
2

In
te

n
s
it
y

2 Theta



4 Author, Author, and Author: Short title 

 

Copyright line will be provided by the publisher 

Figure 5 Raman shift of ESAVD deposited CIGS thin 

film before and after selenization. 

 

After finishing the Al deposition and mechanical scrib-

ing, a standard glass/Mo/CIGSSe/CdS/ZnO/ITO solar cell 

was yielded. Two probes with magnetic micropositioners 

were used to measure the device efficiency under light il-

lumination. Thus far, the fabricated device shows short cir-

cuit current (Isc) of 15.1 mA/cm
2
, open circuit voltage (Voc) 

of 0.41 V, fill factor(FF) of 0.46 and conversion efficiency 

2.82%(as seen in Figure 6). 

As compared to the high efficiency (20%) co-
evaporated CIGS solar cells [3], low FF, Voc and especially 

Isc limit the efficiency of ESAVD deposited solar cells. 
From the SEM result and XRF data, it can be seen that the 

grain size of our absorber is smaller than the desirable val-

ue and the metal/S+Se ratio of 1.64 is a little higher than 
the optimum value range of CIGS absorber for high effi-

ciency solar cells. In our future work, we will optimize our 
selenization setup and selenization conditions to increase 

the grain size and decrease the metal/S+Se ratio in the ab-

sorber. The low Voc of CIGS solar cell is possibly due to 
shunt current resulted by the presence of pin-holes, ag-

glomerates or impurities in and near the junction. The Voc 
can be improved by adjusting the precursor formulation 

and deposition conditions. Further optimizing the contact 
between top electrode and window layer will decrease the 

series resistance of the device and lead to a higher current 

and device efficiency. 
  

 

   

 

Figure 6 I-V characterization of CIGS thin film solar cells under 

100mW/cm2 AM1.5 simulated light. 

 

 

4 Conclusions In conclusion, CIGS thin films have 
been deposited by non-vacuum ESAVD method. After 

selenization, the deposited thin films show the presence of 

the characteristic peaks of CIGSSe from XRD and Raman. 
From SEM images and XRF results, it can be seen the de-

posited absorber is promising for good performance solar 
cells. The fabricated solar cell with a typical structure of 

glass/Mo/CIGSSe/CdS/i-ZnO/ITO shows efficiency of 

2.82% under 100mW/cm
2
 AM1.5 illumination. 

 

 

Acknowledgements The absorber deposition and devel-

opment have been funded by the European Union’s Seventh 

Framework Programme FP7/2007-2013 under grant agreement nº 

284486. The sputtering facilities for ZnO and indium-doped tin 

oxide have been supported by Nottingham Trent University. 

References 

[1] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, 

C.L. Perkins, B. To, R. Noufi, Prog Photovoltaics 16, 235-

239(2008). 

[2] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. 

Menner, W. Wischmann, M. Powalla, Prog Photovoltaics 19, 

894-897(2011). 

[3] E. Wallin, U. Malm, T. Jarmar, O. Lundberg, M. Edoff, L. 

Stolt, Prog Photovoltaics 20,851-854(2012). 

[4] A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, 

A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. 

Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, A.N. Ti-

wari, Nat Mater 10, 857-861(2011). 

[5] R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, 

R.N. Noufi, J.R. Sites, Thin Solid Films 361, 396-399(2000). 



pss-Header will be provided by the publisher 5 

 

 Copyright line will be provided by the publisher 

1 

2 

3 
4 

5 
6 

7 

8 
9 

10 
11 

12 
13 

14 

15 
16 

17 
18 

19 

20 
21 

22 
23 

24 
25 

26 

27 
28 

29 
30 

31 

32 
33 

34 
35 

36 
37 

38 

39 
40 

41 
42 

43 

44 
45 

46 
47 

48 
49 

50 

51 
52 

53 
54 

55 

56 
57 

[6] M.E. Calixto, R.N. Bhattacharya, P.J. Sebastian, A.M. Fer-

nandez, S.A. Gamboa, R.N. Noufi, Sol Energ Mat Sol C 

55,23-29(1998). 

[7] D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S.J. Chey, V. De-

line, A.G. Schrott, Adv Mater 20, 3657-+(2008). 

[8] W. Liu, D.B. Mitzi, M. Yuan, A.J. Kellock, S.J. Chey, O. 

Gunawan, Chem Mater 22, 1010-1014(2010). 

[9] G.M. Ford, Q.J. Guo, R. Agrawal, H.W. Hillhouse, Thin Solid 

Films 520, 523-528(2011). 

[10] Q.J. Guo, G.M. Ford, R. Agrawal, H.W. Hillhouse, Prog 

Photovoltaics 21, 64-71(2013). 

[11] W. Wang, S.Y. Han, S.J. Sung, D.H. Kim, C.H. Chang, Phys 

Chem Chem Phys 14,11154-11159(2012). 

[12] A. Cho, S. Ahn, J.H. Yun, J. Gwak, S.K. Ahn, K. Shin, H. 

Song, K.H. Yoon, Sol Energ Mat Sol C 109,17-25(2013). 

[13] Q. Guo, G.M. Ford, H.W. Hillhouse, R. Agrawal, Nano Lett 

9, 3060-3065(2009). 

[14] V.K. Kapur, A. Bansal, P. Le, O.I. Asensio, Thin Solid 

Films 43,153-57 (2003). 

[15] R. Chandrasekhar, K.L. Choy, Thin Solid Films 398,59-

64(2001). 

[16] X.H. Hou, K.L. Choy, Surf Coat Tech 180, 15-19(2004). 

[17] K.L. Choy, B. Su, Thin Solid Films, 388,9-14(2001). 

[18] X.H. Hou, K.L. Choy, Thin Solid Films 480,13-18(2005). 

[19] K.L. Choy, Prog Mater Sci 48 , 57-170(2003). 


