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Four-dimensional Fano toric
complete intersections
T. Coates, A. Kasprzyk and T. Prince

Department of Mathematics, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, UK

We find at least 527 new four-dimensional Fano
manifolds, each of which is a complete intersection in
a smooth toric Fano manifold.

1. Introduction
Fano manifolds are the basic building blocks of algebraic
geometry, both in the sense of the Minimal Model
Program [1–4] and as the ultimate source of most
explicit examples and constructions. There are finitely
many deformation families of Fano manifolds in each
dimension [5]. There is precisely 1 one-dimensional Fano
manifold: the line; there are 10 deformation families
of two-dimensional Fano manifolds: the del Pezzo
surfaces and there are 105 deformation families of
three-dimensional Fano manifolds [6–13]. Very little is
known about the classification of Fano manifolds in
higher dimensions.

In this paper, we begin to explore the geography of
Fano manifolds in dimension 4. Four-dimensional Fano
manifolds of higher Fano index have been classified
[6,14–22]—there are 35 in total—but the most interesting
case, where the Fano variety has index 1, is wide open.
We use computer algebra to find many four-dimensional
Fano manifolds that arise as complete intersections in
toric Fano manifolds in codimension at most 4. We find
at least 738 examples, 717 of which have Fano index 1
and 527 of which are new.

Suppose that Y is a toric Fano manifold and that
L1, . . . , Lc are nef line bundles on Y such that −KY − Λ

is ample, where Λ = c1(L1) + · · · + c1(Lc). Let X ⊂ Y be
a smooth complete intersection defined by a regular
section of ⊕iLi. The Adjunction Formula gives that

−KX = (−KY − Λ)|X,
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so X is Fano. We find all four-dimensional Fano manifolds X of this form such that the
codimension c is at most 4.

Our interest in this problem is motivated by a program to classify Fano manifolds in higher
dimensions using mirror symmetry [23]. For each four-dimensional Fano manifold X as above,
therefore, we compute the essential ingredients for this program: the quantum period and
regularized quantum differential equation associated to X, and a Laurent polynomial f that
corresponds to X under mirror symmetry; we also calculate basic geometric data about X, the
ambient space Y and f . The results of our computations in machine-readable form, together
with full details of our implementation and all source code used, can be found in the electronic
supplementary material.

2. Finding four-dimensional Fano toric complete intersections
Our method is as follows. Toric Fano manifolds Y are classified up to dimension 8 by Batyrev
et al.1 [24–29]. For each toric Fano manifold Y of dimension d = 4 + c, we:

(i) compute the nef cone of Y;
(ii) find all Λ ∈ H2(Y; Z) such that Λ is nef and −KY − Λ is ample and

(iii) decompose Λ as the sum of c nef line bundles L1, . . . , Lc in all possible ways.

Each such decomposition determines a four-dimensional Fano manifold X ⊂ Y, defined as the
zero locus of a regular section of the vector bundle ⊕iLi. To compute the nef cone in step (i), we
consider dual exact sequences

0 �� L ��
ZN

ρ
��
Zd �� 0

0 L��� (ZN)�
D�� (Zd)�

ρ�

�� 0,��

where the map ρ is defined by the N rays of a fan Σ for Y. There are canonical identifications
L� ∼= H2(Y; Z) ∼= Pic(Y), and the nef cone of Y is the intersection of cones

NC(Y) =
⋂
σ∈Σ

〈Di : i �∈ σ 〉,

where Di is the image under D of the ith standard basis vector in (ZN)� [30, proposition 15.1.3].
The classes Λ in step (ii) are the lattice points in the polyhedron P = NC(Y) ∩ (−KY − NC(Y)) such
that −KY − Λ lies in the interior of NC(Y). Since NC(Y) is a strictly convex cone, P is compact and
the number of lattice points in P is finite. We implement step (iii) by first expressing Λ as a sum
of Hilbert basis elements in NC(Y) in all possible ways

Λ = b1 + · · · + br bi an element of the Hilbert basis for NC(Y), (2.1)

where some of the bi may be repeated; this is a knapsack-style problem. We then, for each
decomposition (2.1), partition the bi into c subsets S1, . . . , Sc in all possible ways and define the
line bundle Li to be the sum of the classes in Si.

We found 117 173 distinct triples (X; Y; L1, . . . , Lc), with a total of 17 934 distinct ambient
toric varieties Y. Note that the representation of a given Fano manifold X as a toric complete
intersection is far from unique: for example, if X is a complete intersection in Y given by a section

1Øbro’s method, which applies in all dimensions, starts with the observation that without loss of generality one cone in the
fan for Y is the positive orthant and the sum of the primitive generators v1, . . . , vN for the rays of the fan lies in this cone;
he then uses the facts that Y is smooth and Fano to give bounds on the coordinates of the vi, and defines an order on such
fans with the property that if F1 < F2 then the toric Fano varieties defined by F1 and F2 are non-isomorphic. By constructing
the fans in increasing order, one never needs to check for fan isomorphism, and thus one never needs to refer back to fans
already found.
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of L1 ⊕ · · · ⊕ Lc then it is also a complete intersection in Y × P1 given by a section of π�
1 L1 ⊕ · · · ⊕

π�
1 Lc ⊕ π�

2OP1 (1). Thus, we have found far fewer than 117 173 distinct four-dimensional Fano
manifolds. We show below, by calculating quantum periods of the Fano manifolds X, that we
find at least 738 non-isomorphic Fano manifolds. Since the quantum period is a very strong
invariant—indeed no examples of distinct Fano manifolds X �∼= X′ with the same quantum period
GX = GX′ are known—we believe that we found precisely 738 non-isomorphic Fano manifolds.
Eliminating the quantum periods found in [31], we see that at least 527 of our examples are new.

Remark 2.1. There exist Fano manifolds which do not occur as complete intersections in toric
Fano manifolds. But in low dimensions, most Fano manifolds arise this way: 8 of the 10 del Pezzo
surfaces, and at least 78 of the 105 smooth three-dimensional Fano manifolds, are complete
intersections in toric Fano manifolds [32].

Remark 2.2. It may be the case that any d-dimensional Fano manifold which occurs as a toric
complete intersection in fact occurs as a toric complete intersection in codimension d; we know of
no counterexamples. But even if this holds in dimension 4, our search will probably not find all
four-dimensional Fano manifolds which occur as toric complete intersections. This is because, if
one of the line bundles Li involved is nef but not ample, then the Kähler cone for X can be strictly
bigger than the Kähler cone for Y. In other words, it is possible for −KX to be ample on X even if
−KY − Λ is not ample on Y. For an explicit example of this in dimension 3, see [32, §55].

3. Quantum periods and mirror Laurent polynomials
The quantum period GX of a Fano manifold X is a generating function

GX(t) = 1 +
∞∑

d=1

cdtd t ∈ C, (3.1)

for certain genus-zero Gromov–Witten invariants cd of X which plays an important role in mirror
symmetry. A precise definition can be found in [32, §B], but roughly speaking one can think of cd
as the ‘virtual number’ of rational curves C in X that pass through a given point, satisfy certain
constraints on their complex structure, and satisfy 〈−KX, C〉 = d. The quantum period is discussed
in detail in [23,32]; for us what will be important is that the regularized quantum period

ĜX(t) = 1 +
∞∑

d=1

d!cdtd t ∈ C, |t| � ∞ (3.2)

satisfies a differential equation called the regularized quantum differential equation of X:

LXĜX ≡ 0 LX =
m=N∑
m=0

pm(t)Dm, (3.3)

where the pm are polynomials and D = t(d/dt).
It has been proposed that Fano manifolds should correspond under mirror symmetry to

Laurent polynomials which are extremal or of low ramification [23], in the sense discussed in
§4. An n-dimensional Fano manifold X is said to be mirror-dual to a Laurent polynomial
f ∈ C[x±1

1 , . . . , x±1
n ] if the regularized quantum period of X coincides with the classical period of f :

πf (t) = 1
(2π i)n

∫
(S1)n

1
1 − tf

dx1

x1
· · · dxn

xn
t ∈ C, |t| � ∞.

If a Fano manifold X is mirror-dual to the Laurent polynomial f then the regularized quantum
differential equation (3.3) for X coincides with the Picard–Fuchs differential equation satisfied
by πf . The correspondence between Fano manifolds and Laurent polynomials is not one-to-one,
but it is expected that any two Laurent polynomials f , g that are mirror-dual to the same
Fano manifold are related by a birational transformation ϕ : (C×)n ��� (C×)n called a mutation
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or a symplectomorphism of cluster type [33–35]: ϕ�f = g. We will write such a mutation as f
ϕ

��� g.

Mutations are known to preserve the classical period [33]: if f
ϕ

��� g then πf = πg.

Remark 3.1. In the paragraphs above we discuss the regularized quantum differential
equation and the Picard–Fuchs differential equation. This involves choices of normalization. Our
conventions are that the regularized quantum differential operator is the operator LX as in (3.3)
such that:

(i) the order, N, of LX is minimal;
(ii) the degree of pN(t) is minimal;

(iii) the leading coefficient of pN is positive; and
(iv) the coefficients of the polynomials p0, . . . , pN are integers with greatest common divisor

equal to 1.

The Picard–Fuchs differential operator is the differential operator Lf such that:

Lf πf ≡ 0 Lf =
m=N∑
m=0

Pm(t)Dm,

where the Pm are polynomials and D = t(d/dt), and that the analogues of conditions (i)–(iv) above
hold.

We determined the quantum period GX, for each of the triples (X; Y; L1, . . . , Lc) from §2,
as follows. For each such triple we found, using the Mirror Theorem for toric complete
intersections [36] and a generalization of a technique due to V. Przyjalkowski, a Laurent
polynomial f that is mirror-dual to X. This process is described in detail in §5. We then computed,
for each triple, the first 20 terms of the power series expansion of ĜX = πf using the Taylor
expansion

πf (t) =
∞∑

d=0

αdtd,

where αd is the coefficient of the unit monomial in f d. We divided the 117 173 triples into 738
‘buckets’, according to the value of the first 20 terms of the power series expansion of ĜX = πf ,
and then proved that any two Fano manifolds X, X′ in the same bucket have the same quantum

period by exhibiting a chain of mutations f
ϕ0��� f1

ϕ1��� · · · ϕn−1��� fn
ϕn��� g that connects the Laurent

polynomials f and g mirror-dual to X and X′.
For each quantum period GX, we computed the quantum differential operator LX directly

from the mirror Laurent polynomial f chosen above, using Lairez’s generalized Griffiths–Dwork
algorithm [37]. The output from Lairez’s algorithm is a differential operator L =∑N

m=0 Pm(t)Dm

with P0, . . . , PN ∈ Q[t] such that, with very high probability, Lπf ≡ 0. Such an operator L gives a
recurrence relation for the Taylor coefficients α0, α1, α2 . . . of πf ; using this recurrence relation and
the first 20 Taylor coefficients computed above, we solved for the first 2000 Taylor coefficients αk.
We then consider an operator

L̄ =
N̄∑

m=0

P̄m(t)Dm,

where the P̄m are polynomials of degree at most R̄, and impose the condition that L̄πf ≡ 0. The 2000
Taylor coefficients of πf give 2000 linear equations for the coefficients of the polynomials P̄m and,
provided that (N̄ + 1)(R̄ + 1) � 2000, this linear system is highly over-determined. Since we are
looking for the Picard–Fuchs differential operator (see remark 3.1), we may assume that (N̄, R̄) is
lexicographically less than (N, deg pN). We searched systematically for such differential operators
with (N̄ + 1)(R̄ + 1) � 2000, looking for the operator L̄ with lexicographically minimal (N̄, R̄) and
clearing denominators so that the analogues of conditions (iii) and (iv) in remark 3.1 holds. We can
say with high confidence that this operator L̄ is in fact the Picard–Fuchs operator Lf , although this
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is not proven—partly because Lairez’s algorithm relies on a randomized interpolation scheme
that is not guaranteed to produce an operator annihilating πf , and partly because if Lf were to
involve polynomials Pm of extremely large degree, 2000 terms of the Taylor expansion of πf will
not be enough to detect Lf . The operators L̄ that we found satisfy a number of delicate conditions
that act as consistency checks: for example they are of Fuchsian type (which is true for Lf , as Lf
arises geometrically from a variation of Hodge structure). Thus, we are confident that L̄ = Lf in
every case.2 Since ĜX = πf and LX = Lf by construction, this determines, with high confidence,
the quantum period GX and the regularized quantum differential operator LX.

Remark 3.2. The use of Laurent polynomials and Lairez’s algorithm is essential here. There is a
closed formula [32, corollary D.5] for the quantum period of the Fano manifolds that we consider,
and one could in principle use this together with the linear algebra calculation described above
to compute (a good candidate for) the regularized quantum differential operator LX. In practice,
however, for many of the examples that we treat here, it is impossible to determine enough Taylor
coefficients from the formula: the computations involved are well beyond the reach of current
hardware, both in terms of memory consumption and runtime. By contrast, our approach using
mirror symmetry and Lairez’s algorithm will run easily on a desktop PC.

Remark 3.3. The regularized quantum differential equation for X coincides with the
(unregularized) quantum differential equation for an anticanonical Calabi–Yau manifold Z ⊂ X.
The study of the regularized quantum period from this point of view was pioneered by Batyrev
et al. [39,40] and an extensive study of fourth-order Calabi–Yau differential operators was made
in [41]. We found 26 quantum differential operators with N = 4; these coincide with or are
equivalent to the fourth-order Calabi–Yau differential operators with AESZ IDs 1, 3, 4, 5, 6, 15, 16,
17, 18, 19, 20, 21, 22, 23, 34, 369, 370 and 424 in the Calabi–Yau Operators Database [42], together
with one new fourth-order Calabi–Yau differential operator (which corresponds to our period
sequence with ID 469).

4. Ramification data
Consider now one of our regularized quantum differential operators

LX =
m=N∑
m=0

pm(t)Dm

as in (3.3), and its local system V → P1 \ S of solutions. Here S ⊂ P1 is the set of singular points of
the regularized quantum differential equation.

Definition 4.1 ([23]). Let S ⊂ P1 be a finite set and V → P1 \ S a local system. Fix a basepoint
x ∈ P1 \ S. For s ∈ S, choose a small loop that winds once anticlockwise around s and connect it to
x via a path, thereby making a loop γs about s based at x. Let Ts : Vx → Vx denote the monodromy
of V along γs. The ramification of V is

rf(V) :=
∑
s∈S

dim
(
Vx/Vx

Ts
)

.

The ramification rf(V) is independent of the choices of basepoint x and of small loops γs.
A non-trivial, irreducible local system V → P1 \ S has rf(V) ≥ 2rk(V): see [23, §2].

Definition 4.2. Let V → P1 \ S be a local system as above. The ramification defect of V is the
quantity rf(V) − 2rk(V). A local system of ramification defect zero is called extremal.

Definition 4.3. The ramification (respectively, ramification defect) of a differential operator LX is
the ramification (respectively, ramification defect) of the local system of solutions LXf ≡ 0.

2This could be proved in any given case using methods of van Hoeij [38]; cf. [37, §8.2.2].
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Table 1. Ramification defects for 575 of the 738 regularized quantum differential operators.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ramification defect 0 1 2 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of occurrences 92 290 167 26
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To compute the ramification of LX, we proceed as in [31]. One can compute Jordan normal
forms of the local log-monodromies {log Ts : s ∈ S} using linear algebra over a splitting field k for
pN(t). (Every singular point of LX is defined over k.) This is classical, going back to Birkhoff [43],
as corrected by Gantmacher [44, vol. 2, §10] and Turrittin [45]; a very convenient presentation
can be found in the book of Kedlaya [46, §7.3]. In practice, we use the symbolic implementation
of �Q provided by the computational algebra system Magma [47,48]. We computed ramification
data for 575 of the 738 regularized quantum differential operators, finding ramification defects
as shown in table 1; this lends some support to the conjecture, due to Golyshev [23], that a
Laurent polynomial f which is mirror-dual to a Fano manifold should have a Picard–Fuchs
operator Lf that is extremal or of low ramification. For the remaining 163 regularized quantum
differential operators, the symbol pN(t) contains a factor of extremely high degree. This makes the
computation of ramification data prohibitively expensive.

5. The Przyjalkowski method
We now explain, given complete intersection data (X; Y; L1, . . . , Lc) as in §2, how to find a Laurent
polynomial f that is mirror-dual to X. This is a slight generalization of a technique that we learned
from V. Przyjalkowski3 [50,51], and which is based on the mirror theorems for toric complete
intersections due to Givental [36] and Hori et al. [52]. Recall the exact sequence

0 L��� (ZN)�
D�� (Zd)�

ρ�

�� 0��

from §2 and the elements Di ∈ L�, 1 ≤ i ≤ N, defined by the standard basis elements of (ZN)�.
Recall further that L� ∼= Pic(Y), so that each line bundle Lm defines a class in L�. Suppose that
there exists a choice of disjoint subsets E, S1, . . . , Sc of {1, 2, . . . , N} such that:

— {Dj : j ∈ E} is a basis for L�;
— each Lm is a non-negative linear combination of {Dj : j ∈ E}; and
—

∑
k∈Sm

Dk = Lm for each m ∈ {1, 2, . . . , c};

and choose distinguished elements sm ∈ Sm, 1 ≤ m ≤ c. Set S◦
m = Sm \ {sm}. Writing the map D in

terms of the standard basis for (ZN)� and the basis {Dj : j ∈ E} for L� defines an (N − d) × N matrix
(mji) of integers. Let (x1, . . . , xN) denote the standard coordinates on (C×)N , let r = N − d, and
define q1, . . . , qr and F1, . . . , Fc by

qj =
N∏

i=1

x
mji

i Fm =
∑
k∈Sm

xk.

Givental [36] and Hori et al. [52] have shown that

GX =
∫
Γ

etW
∧N

i=1(dxi/xi)∧c
m=1 dFm ∧∧r

j=1(dqj/qj)
, (5.1)

3Przyjalkowski informs us that he learned this, for the case of the cubic threefold, from Katzarkov [49] and Orlov
(V. Przyjalkowski 2014, personal communication).
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where W = x1 + · · · + xN and Γ is a certain cycle in the submanifold of (C×)N defined by

q1 = · · · = qr = 1 F1 = · · · = Fc = 1.

Introducing new variables yi for i ∈⋃c
m=1 S◦

m, setting

xi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1 +∑

k∈S◦
m

yk
if i = sm

yi

1 +∑
k∈S◦

m
yk

if i ∈ S◦
m.

and using the relations q1 = · · · = qr = 1 to eliminate the variables xj, j ∈ E, allows us to write W − c
as a Laurent polynomial f in the variables

{yi : i ∈⋃c
m=1 S◦

m} and {xi : i �∈ E and i �∈⋃c
m=1 S◦

m}.

The mirror theorem (5.1) then implies that ĜX = πf , or in other words that f is mirror-dual to X.
The Laurent polynomial f produced by Przyjalkowski’s method depends on our choices of

E, S1, . . . , Sc, and s1, . . . , sc, but up to mutation this is not the case:

Theorem 5.1 ([53]). Let Y be a toric Fano manifold and let L1, . . . , Lc be nef line bundles on Y such
that −KY − Λ is ample, where Λ = c1(L1) + · · · + c1(Lc). Let X ⊂ Y be a smooth complete intersection
defined by a regular section of ⊕iLi. Let f and g be Laurent polynomial mirrors to X obtained by applying
Przyjalkowski’s method to (X; Y; L1, . . . , Lc) as above, but with possibly different choices for the subsets

E, S1, . . . , Sc and the elements s1, . . . , sc. Then there exists a mutation ϕ such that f
ϕ

��� g.

Example 5.2. Let Y be the projectivization of the vector bundle O⊕2 ⊕ O(1)⊕2 over P2. Choose
a basis for the two-dimensional lattice L� such that the matrix (mji) of the map D is(

1 1 1 0 0 1 1
0 0 0 1 1 1 1

)
.

Consider the line bundle L1 → Y defined by the element (2, 1) ∈ L�, and the Fano hypersurface
X ⊂ Y defined by a regular section of L1. Applying Przyjalkowski’s method to the triple (X; Y; L1)
with E = {3, 4}, S1 = {1, 2, 5} and s1 = 1 yields the Laurent polynomial

f = (1 + y2 + y5)2

y2x6x7
+ 1 + y2 + y5

y5x6x7
+ x6 + x7

mirror-dual to X. Applying the method with E = {3, 4}, S1 = {1, 6} and s1 = 1 yields

g = x2 + (1 + y6)2

x2y6x7
+ 1 + y6

x5y6x7
+ x5 + x7.

We have that f
ϕ

��� g where the mutation ϕ : (C×)4 → (C×)4 is given by

(x2, x5, y6, x7) �→
(

x2

x5y6
,

1
y6

, x7, x2 + x5

)
= (y2, y5, x6, x7).

Remark 5.3. Observe that, for a complete intersection of dimension n and codimension c,
Przyjalkowski’s method requires partitioning n + c variables into c disjoint subsets. If (n + c)/c < 2
then at least one of the subsets must have size one and so the corresponding variable, xj
say, is eliminated from the Laurent polynomial via the equation xj = 1. One could therefore
have obtained the resulting Laurent polynomial from a complete intersection with smaller
codimension: new Laurent polynomials are found only when (n + c)/c ≥ 2, that is, when the
codimension is at most the dimension. In particular, all possible mirrors to four-dimensional Fano
toric complete intersections given by the Przyjalkowski method occur for complete intersections
in toric manifolds of dimension at most 8.
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6. Examples

(a) The cubic fourfold
Let X be the cubic fourfold. This arises in our classification from the complete intersection
data (X; Y; L) with Y = P5 and L =OP5 (3). The Przyjalkowski method yields [54, §2.1] a Laurent
polynomial

f = (1 + x + y)3

xyzw
+ z + w

mirror-dual to X, and elementary calculation gives

πf (t) =
∞∑

d=0

(3d)!(3d)!
(d!)6 t3d.

Thus ĜX = πf , and the corresponding regularized quantum differential operator is

LX = D4 − 729t3(D + 1)2(D + 2)2.

The local log-monodromies for the local system of solutions LXg ≡ 0 are⎛
⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠ at t = 0

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠ at t = 1

9

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠ at the roots of 81t2 + 9t + 1 = 0

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠ at t = ∞

and the operator LX is extremal.

(b) A (3,3) complete intersection inP6

Let X be a complete intersection in Y = P6 of type (3, 3). This arises in our classification from the
complete intersection data (X; Y; L1, L2) with L1 = L2 =OP6 (3). The Przyjalkowski method yields
a Laurent polynomial

f = (1 + x + y)3(1 + z + w)3

xyzw
− 36

mirror-dual to X, and [32, corollary D.5] gives

ĜX = πf (t) =
∞∑

k=0

∞∑
l=0

(3l)!(3l)!(k + l)!
k!(l!)7 (−36)ktk+l.
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Figure 1. The distribution of degrees (frequency plot).

The corresponding regularized quantum differential operator LX is

(36t + 1)4(693t − 1)D4

+ 18t(36t + 1)3(13 860t + 61)D3

+ 9t(36t + 1)2(3 492 720t2 + 57 672t + 77)D2

+ 144t(36t + 1)(11 226 600t3 + 377 622t2 + 2754t + 1)D

+ 15 552t2(1 796 256t3 + 98 496t2 + 1605t + 7).

The local log-monodromies for the local system of solutions LXg ≡ 0 are

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠ at t = 0

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠ at t = 1

693

⎛
⎜⎜⎜⎝

2
3 1 0 0
0 2

3 0 0
0 0 1

3 1
0 0 0 1

3

⎞
⎟⎟⎟⎠ at t = − 1

36

and so the operator LX is extremal.
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Figure 2. The distribution of degrees (cumulative frequency plot).
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Figure 3. The distribution of degrees with N.

7. Results and analysis
We close by indicating how basic numerical invariants—degree and size of cohomology—vary
across the 738 families of Fano manifolds that we have found. The degree (−KX)4 varies from 5
to 800, as shown in figures 1 and 2.

We do not have direct access to the size of the cohomology algebra of our Fano manifolds X,
as many of the line bundles occurring in the complete intersection data (X; Y; L1, . . . , Lc) are not
ample and so the Lefschetz theorem need not apply. But the order N of the regularized quantum
differential operator is a good proxy for the size of the cohomology. N is the rank of a certain local
system—an irreducible piece of the Fourier–Laplace transform of the restriction of the Dubrovin
connection (in the Frobenius manifold given by the quantum cohomology of X) to the line in H•(X)

spanned by −KX—and in the case where this local system is irreducible, which is typical, N will
coincide with the dimension of H•(X). For our examples, N lies in the set {4, 6, 8, 10, 12}. Figure 3
shows how N varies with the degree (−KX)4, with darker grays indicating a larger number of
examples with that N and degree.

The isolated example on the right of figure 3, with N = 6 and degree 800, is the blow up of
P(1, 1, 1, 1, 3) at a point. Figure 4 again shows how N varies with the degree (−KX)4, but this
time with toric Fano manifolds highlighted in red. Figure 5 shows how the Euler number χ (TX)
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Figure 4. The distribution of degrees with N, with toric Fano manifolds highlighted.
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Figure 5. The distribution of degrees with Euler number.

varies with the degree (−KX)4, with darker grays indicating a larger number of examples with
that Euler number and degree. The three examples with the largest Euler number χ are a quintic
hypersurface in P5, with χ = 825; a complete intersection of type (2, 4) in P6, with χ = 552; and a
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complete intersection of type (3, 3) in P6, with χ = 369. The three examples with the most negative
Euler number are P1 × V3

4 where V3
4 is a quartic hypersurface in P4, with χ = −112; P1 × V3

6 where
V3

6 is a complete intersection of type (2, 3) in P5, with χ = −72; and P1 × V3
8 where V3

8 is a complete
intersection of type (2, 2, 2) in P6, with χ = −48.
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