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Abstract

Ab initio calculations were employed to investigate M+-RG2 species, where M+ = Ca, Sr, Ba and Ra and

RG= He–Rn. Geometries have been optimized, and cuts through the potential energy surfaces containing

each global minimum have been calculated at the MP2 level of theory, employing triple-ζ quality basis sets. 

The interaction energies for these complexes were calculated employing the RCCSD(T) level of theory with

quadruple-ζ quality basis sets. Trends in binding energies, De, equilibrium bond lengths, Re, and bond angles

are discussed and rationalized by analyzing the electronic density. Mulliken, natural population, and atoms-

in-molecules (AIM) population analyses are presented. It is found that some of these complexes involving

the heavier Group 2 metals are bent whereas others are linear, deviating from observations for the

corresponding Be and Mg metal-containing complexes, which have all previously been found to be bent.

The results are discussed in terms of orbital hybridization and the different types of interaction present in

these species.

1. Introduction

Weak electrostatic interactions have been studied abundantly in the past two decades, both experimentally

and theoretically. M+-RG species, where M+ is a metal cation and RG is a rare gas atom, are prototypical

systems for the study of solvation.1 Previously, our group has studied extensively the whole series of M+-RG

complexes, where M = Group 1 metal,2,3,4,5,6 Group 2 metal7,8,9 and Group 13 metal.10,11,12,13 It was shown

that for the Group 1 complexes the interactions were almost entirely physical in nature, a fact reflected in

their relatively low interaction energies. In contrast, for the M+-RG complexes where M = Group 2 metal,

much higher dissociation energies were observed. This has been attributed to hybridization between the

outer s orbital on the metal cation and its lowest unoccupied p or d orbital.7,8,9 This hybridization occurs as

the RG atom approaches the metal centre and facilitates the movement of electron density away from the

incoming RG, minimizing electron repulsion and, concomitantly, increasing attractive forces.

Bauschlicher et al.14 reported one of the earliest studies on M+-RG2 systems. Their study focused on RG =

Ar, and M = Li, Na, Mg, V, Ni and Cu. The study concluded that the Li+-Ar2 and Na+-Ar2 complexes were

linear, while Mg+-RG2 complexes were bent – conclusions that we have corroborated and extended in our

previous work.15 In that work, we showed that the Li+-RG2 and Na+-RG2 complexes have very flat angular

potentials, but the global minimum was the linear structure in each case; in contrast, the Group 2 M+-RG2

complexes for M = Be and Mg were found to be of C2v symmetry. The explanation for the difference in the

equilibrium geometry for the Group 2 containing species was the occurrence of sp hybridization of the
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outermost occupied s orbital on the metal centre. Such hybridization makes it favourable for the second RG

atom to approach the metal centre from the same side as the first, owing to the reduction in electron density

and so, notwithstanding possible RGRG repulsion, both atoms approach from the same side. In the

present work we extend our previous study to the M+-RG2 complexes containing a heavier Group 2 metal

cation (M = Ca–Ra), to examine if these bent geometries persist.

Very little work has been done experimentally or theoretically on these heavier metal M+-RG2 complexes.16

In 2001, Duncan and co-workers recorded mass-selected, photodissociation spectra of the Ca+-Ar2

complex;17 however, since their spectrum was not rotationally resolved, whether the geometry was linear or

bent was not conclusively established. Quantum chemical calculations reported in the same work confirmed

that a bent equilibrium structure was preferred at the MP2/aug-cc-pVQZ level of theory; however, because

of basis set superposition error, and the very small energy differences, this was not considered a conclusive

result by the authors. Quite recently, density functional theory (DFT) calculations on Ca+-RGn (n = 1–4, RG

= He, Ne and Ar) have been reported by Jalbout and Solimannejad.18 B3LYP/6-311+G(3df) geometry

optimizations were performed, with all three Ca+-RG2 complexes being concluded to be bent, with bond

angles of 58°, 67° and 76°, for RG = He, Ne and Ar, respectively. Additionally, binding energies and

harmonic vibrational frequencies were reported for all species, which will be commented on below. We are

aware of no other studies on Ca+-RG2 complexes.

Photofragmentation electronic spectra of Sr+-Arn (n = 2–8) complexes, have been recorded by Fanourgakis

et al., 19 with a more detailed study on Sr+-Ar2 published soon afterwards.20 This group also undertook

quantum chemistry calculations, RCCSD(T)/d-aug-cc-pVDZ level, obtaining a structure of C2v symmetry

with an equilibrium bond angle of 65.4° and Re = 3.629 Å. No other studies on strontium-containing

M+-RG2 complexes appear to be available.

There do not appear to be any published studies on the M+-RG2 complexes for M = Ba or Ra, and so the

present results appear to be the first such reported.

2. Computational Details

All of the calculations were undertaken with the MOLPRO21 suite of programs. Geometry optimizations of

the titular species were performed at the MP2 level employing triple-ζ quality basis sets. Angular scans were 

undertaken, also employing triple-ζ quality basis sets, where at each fixed angle the internuclear distances 

were independently optimized to yield a minimum energy path along the angular coordinate. Single-point

RCCSD(T) binding energy calculations were undertaken at the MP2-optimized geometry with quadruple-ζ 

basis sets. We did not correct these for basis set superposition error (BSSE), since for the corresponding

M+-RG complexes we have seen that for basis sets of quadruple- or better, the RCCSD(T) dissociation

energies are only slightly (< 5%) affected by BSSE.

For He and Ne, standard aug-cc-pVTZ basis sets were utilized, whereas for Ar we employed standard aug-

cc-pCVTZ basis sets. For the heavier rare gases, Kr, Xe and Rn, the small-core relativistic effective core

potentials (ECPs)22 ECP10MDF, ECP28MDF and ECP60MDF respectively were used, along with the

corresponding aug-cc-pwCVTZ-PP basis sets.23 The electrons of He were correlated, as were all non-ECP

electrons of the Ca, Sr, Ba and Ra cations; only the 1s orbital of Ne, and the 1s, 2s and 2p orbitals of Ar

were frozen. For Kr, Xe and Rn, only the innermost s and p orbitals that were not included in the ECP, were

frozen. For Ca, Sr, Ba and Ra atoms, aug-cc-pwCVTZ-PP 24 valence basis sets were employed with

ECP10MDF, ECP28MDF, ECP46MDF and ECP78MDF effective core potentials,25 respectively.
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Three population analysis methods were also employed in this work. Mulliken population analysis was used

as implemented in Gaussian 09 whereas the AIM analyses utilized the AIMAll software package using

WFX files produced by Gaussian 09. 26 NPA analyses were performed using the NBO 6.0 27 software

package.

3. Results and Discussion

A. Geometries

Table 1 shows the optimized geometric parameters for all of the titular complexes. Every one of the

Ca+-RG2 complexes exhibit bent minimum geometries, similar to the Be+-RG2 and Mg+-RG2 species studied

previously.15 The M+RG internuclear distances in the triatomic complexes, Re2, decrease at first from He

to Ar and then increase for the heavier rare gases, with Ca+-Ar2 having the minimum bond length; this is

represented in Figure 1. As may be seen, essentially the same trend is observed for the diatomic M+-RG

complexes. These unusual trends have been attributed7 to a delicate balance between the increasing

ion/induced-dipole attraction arising from an increase in the polarizability of RG atom with atomic number,

and an associated increase in electron repulsion owing to the increasing number of electrons. It is notable

that for the Ca+-He2 complex, the optimized bond lengths are not equal. Attempts were made to optimize the

geometry with C2v symmetry; however, this led to a higher energy structure (although by only +0.4 cm-1)

with Re2 = 4.352 Å; for all other complexes, a C2v structure was obtained. For Ca+-Ar2, the Re2 value of

3.291Å is in fair agreement with the value from ref. 14 of 3.172Å obtained at the MP2/aug-cc-pVQZ level;

our value for the optimized angle for the Ar–Ca+–Ar complex is within 1° of that in ref. 14. In contrast, the

DFT results of ref. 18 for the two lighter complexes, Ca+-He2 and Ca+-Ne2 are in somewhat poor agreement

with the present results: although there is agreement that the equilibrium geometry is of C2v symmetry, the

bond angles are significantly larger than those here. There is, however, good agreement for the Ca+-Ar2

bond angle.

For the Sr+-RG2 species, only the lighter three complexes have bent equilibrium geometries, as shown in

Table 1, with the three heavier rare gas complexes preferring a linear configuration. The bond length trend

here (see Figure 1) is the same as for Ca+-RG2 (and Ca+-RG) complexes with the initial decrease and then

increase in the equilibrium internuclear separation with increasing atomic number of the rare gas; indeed,

this trend is also seen for both of the other two M+-RG2 series of complexes. In ref. 20, the Sr+-Ar2 species

was found to be of C2v symmetry with an Ar–Sr+–Ar equilibrium bond angle of 65.4° and Re = 3.629 Å;

these were calculated at the RCCSD(T)/d-aug-cc-pVDZ level of theory. Both of these values are in good

agreement with our calculated MP2/aug-cc-pVTZ parameters despite the different levels of theory, with the

angles being almost identical, but their bond length is 0.13 Å longer than ours.

In the Ba+-RG2 complexes, only the species with RG = He and Ne prefer a bent geometry, whereas

geometries for Ra+-RG2 complexes break the trend again by having optimized linear geometries for Rn only

as shown (see Table 1).

We shall discuss the trends in geometry in the below in terms of electrostatic attraction and repulsion terms,

as well as hybridization. For the latter, if sp hybridization occurs, then this favours a bent geometry, while sd

hybridization favours a linear geometry. In both cases, the cost of the hybridization process must be offset

by other terms, such as an increase in electrostatic attraction and a decrease in electron repulsion terms, and

such effects will be discussed in more detail below for the different species.
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B. Angular Cuts Through the Potential Energy Surfaces

While comparing the geometry trends previously for Group 1 (M = Li and Na) and Group 2 (M = Be and

Mg) complexes15 it was ascertained that the lightest Group 1 M+-RG2 complexes were linear while the

lightest Group 2 M+-RG2 complexes were bent at the global minima for all RG. Cuts through the potential

energy surface (see Figs 5 and 6 of ref. 15) showed that the potentials of the Group 1 complexes were very

flat along the angular coordinate (where the bond lengths had been optimized at each point), with the M =

Na complexes exhibiting a shallow bent local minimum, but with the global minimum still being linear (for

M = Li+, no such bent local minimum was evident). In contrast, for the Group 2 complexes, M = Be and Mg,

there was a significant bent global minimum, with a saddle point at the linear geometry.

In the present work, Figure 2 shows angular cuts through the M+-RG2 potential energy surfaces for M = Ca–

Ra and RG = He, Ar and Xe. Potential energy surface cuts are shown for angles from 35° to 325° with the

internuclear distances being independently optimized. (The zero on the interaction energy axis is for the

M+-RG + RG asymptote.) Figure 2a shows M+-He2 angular plots where a bent global minimum dominates,

but with a shallow linear local minimum being evident in all cases. In the case of the RG = Ar complexes

(see Figure 2b), there are also both bent and linear minima, with the bent geometry being the global

minimum for all M+-Ar2 complexes, except for M = Ba, which is linear. For RG = Xe (Figure 2c) there is

again a linear global minimum for the M = Ba complex, but also for M = Sr; again, Ca+-Xe2 and Ra+-Xe2

each have bent global minima.

Energy differences between the linear and bent structures were calculated, and these are shown in Table 2.

For the lightest two metals, Be+ and Mg+, all of the M+-RG2 species have a bent global minimum and so all

values are negative. In both cases, however, there is a clear general trend of increasing negative values for

RG = He–Rn, making the bent structure more and more favoured as the atomic number of the RG atom

increases. If we now look at the Ca+-RG2 – Ra+-RG2 species, we can see that linear–bent energy differences

are all negative for RG = He and Ne, but then differences arise between the species. For M = Sr and Ba with

the heavier RG atoms, linear global minima result, but for M = Ra, only Ra+-Rn2 is linear. There is,

however, no monotonic trend in the linear-bent energy differences, with oscillations in the calculated values.

For the Ca+-RG2 species, all structures remain bent, although the barrier for Ca+-Rn2 is less than that for

Ca+-Xe2. It is clear that there are some subtle issues here, and we shall discuss these below in terms of a

balance between hybridization, ion-dipole and higher-order electrostatic interactions, and repulsion terms.

Harmonic vibrational frequencies were also calculated and are presented in Table 3. For the linear

structures, four real frequencies (with two being degenerate) were obtained, whereas bent structures resulted

in three real frequencies. The values may all be seen to be of the order of tens of cm-1 and so these harmonic

frequencies can only be taken as indicative. The flatness of the potential energy curves (PECs) was also

evident in that tight convergence criteria were needed during the optimization procedures in order to obtain

all real vibrational frequencies.

C. Dissociation Energies

The energy for the removal of a single RG atom from M+-RG2, De2, was calculated for all complexes studied

and was compared to the dissociation energy of the M+-RG complexes, De1. The results are presented in

Table 1, along with De2/De1 ratios. As well as reporting the MP2/aug-cc-pVTZ dissociation energies, we also

calculated De values using single-point RCCSD(T)/aug-cc-pVQZ calculations at the respective MP2-

optimized geometries. Relatively good agreement for De1 and De2 was obtained between the two methods,

with energies for most complexes being within 10%, with the RCCSD(T) values being the greater. It was

shown in ref. 12 that both a higher level of theory and larger basis sets are needed to describe both attractive
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and repulsive interactions accurately for these kind of systems; additionally, it was shown by the Duncan

group that using MP2 theory and including both valence and core electron correlation, with large basis sets,

can reproduce experimental results for dissociation energies.17,28

There is a monotonically increasing trend in De2 for all of the M+-RG2 complexes with increasing atomic

number of RG – see Figure 3. This is both the same as the pattern previously observed for the Be+-RG2 and

Mg+-RG2 series,15 as well as for the De1 variations in the M+-RG complexes.7,8,9 An increase in binding

energy indicates that the increasing trend in the attractive forces is dominating over the repulsive ones, and

occurs here regardless of whether the global minimum geometry is bent or linear.

It is interesting to note that the De2/De1 ratios are significantly different here for the heavier M+-RG2

complexes compared to those with M = Be and Mg.15 In ref. 15 it was seen for the Be+–RG2 complexes that

De2/De1 was very close to 1.0 for RG = He and Ne, while for RG = Ar–Rn, values close to 0.5 were

observed. This was explained in terms of the small size of beryllium cations, noting that the hybridization

and shift in electron density away from the incoming RG atoms is allowing an effective charge significantly

higher than +e to be experienced. As a consequence, the heavier RG atoms are being pulled significantly

closer to the metal centre than would otherwise be the case, and this leads to significant repulsion from the

RG atoms, which are being forced together. As such, the binding energy of the second RG atom is

significantly reduced compared to that in Be+-RG. (This also indicates that there is close-to-maximal

hybridization on the metal centre already in Be+-RG, so that the second RG atoms does not exacerbate this

effect.) In the Mg+-RG2 complexes a similar effect is seen, but the De2/De1 ratios are slightly larger than 1.0

for RG = He and Ne, and values decrease from 0.9 in Mg+-Ar2 to 0.75 in Mg+-Rn2. These values seem to

suggest a slightly enhanced hybridization for RG = He and Ne as a result of the presence of the second RG

atom, but for the heaver RG complexes, this is outweighed by the increasing repulsion. This repulsion is

smaller than that in the case of the Be+-RG2 complexes owing to the larger size of the magnesium cations.

For the complexes in the present work we see markedly different De2/De1 values. Again, we see values > 1.0

for the M+-RG2 complexes with the lightest RG atoms, and for M = Ca and Sr, we again see De2/De1 values

fall below 1.0 and slowly decrease, with final values of 0.85 and 0.89 for M = Ca and Sr, respectively,

compared to the values of 0.50 and 0.75 for M = Be and Mg, respectively. The explanation for these values

is the same as just outlined, with the larger asymptotic values for M = Ca and Sr coming from the larger size

of these metal cations. Finally, we note that all of the De2/De1 ratios for the two heaviest M+-RG2 series,

Ba+-RG2 and Ra+-RG2 are  1.0, possibly due to an enhanced effect from the hybridization produced by the

presence of the second RG atom in M+-RG2 compared to M+-RG. We suggest that this occurs because of the

larger, more polarizable nature of these two metal cations. We note that the De2/De1 values for Ra+-RG2 are

lower than those of the corresponding Ba+-RG2 complexes, which can be attributed to the lanthanide

contraction, and relativistic effects, leading to a lower polarizability of radium cations compared to barium

cations – see Table 4.

D. Atomic Charges

In Table 5 we present the results of three population analyses: Mulliken,29 natural population analysis

(NPA)30 and atoms-in-molecules (AIM),31 for each of the titular species; additionally, we perform the same

analyses using the same basis sets for the M+-RG dimers for comparison. [Only the charges on the metal

centre, qM, are shown, with the charge on the RG atom being (1-qM)/2.] The values were obtained using the

MP2 method with triple-ζ basis sets at the optimized geometries given in Table 1. From Table 5, it is clear 

that there is little charge transfer in the M+-RG2 complexes involving the lighter rare gas atoms, and this is a

consistent picture from all three methods. However, for the M+-RG2 complexes involving the heavier rare
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gas species, both NPA and Mulliken analyses predict some charge transfer, particularly for Sr+-RG2 and

Ba+-RG2 complexes and the corresponding M+-RG dimers. In contrast, the AIM values, in bold in Table 5,

suggest minimal charge transfer. Comparison with the values for the M+-RG complexes shows that there is

very little difference between the two types of species, with just an enhancement seen in the corresponding

triatomic complexes of the minor charge transfer. In our previous paper,15 we concluded that the AIM

charges were likely the more reliable; in any case, overall the suggestion is that the interactions in the

present species are mostly physical (i.e. the interactions can be described by electrostatic, multipole

models)1 and can be viewed as non-covalent — more discussion of these points will follow.

E. Molecular Orbital Contours, Population Analysis and Geometry Rationalization

In this subsection we shall address the trends in geometry observed and attempt to rationalize them. We have

already given the observed global geometries in Table 1, shown the trends in the energy difference between

bent and linear structures in Table 2, and indicated that the final observed global structure depends on a

number of energy terms: the cost of hybridization and whether this can be offset by increases in electrostatic

interaction terms and/or a decrease in repulsion terms between the metal cation and the rare gas atoms; and

additionally, the effect of the interaction between the RG atoms. We explore these ideas further, initially

concentrating on information obtained from molecular contour plots and population analyses.

In Figure 4 we present contour plots of the HOMO obtained from the Hartree-Fock (HF) wavefunction,

calculated at the two minimum energy positions: linear and bent for RG = He, Ar and Xe. We have found

that the HF contours are extremely similar to contour plots of natural orbital density at the correlated level,

as long as the geometry used is that optimized using a correlated method. To indicate which contours

correspond to the global minimum, we have identified these by underlining the chemical formula. Looking

first at the contours of the bent structures on the left-hand side of the figure, we can see that there is

essentially no contribution from He for the M+-RG2 complexes, and the HOMO is just the outermost ns

orbital of the M+; there is a very similar picture for the M+-Ne2 complexes (not shown). It is noteworthy that

the complexes with RG = He or Ne are all bent, and all have very little hybridization, with the HOMO being

made up almost exclusively from the outermost occupied ns orbital on the metal centre. We also note that

the optimized RGRG distance in the complex is very similar to that in the isolated RG2 diatomic. Hence,

we conclude that here the M+-He2 and M+-Ne2 complexes are best described as an RG2 unit interacting with

the metal cation.

For the heavier Ca+-RG2 and Sr+-RG2 complexes a picture reminiscent of that of the Be+-RG2 and Mg+-RG2

complexes is seen, with electron density located on the side of the metal cation opposite to the approaching

RG atoms. For the corresponding Ba+-RG2 and Ra+-RG2 complexes, the contour plots are similar, but there

is evidence for electron density building up at the sides of the metal. At this stage it will be useful to look at

the natural bond order (NBO) populations.

Table 6 summarizes the output of NBO analyses undertaken with the NBO 6.0 software27 for all of the

M+-RG2 (M = Ca–Ra) complexes at both bent and linear geometries, and for M = Be, Mg at the bent minima

reported in our previous paper.15 It may be seen that for the Be+-RG2, Mg+-RG2 complexes, hybridization

occurs between outer s and p orbitals, but with 92–100% of the orbital character coming from the s orbital.

As may be seen, for M = Ca, Sr, there is very little contribution from the higher angular momentum orbitals;

however, there are minor contributions, and they may be discerned in the contour plots. These comprise both

p and d orbital contributions, with the p contributions giving rise to distortion away from the incoming RG

atoms, and the d orbitals moving a small amount of the electron density to the sides. For Ba+-RG2, the
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amount of d orbital involvement is now sizeable and leads to significant sideways movement of electron

density. Interestingly, although the amount of d orbital involvement for Ra+-RG2 is now much reduced (and

apparently not much more than for the M = Ca and Sr cases), the diagrams also exhibit clear movement of

electron density off-axis.

We now move to the linear geometry contour plots on the right-hand side of Figure 4. Again, for RG = He,

there is nothing very exceptional to note, with the HOMOs looking very much like the outermost ns orbitals

on the metal centre; there is perhaps just an inkling of a slight flattening of the contour by the approaching

He atoms for M = Ba and Ra. Much more noteworthy are the plots for RG = Ar and Xe. Here, we see

distinct “off-axis” electron density forming, in an analogous manner to that seen in the corresponding

diatomic M+-RG complexes;7 this arises from sd hybridization. Looking again at Table 6, we can see that

the NBO analysis is showing that there are considerably more d orbital contributions in these linear

orientations than there were for the bent ones; we note that this d character comes from the d௭మorbital.

To discuss the interactions, it is useful to consider the polarizabilities of the RG atoms and the metal cations,

and also the excitation energies to the lowest doublet states of the metals, for sd hybridization purposes. For

the RG polarizabilities, some values are cited in ref. 1, and others are taken from ref. 32; for the metal

cations, again some values are taken from ref. 1, with others from ref. 33. For the atomic excitation energies,

values from the NIST online data resource are employed.34

We can partially rationalize the d orbital involvement in the heavier species from the atomic excitation

energies (see Table 4), where the lowest energy orbitals are the nd ones, with the d orbitals of Ba+ being

particularly low. Thus, a key parameter in determining whether the lowest-energy structure is linear or bent

is the ease of hybridization, which depends on the energy required to mix in d character. Clearly, however,

this is not the whole story as Ba+-He2 and Ba+-Ne2 are bent. Another part of the rationale is that the cost of

hybridization needs to be paid back, and for the smaller RG atoms their very low polarizability means that

the resultant charge/induced-dipole interaction is not high enough to offset this. Once we get to the more

polarizable Ar, then it becomes energetically favourable for sd hybridization to occur in Ba+-Ar2 and so we

obtain a linear global minimum, and similarly for RG = Kr–Rn; for Sr+, where the d orbitals are higher in

energy (Table 4), the higher polarizability of RG = Kr–Rn are required to obtain linear global minima. Still,

however, this does not explain the whole trend, and so we look at the hybridization in more detail.

As noted, the linear geometries can be explained by the sd௭మhybridization, where destructive interference

occurs between the s orbital and the lobes of the d௭మ orbitals along the z internuclear axis; this reduces the

electron density making it favourable for two RG atoms to come in at a linear geometry in order to get closer

to the cationic core and feel more strongly the ion/induced-dipole interaction. Concurrently, constructive

interference between the “doughnut” of the d௭మ orbital and the s orbital takes place, allowing electron

density to build up off-axis, resulting in the two “lobes” seen in the planar cut in Figure 4. Interestingly,

there can be seen to be d orbital involvement in the bent structures as well, suggesting that the picture is not

as straightforward. We know that the M+-RG complexes exhibit sd hybridization, moving electron density

off-axis. Here there is a balance between the cost of sd hybridization and the “payback” of the RG atom

being able to get closer to the metal cation, and the exposure of more of the doubly-charged, M2+, core.

Thus, with the lower d orbitals, we see more sd hybridization for Ba+-RG species than for the others.7,9 Once

a second RG atom approaches, the situation is less clear, as both RG atoms cannot favourably approach

from the same side in a linear orientation. Hence, if they do approach from the same side, then the best

approach is each along a nodal surface that forms by the cancellation of electron density when the amplitude

of the s and d wavefunctions just match. There will be some compromise here, as the RG atoms also can

exhibit steric repulsion. However, in all cases, a minimum energy does appear in this position and, further,
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as evinced by the RG–RG distances in the complex, the final geometry essentially has the RG atoms at their

equilibrium position in the isolated RG2 system. To understand what happens next, we refer the reader to

Figure 5: here we show the evolution of the HOMO as the RG atom moves from the bent orientation to the

linear one for Ba+-Xe2. Here we can see that as we move away from the bent minimum, there is a barrier as

the RG atom moves away from the nodal position, then a lowering of energy as the RG atom passes over

into the collinear position to form the RG-M+-RG geometry. At this point, both RG atoms can interact with

the metal cation, and further electron density can be transferred from the internuclear regions through sd

hybridization, into the off-axis position, essentially by adding in more d௭మ density, leading to further

destructive interference from the lobes, and further constructive interference in the “doughnut” – this will

occur as long as the sd hybridization costs can be repaid.

The above explains the form of the HOMOs seen, and the form of the angular plots, but it does not wholly

explain the observed global minima. However, a large clue is seen from the HOMO plots in Figure 4,

recalling that the underlining indicates the global minima. Looking at the plots for the linear structures, we

see that for Ba+-Ar2 and Ba+-Xe2 there are no contours passing through the collinear region, in contrast to

the corresponding M = Ca species, thus for the latter there is more electron repulsion along the collinear

direction than there is in the former. For Sr+-Ar2 and Ra+-Ar2 we see such a contour, and the global

minimum is bent. There is a little more subtlety for Sr+-Xe2 and Ra+-Xe2: for the former, the lack of a

contour through the linear region is in line with the observed linear structure; however, for Ra+-Xe2 no

contour exists, yet the global minimum is bent. First we note that the bent-linear energy difference for

Ra+-Xe2 is very small at only 11 cm-1, showing that this is a quasilinear molecule (this may also be seen

from the angular plots in Figure 2c); secondly, we note that there is a bending of the contour towards the

linear region, apparently just enough to destabilize the linear structure relative to the bent one. For Sr+-Xe2

the situation is essentially reversed in that it is still a quasilinear molecule as may be seen from the angular

plots and small bent-linear energy difference, but also we can see that there is slightly less bending of the

contour in Figure 4 towards the linear position, and so the linear geometry is just more stable than the bent.

Clearly, whether the destructive interference along the linear direction is sufficient to stabilize the linear

structure or not depends on: the magnitude of the outermost ns wavefunction; the cost of “enough” sd

hybridization to reduce this s electron density; and whether the cost of this hybridization can be paid back by

the resulting reduction in electron repulsion and increase in the attraction of the RG atoms to the metal

cation. Thus, for the Ca+-RG complexes, the s-d energy gap is too high for sufficient hybridization to occur

which could allow the linear electron density to fall sufficiently to favour the linear structure. For the

Sr+-RG2 complexes, the s electron density is slightly more diffuse leading to greater ease of reducing the

electron density by sd hybridization, but this also leads to a higher polarizability of Sr+ (Table 4), which

increases the dispersion interactions. Thus we find that for the two most polarizable RG atoms, Xe and Rn,

the Sr+-RG2 complexes are linear, despite the slightly higher cost of sd hybridization owing to the more

energetically distant 4d orbitals (see Table 4). For Ba+-RG2, similar considerations arise regarding the large

size of the barium 6s orbital and increased polarizability, but now the cost of hybridization is much reduced

owing to the energetically proximate 5d orbitals (Table 4) and so we see that for RG = Ar–Rn linear

Ba+-RG2 structures result. Finally, we move onto M = Ra, where we note the effects of the lanthanide

contraction and relativistic effects. These lead to the 7s orbital being more contracted than may be expected,

and so Ra+ has a lower polarizability than might be expected – Table 4, and so it is harder to cancel out

electron density along the linear directions via sd hybridization. Thus, even though the cost of sd

hybridization is expected to be less than that of the strontium complexes (Table 4), there is more sd

hybridization required to counteract the higher 7s electron density. These are likely simplistic arguments, as
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clearly a number of different factors are operating simultaneously, but these arguments seem to rationalize

the observed trends.

As noted, in Table 2 we present the bent-linear energy differences. For the heavier species, there is no clear

trend in the energy differences. The differences are somewhat small for M = Sr and Ra, in line with the very

shallow curves seen in Figure 2 for these species; the barrier to linearity is also seen to be relatively small.

This suggests a subtle balance between the energy cost of hybridization versus the energetic advantage of

having done so (increased attraction/reduced repulsion), and whether the global minimum is linear or bent is

hard to predict. For M = Ca, we see that there is a monotonic increase in the bent-linear energy difference

from RG = He to Xe, but the changes are somewhat erratic. The suggestion is that the increasing

polarizability of the RG atoms with atomic number is the key variable, but that this cannot outweigh the

significant cost of providing enough sd hybridization to make the linear structure more energetically

favourable.

The strongest-bound complexes are those involving barium, with the dissociation energies in Table 1 and the

plots in Figure 3 showing that for the RG = Ar–Rn species these complexes are unusual compared to the

other species. This undoubtedly rests with the very low-lying unoccupied 5d orbitals, meaning that the cost

of hybridization is low and can be readily offset against the reduction in repulsion and increase in attraction

that results. This gives the much higher degree of d involvement in the HOMO (Table 5, Figure 5), and so

the much-increased stability of the linear structure (Figure 3, Table 2). It is interesting to note (Table 1,

Figure 3) that the Ba+-He2 and Ba+-Ne2 complexes have the lowest binding energy, with the difference being

very small compared to the M = Ra analogues, but more significant compared to M = Ca and Sr. The

contour plots of the HOMOs in Figure 4 suggest that the electron density is higher further out for these two

species, and so it seems the repulsion is higher, reducing the overall interaction energy.

4. Further Discussion and Conclusions

In the present work, it has been seen that the Group 2 complexes exhibit a mix of bent and linear equilibrium

geometries, whereas extrapolation from our previous results15 on Be+-RG2 and Mg+-RG2 would have led to

the conclusion that a bent geometry would have occurred for all of the M = Group 2 metal species. For the

M = Be and Mg complexes, the bent minimum geometry is attributed to sp hybridization on the metal

centre, and there is some evidence of this also here at the bent geometries; in contrast, a linear geometry is

attributed to sd hybridization between outer singly-occupied s orbital on the metal centre and the formally

unoccupied d௭మ orbital. As we have shown, although there is a tendency for the complexes with both M and

RG having a high atomic number to be linear, for the other species there is a subtle balance between the cost

of sd hybridization, and whether this can be offset against the reduction in repulsion and increase in

attraction. For many of the species the difference between the linear and bent structures is rather small, as

are the barriers to linearity (see Figure 2); thus, a wide range of geometries are likely to be sampled, even at

the zero-point vibrational level (see the representative, harmonic vibrational frequencies in Table 3). The

HOMO contour plots of orbital wavefunctions, Figure 4, provide insight into the behaviour of these systems

while NBO analysis supports the idea of sd hybridization being the crucial factor here.

AIM population analyses indicated that there was very little charge transfer from the metal cation onto the

RG atom for any system; this is in line with the contour plots, which indicate only a hint of covalent

character being present in these systems. Another test for covalency is the evaluation of the total local energy

density parameter, H(R), at a bond critical point; if this is negative then covalency is present, with the degree

indicated by the magnitude of this quantity.35,36 The H(R) parameters for the M+-RG2 and M+-RG complexes

have been found to be positive for all of these species, leading to the conclusion that no covalency is present.
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It is arguable whether atom-localized electron rearrangement (such as hybridization) is “chemical” or not; if

it is taken that it is, then the presence of sp and sd hybridization in the present systems indicates chemical

changes induced by the interaction of M+ with the two RG atoms. This is in contrast to other species studied

by our group, such as the B+-Xe complex, which undergoes hybridization and also shows evidence of

covalent bonding10; and the Au+-Xe complex37 where distinct evidence for covalency has been presented.

Lastly, we note that we concluded that the M+-He2 and M+-Ne2 complexes are best described as an RG2 unit

interacting with the metal cation.

The titular complexes, when taken together with the two sets of lighter complexes, Be+-RG2 and Mg+-RG2

are a very interesting family, exhibiting different hybridizations and subtly-balanced energetics for the two

main geometries exhibited: bent and linear.
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Table 1: Spectroscopic Parameters for the titular M+-RG2 Speciesa

RG Re2/Å Re1/Å Re2/Re1 θ/° RRG-RG/Å Re(RG2) RRG-RG/Re(RG2) De2/cm-1 De1/cm-1 De2/De1

Ca+

He 4.302b 4.329 0.99 41.9 3.078 3.088 1.00 45
(41)

37
(35)

1.22
(1.17)

4.05c 57.8c 101c

Ne 3.772 3.708 1.02 49.5 3.158 3.166 1.00 159
(143)

133
(115)

1.20
(1.24)

3.18c 67.0c 322c

Ar 3.291 3.255 1.01 68.7 3.714 3.760 0.99 802
(776)

817
(765)

0.98
(1.01)

3.172d 69.7d 3.623d 879d

3.20c 75.7c 1292c

Kr 3.313 3.256 1.02 73.4 3.960 4.006 0.99 1187
(1165)

1304
(1232)

0.91
(0.95)

Xe 3.449 3.386 1.02 77.2 4.304 4.315 1.00 1691
(1739)

1944
(1897)

0.87
(0.92)

Rn 3.492 3.430 1.02 79.2 4.452 4.402 1.01 2038
(2111)

2390
(2344)

0.85
(0.90)

Sr+

He 4.583 4.606 1.00 39.8 3.120 3.088 1.01 38
(36)

30
(31)

1.27
(1.16)

Ne 3.991 4.005 1.00 46.6 3.157 3.166 1.00 142
(125)

112
(99)

1.27
(1.26)

Ar 3.497 3.447 1.01 64.3 3.721 3.760 0.99 679
(677)

663
(639)

1.02
(1.06)

Kr 3.412 3.454 0.99 180.0 4.006 985
(1029)

1057
(1016)

0.93
(1.01)

Xe 3.560 3.588 0.99 180.0 4.315 1397
(1513)

1573
(1561)

0.89
(0.97)

Rn 3.599 3.624 0.99 180.0 4.402 1731
(1875)

1948
(1947)

0.89
(0.96)

Ba+

He 4.963b 4.972 1.00 36.5 3.108 3.088 1.01 31
(28)

23
(23)

1.35
(1.22)

Ne 4.321 4.333 0.98 42.9 3.160 3.166 1.00 121
(104)

90
(78)

1.34
(1.33)

Ar 3.336 3.452 0.97 180.0 3.760 1050
(958)

702
(635)

1.50
(1.51)

Kr 3.429 3.506 0.98 180.0 4.006 1427
(1366)

1095
(1014)

1.30
(1.35)

Xe 3.597 3.660 0.98 180.0 4.315 1877
(1879)

1583
(1531)

1.19
(1.23)

Rn 3.661 3.711 0.99 180.0 4.402 2163
(2194)

1935
(1895)

1.12
(1.16)

Ra+

He 4.928 4.716 1.04 36.7 3.103 3.088 1.00 33
(31)

24
(22)

1.38
(1.41)

Ne 4.294 4.310 0.97 43.2 3.161 3.166 1.00 125
(109)

95
(83)

1.32
(1.31)

Ar 3.859 3.831 1.01 58.1 3.748 3.760 1.00 555
(566)

502
(496)

1.11
(1.14)

Kr 3.863 3.816 1.01 62.2 3.991 4.006 1.00 821
(838)

794
(773)

1.03
(1.08)

Xe 3.982 3.930 1.01 65.6 4.314 4.315 1.00 1172
(1258)

1182
(1188)

0.99
(1.06)

Rn 3.912 3.948 1.00 180.0 4.402 1480
(1552)

1480
(1497)

1.00
(1.04)



12

a Re2 is the M+-RG equilibrium bond length in M+-RG2, Re1 is the M+-RG equilibrium bond length in M+-RG, and θ is

the RG–M+–RG bond angle. RRG-RG is the RG-RG internuclear distance in the M+–RG2 complex, and Re (RG2) is the

optimized RG2 Re value. De2 is the dissociation energy of M+-RG RG and De1 is the dissociation energy of M+RG.

The geometric parameter values were obtained at the RMP2/aug-cc-pVTZ level of theory. For the dissociation

energies, the non-parenthesized values were obtained from RCCSD(T)/aug-cc-pVQZ calculations at the RMP2

optimized geometries, while the values in parentheses are those obtained from the RMP2 calculations (see text).

b For these two species, the optimized geometry had asymmetric structures, but the energy difference between them

was very small (0.4 cm-1 for Ca+-He2 and 0.01 cm-1 for Ba+-He2), the optimized bond lengths were 4.329 Å and 4.276

Å for Ca+-He2 and 4.961 Å and 4.964 Å for Ba+-He2. The value in the table is the average of the two values in each

case.

c B3LYP/6-311+G(3df), ref. 18.

d MP2 method with a (15s11p5d3f1g)/[12s9p5d3f1g] basis set for Ca and the standard aug-cc-pVQZ basis set for Ar.

Ref. 17.
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Table 2: Energy differences (cm-1) between the linear and bent minima for M+-RG2 (M+= Group 2; RG= He- Rn)a

Metal Cation
Rare Gas Be+ Mg+ Ca+ Sr+ Ba+ Ra+

He -9.6 -5.0 -16.3 -11.7 -6.4 -6.5

Ne -86.4 -30.1 -60.4 -22.6 -22.1 -23.1

Ar -1856.8 -349.3 -95.2 -20.8 321.9 -31.9

Kr -2591.4 -521.3 -97.9 20.0 356.7 -10.7

Xe -3120.3 -731.2 -160.0 9.8 455.9 -10.9

Rn -2714.1 -705.3 -139.8 57.9 450.9 12.8

a A negative value indicates that the bent structure is the more stable.

b For Mg and Be with Rn angular plots were not calculated.
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Table 3: Harmonic vibrational frequencies for M+-RG2 (M+= Ca, Sr, Ba and Ra; RG2 = He to Rn) species

obtained at the RMP2/aug-cc-pVTZ level of theory (see text).a

Rare
Gas

1 2 3 /cm-1

Ca+

He 74.6 49.7 76.7
Previous

Work
62.3a

33.1b 54.3b

Ne 48.7 37.1 39.0
Previous

Work
30.6a

22.2b 4.52b

Ar 62.7 36.4 46.1
Previous

Work 71.1a 27.1b 42.7b

Kr 64.9 11.8 43.2
Xe 79.8 19.3 60.9
Rn 84.0 17.4 65.9

Sr+

He 24.0 17.0 20.8
Ne 26.7 15.3 11.9
Ar 50.4 37.6 39.5
Kr 39.1 28.2c 71.2
Xe 38.8 25.6c 71.1
Rn 31.8 22.0c 77.3

Ba+

He 28.2 17.6 33.9
Ne 19.8 42.2 12.7
Ar 65.2 23.7c 81.4
Kr 30.8 8.6c 68.3
Xe 51.0 39.3c 75.8
Rn 47.8 42.1c 80.1

Ra+

He 26.0 15.5 22.0
Ne 45.2 23.8 34.7
Ar 30.9 13.2 19.3
Kr 35.7 24.4 27.8
Xe 38.6 25.0 30.8
Rn 27.8 14.3c 46.7

a 1 and 2 correspond to the symmetric stretching and bending motions, but these motions are mixed for these two

vibrations; 3 is the asymmetric stretch.

b B3LYP/6-311+G(3df), ref. 18.

c These values are doubly degenerate for the linear M+-RG2 complexes.
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Table 4: Atomic Propertiesa

Species Lowest Transition Wavenumber of
Lowest

Transitiona

Static
Polarizability/ Å3

Ionization
Energy/ cm-1

Ca+ యܦ2

మ

(3p63d) ←2
భܵ

మ

(3p64s) 13650 11b

Sr+ యܦ2

మ

(4p64d) ←2
భܵ

మ

(4p65s) 14556 12.5c

Ba+ యܦ2

మ

(5p65d) ←2
భܵ

మ

(5p66s) 4874 18.4c

Ra+ యܦ2

మ

(6p66d) ←2
భܵ

మ

(6p67s) 12084 15.5c

He 0.205 198311
Ne 0.396 173930
Ar 1.642 127110
Kr 2.519 112914
Xe 4.044 97834
Rn 5.103 86693

a Ref. 34

b Static dipole polarizabilities taken from ref. 1.

c Static dipole polarizabilities taken from ref. 33, where the CCSD(T) values are employed, since these give

the best agreement with the value of 18 Å3 for Ba+ from ref. 1.
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Table 5: Calculated charges on the metal centre, qM, in M+-RG2 and M+-RGa

M+-RG2 M+-RG
Ca+ Sr+ Ba+ Ra+ Ca+ Sr+ Ba+ Ra+

He 1.01
[1.00]
(1.00)

1.00
[1.00]
(1.00)

1.00
[1.00]
(1.00)

1.00
[1.00]
(1.00)

1.00
[1.00]
(1.00)

1.00
[1.00]
(1.00)

1.00
[1.00]
(1.00)

1.00
[1.00]
(1.00)

Ne 1.02
[1.00]
(0.98)

1.02
[1.00]
(0.99)

1.02
[1.00]
(0.99)

1.02
[1.00]
(0.99)

1.01
[1.00]
(0.99)

1.01
[1.00]
(0.99)

1.01
[1.00]
(0.99)

1.01
[1.00]
(0.99)

Ar 1.04
[0.98]
(0.94)

1.04
[0.99]
(0.95)

1.02
[0.98]
(0.97)

1.04
[0.99]
(0.95)

1.02
[0.99]
(0.97)

1.02
[0.99]
(0.97)

1.02
[0.99]
(0.97)

1.02
[1.00]
(0.97)

Kr 1.03
[0.97]
(0.94)

1.04
[0.96]
(0.98)

1.01
[0.96]
(1.00)

1.03
[0.98]
(0.94)

1.02
[0.98]
(0.96)

1.02
[0.99]
(0.97)

1.01
[0.99]
(0.96)

1.02
[0.99]
(0.97)

Xe 1.01
[0.94]
(0.89)

1.02
[0.94]
(0.91)

0.98
[0.94]
(0.95)

1.02
[0.97]
(0.91)

1.00
[0.97]
(0.93)

1.01
[0.98]
(0.93)

1.00
[0.98]
(0.94)

1.01
[0.98]
(0.95)

Rn 1.00
[0.92]
(0.82)

1.02
[0.92]
(0.81)

0.98
[0.92]
(0.88)

1.01
[0.94]
(0.87)

1.00
[0.96]
(0.89)

1.00
[0.97]
(0.88)

0.99
[0.97]
(0.90)

1.00
[0.98]
(0.91)

a AIM results presented in bold, NPA results are in square brackets, and Mulliken results are in parentheses.

The charge on the RG atom can be found from (1-qM)/2.



17

Table 6: Natural bond order analysis for the metal contributions to the HOMO for the M+-RG2

complexesa

M+

RG Be Mg Ca Sr Ba Ra
Bent

He s (100%) s (100%) s (100.0%) s (100.0%) s (100.0%) s (100.0%)

Ne
s ( 99.7%)
p (0.29%)

s (99.96%)
p (0.04%)

s (99.97%)
p (0.02%)
d (0.01%)

s (99.98%)
p (0.01%)
d (0.01%)

s (99.96%)
p (0.01%)
d (0.03%)

s (99.98%)
p (0.01%)
d (0.01%)

Ar
s (92.21%)
p (7.77%)
d (0.01%)

s (99.25%)
p (0.75%)

s (99.17%)
p (0.47%)
d (0.36%)

s (99.36%)
p (0.25%)
d (0.36%)

s (96.15%)
p (0.16%)
d (3.69%)

s (99.58%)
p (0.08%)
d (0.34%)

Kr
s (92.22%)
p (7.75%)
d (0.01%)

s (98.96%)
p (1.04%)

s (98.85%)
p (0.66%)
d (0.49%)

s (99.06%)
p (0.36%)
d (0.57%)

s (94.97%)
p (0.22%)
d (4.81%)

s (99.35%)
p (0.10%)
d (0.54%)

Xe
s (97.09%)
p (7.86%)
d (0.03%)

s ( 98.73%)
p (1.26%)
d (0.00%)

s (98.67%)
p (0.81%)
d (0.51%)

s (98.99%)
p (0.40%)
d (0.60%)

s (93.49%)
p (0.20%)
d (6.30%)

s (99.17%)
p (0.12%)
d (0.70%)

Rn
s (92.60%)
p (7.34%)
d (0.04%)

s (98.70%)
p (1.29%)
d (0.00%)

s (98.72%)
p (0.78%)
d (0.49%)

s (99.06%)
p (0.35%)
d (0.58%)

s (94.82%)
p (0.16%)
d (5.01%)

s (99.20%)
p (0.0%)

d (0.71%)
Linear

He b b
s (100.0%) s (100.0%) s (100.0%) s (100.0%)

Ne

b b s (99.98%)
p (0.00%
d (0.02%)

s (99.98%)
p (0.00%
d (0.02%)

s (99.94%)
p (0.00%
d (0.06%)

s (99.98%)
p (0.00%)
d (0.02%)

Ar

b b s (98.60%)
p (0.00%
d (1.40%)

s (98.42%)
p (0.00%
d (1.58%)

s (90.36%)
p (0.00%)
d (9.64%)

s (98.93%)
p (0.00%)
d (1.07%)

Kr

b b s (97.82%)
p (0.00%
d (2.18%)

s (97.72%)
p (0.00%)
d (2.28%)

s (90.01%)
p (0.00%)
d (9.99%)

s (98.28%)
p (0.00%)
d (1.72%)

Xe

b b s (97.55%)
p (0.00%
d (2.45%)

s (97.43%)
p( 0.00%)
d (2.57%)

s (89.41%)
p (0.0%)

d (10.59%)

s (97.82%)
p (0.00%)
d (2.18%)

Rn

b b s (97.65%)
p (0.00%
d (2.35%)

s (97.54%)
p (0.00%)
d (2.46%)

s (90.33%)
p (0.00%)
d (9.67%)

s (97.84%)
p (0.02%)
d (2.16%)

a Small deviations from a total of 100% are associated with higher angular momentum functions and/or rounding

errors.

b No symmetric RG-M+RG minimum found.
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Figure Captions:

Figure 1: Trends in Re2 and Re1 for the M+- RGn complexes (M+= Ca, Sr, Ba and Rn and n = 1 or 2).

Figure 2: Selected minimum energy angular paths for selected Ca+-RG2, Sr+-RG2, Ba+-RG2 and Ra+-RG2

angular plots where a) RG =He b) RG= Ar and c) RG= Xe. (The zero on the interaction energy axis is for

the M+-RG + RG asymptote.) Each bond length was optimized independently, however for most angles this

resulted in C2v geometries; the exceptions were angles close to 0

Figure 3: Trends in the De2 and De1 dissociation energies for the M+- RGn complexes (M+= Ca, Sr, Ba and

Rn and n = 1 or 2) .

Figure 4: Selected HF HOMO contour orbital diagrams for M+-RG2 (M+= Ca, Sr, Ba and Ra; RG= He, Ar

and Xe); the same contour values were used for all plots for ease of comparison. To indicate which contours

correspond to the global minimum, we have identified these by underlining the chemical formula.

Figure 5: Minimum energy angular path for Ba+-Xe2 showing the change in the form of the HOMO contour.
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