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Abstract

This is the second paper in a two part series presenting the development of a stiffness optimisation

algorithm to intelligently optimise the fibre architecture of discontinuous fibre composites. A Multi-

Criteria Decision Making (MCDM) strategy is used to select parameters associated with the fibre

architecture, to produce components that satisfy stiffness, cost and mass criteria.

The model has been successfully demonstrated using an automotive spare wheel well geometry,

which shows that a highly optimised discontinuous fibre composite solution can compete against a

continuous fabric counterpart in terms of specific stiffness, whilst presenting an opportunity for

significant cost reduction. This could potentially lead to the application of composite materials into

new areas where cost has previously been prohibitive.
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1 Introduction

There has been an increasing trend in using discontinuous fibre composites for automotive

applications, due to their low dependency on expensive intermediate processes (weaving, pre-

impregnating etc.) [1-4]. Directed Fibre Preforming (DFP) is an automated, discontinuous fibre

process for producing preforms for resin transfer moulding. The resulting material potentially offers

greater design freedom compared with more conventional ply-based materials, as the process enables

local control over the fibre volume fraction and thickness within the part. However, due to the lack of

suitable design and optimisation tools, these benefits cannot be fully exploited, as DFP structures are

currently designed like metallic parts, assuming homogeneous and isotropic material properties.

Traditional optimisation routines are primarily concerned with structural issues, such as the overall

mass and stiffness of the component. Whilst stiffness is one of the most significant drivers in

structural optimisation, quite often the design is assessed against multiple criteria, of which some are

non-structural. Therefore, a robust design tool for discontinuous fibre structures requires additional

objectives to be considered, such as material cost, component mass and manufacturing cycle time, to

ensure a more realistic outcome. However, adopting multiple objectives can often lead to numerous

solutions, making the overall choice more complex. For example, using inexpensive, low stiffness

fibres and compromising on component mass is a possibility for achieving the same target stiffness as

using more expensive fibre tows with higher specific properties. These design problems are typically

solved using either multi-objective optimisation approaches [5-7], or multi-criterion material selection

approaches [8-10], or a combination of structural optimisation and material selection [11-14].

This is the second paper in a two part series presenting the development of a design strategy for

discontinuous fibre composites, which aims to integrate stiffness optimisation with multi-criterion

material selection. The first part [15] outlined the stiffness optimisation methodology and presented

results from a sensitivity study to understand the influence of key geometrical parameters. This paper

presents a material selection algorithm to automate the choice of parameters associated with the fibre

architecture, in order to meet the stiffness requirements identified by the optimisation algorithm. The



first paper focused on maximising the stiffness of discontinuous fibre composite structures, whereas

the current paper aims to also minimise component mass and/or cost.

Although other examples of integrating structural optimisation with material selection can be found in

the literature, these studies tend to be limited to sandwich panels, where the optimum core material is

determined using a material selection method and the stiffness of the structure is subsequently

optimised [11, 12]. Other studies in the literature are concerned with selecting the best reinforcement

type for composite components, where structural optimisation is performed for every candidate

material. Therefore the material selection step is not generally integrated within the structural

optimisation procedure [12, 14] and neither approach has been used for optimising discontinuous

fibres. In both cases there are a very limited number of candidate materials to choose from, where

each material is easily identifiable by a different weave pattern or areal density for example. For DFP,

certain material parameters can be varied on a continuous scale, e.g. fibre length and areal mass,

generating many more material scenarios. The novelty of the current work is to demonstrate how

conventional material selection tools can be used with much larger material databases, integrating

material selection into the stiffness optimisation procedure as part of designing optimum

discontinuous fibre components for structural applications.

The algorithm developed in Part 1 locally varied the thickness and areal mass distribution for a

discontinuous fibre composite component, to maximise the stiffness of the component under the

constraints of constant volume and material cost. Whilst the model proposed in [15] is not capable of

directly solving multi-objective problems, it is possible to manually reduce the target mass and cost

prior to starting the optimisation process – as they are assumed to remain constant throughout. The

challenge is to ensure that this manual reduction of mass and cost has minimum impact on the

structural stiffness.

Parameters associated with the fibre architecture in Part 1 were considered to be design constraints

rather than design variables. Developments in the current paper will enable the tow size and fibre

length to be determined as a part of the optimisation process, rather than be selected manually by the



designer as in Part 1. An additional step will be performed to determine the initial (un-optimised) fibre

architecture, providing a series of structural optimisation solutions derived at different mass and cost

levels. A Multi-Criteria Decision Making (MCDM) strategy [16] is used to rank candidate materials

according to different weightings. An automotive demonstrator component has been specifically

selected to demonstrate how the model can be successfully used to optimise the fibre architecture of

discontinuous fibre components. The aim of this study is to demonstrate that a highly optimised

discontinuous fibre composite solution can compete against a continuous fabric counterpart in terms

of specific stiffness, whilst presenting an opportunity for significant cost reduction.

2 Decision Making Criterion

Discontinuous fibre composites are very versatile and their mechanical properties span a wide range

[17-19] . Consequently, there are many more parameters associated with their definition compared

with continuous fibre composites. These include different tow sizes; fibre lengths, local volume

fractions and orientation distributions, which create a large possibility of material scenarios. This

makes material selection difficult, as different materials can often be used to achieve the same

mechanical performance, albeit for different cost levels.

Multiple selection criteria are considered in the current study, which can be grouped into three main

categories: stiffness, mass and cost. Material selection is performed in this paper by assigning

percentage weights to the three main criteria, and these in turn are made up of sub-criteria.

The stiffness criterion is divided into three sub-criteria: tensile stiffness, bending stiffness and

stiffness retention. The tensile and bending stiffnesses can be calculated as

Equation 1

Equation 2

tensile stiffness = ݐܧ

bending stiffness =
3ݐܧ
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where E, t denote the Young’s modulus and section thickness.

The segmentation step is known to introduce a reduction in stiffness compared with the Initial

Optimum model. The case study in Part 1[15] demonstrated that this reduction can change by up to

30% by simply increasing the critical length-scale from 30mm to 50mm. This reduction in stiffness

must be compensated for by increasing the part thickness or fibre volume fraction, or using more

expensive fibre with higher specific properties. This highlights the importance of taking the stiffness

reduction into account and therefore a stiffness retention sub-criterion is introduced into the current

model; defined as the ratio between the stiffness of the segmented model and that of the Initial

Optimum.

According to [15] the critical length-scale is chosen to be four times the fibre length in the

segmentation step, to ensure a suitable RVE size is used to achieve representative in-plane stiffnesses

[20, 21]. Therefore, stiffness retention is expected to be lower for 50mm fibre lengths than for 25mm

fibre lengths because the critical length-scale for 50mm fibre is twice of that of 25mm fibre. An

arbitrary stiffness retention value of 75% is assumed for the 25mm fibre length and 50% for the

50mm fibre length. It should be noted that the critical RVE size for discontinuous fibre composites

might be affected by other factors such as fibre tow size and volume fraction, but the influence of

these factors is not yet well established. Further studies will enable these factors to be incorporated

into the stiffness retention sub criterion. A ratio of 1:2:1 has been assigned to the tensile stiffness,

bending stiffness and stiffness retention criteria respectively, placing more emphasis on the bending

stiffness due to the nature of the loads on the model.

There is no sub-criterion for the mass. The cost criterion however, consists of two elements; the cost

of raw materials and a cycle time dependent manufacturing cost. The manufacturing cost is a function

of the volume of fibre, as the cycle time is dependent on the total amount of fibre sprayed. A ratio of

5:2 has been adopted for the cost sub-criteria in this work, which is an arbitrary value for

demonstration purposes, since real manufacturing cost data is unavailable for the demonstrator

geometry.



An MCDM strategy has been adopted in the current work to select the most competitive solutions

from a large material database containing 385 entries, taken from the literature [22, 23].The Weighted

Sum Model is the most well-known and simplest MCDM strategy, where the weight of each criteria is

defined by the user [24]. For every alternative solution, a score is obtained for each criteria and the

optimum solution is determined from the sum of the weighted score. The Weighted Sum Model does

not utilise normalised data, therefore it only works when all criteria are measured using the same unit.

The Weighted Product Model [25] is an improvement of the Weighted Sum Model which is suitable

for dimensionless analysis, regardless of the quantities measured and the units. The problem with both

the Weighted Sum and Weighted Product models is that they require all criteria to be monotonically

increasing or decreasing, which restricts their implementation in many cases.

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [26, 27] is an

alternative MCDM that uses weights to estimate the relative importance of each criterion, but criteria

can be either increasing or decreasing. TOPSIS analysis requires a normalised decision matrix to be

constructed for the current problem. Assuming there are n entries from the material database to

compare, the un-normalised decision matrix can be written as:
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Equation 3

The normalised data are calculated as:

ܿ
= ×ݓ ܥ

/ ൫ܥ
൯
ଶ
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Equation 4

where wi is associated to the weight of criterion Ci, which is defined in percentage terms, such that



Equation 5

Two artificial solutions are hypothesised; the ideal solution containing the best attributes for all three

criterions, and the negative solution containing the worst attributes. TOPSIS searches for the option

which is the closest to the ideal solution and furthest from the negative ideal solution. A detailed

derivation of the TOPSIS analysis can be found in [26, 27]. The TOPSIS analysis determines the most

appropriate fibre architecture to suit all of the design requirements, and then stiffness optimisation is

performed based on the selected fibre architecture using method proposed in the first part [15]. A

flowchart of the optimisation process is provided in Figure 1.

3 Candidate materials

The demonstrator component (Figure 2) forms an element of the rear trunk (boot) floor structure for a

large sedan (saloon) vehicle. Its secondary function is to house a spare wheel and a pair of 12V

batteries, so it needs to be sufficiently stiff to avoid noise, vibration and harshness issues within the

passenger cell.

The production component comprises an inner and outer skin with local areas of foam core to create a

sandwich construction. The layup has been simplified for the purpose of this study into a monolithic

component (ignoring cores) and is presented in Figure 2. A single ply of 650gsm 2×2 twill weave

carbon fabric is sandwiched about 3 plies of 600gsm 3×1.

A replacement for the glass/carbon woven composite has been proposed using an all-carbon fibre

layup consisting of 650gsm 2×2 twill weave carbon fibre plies. The ply count has been manually

optimised (as shown in Figure 3) to provide a comparable structural stiffness to the glass/carbon

hybrid, whilst minimising the mass and cost of the part by locally adjusting the number of plies.

A series of optimised discontinuous fibre replacements have been designed using the modified

structural optimisation algorithm, to understand if DFP can compete against continuous fibre solutions

 ݓ ݅
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in terms of specific stiffness, but offer a significant cost reduction. The material cost (per m2) for DFP

is potentially 50% lower than a textile solution because no intermediate processing is required and

there is little fibre wastage [28]. The process is also fully automated, which eliminates all touch labour

to create further cost savings. DFP fibre architectures selected in this paper are based on tow sizes of

3K, 6K, 12K and 24K, at fibre lengths of 25mm and 50mm. Smaller tow sizes (3-6K) are typically

preferred for higher performance applications where the higher material costs can be justified. (The

cost of 3K fibre is typically three times the cost of 24K fibre [29]). The global fibre volume fraction

for the un-optimised version is chosen from 25%, 30%, 35% and 40%, and the thickness varies from

2mm to 4mm in 0.2mm increments.

The current model selects the most appropriate fibre architecture according to the specified design

requirements, of which the thickness and Young’s modulus are used as the starting conditions of the

initial optimisation step [15]. The thickness limits for the initial optimisation step are chosen to be 0.5

and 1.5 times the initial thickness, and the modulus limits are calculated from volume fractions of

10% and 50% using the material model described in [15]. The minimum allowable thickness is

limited to 1mm for all case studies, as extremely thin panels are impractical from a manufacturing

perspective of view. A minimum zone size constraint of 22,500mm2 is used and a critical length-scale

of 4 times the fibre length is adopted as discussed in [15]. A section of the material database used in

this paper is presented in Table 2, which includes fibre architecture parameters, the resulting Young’s

modulus, and attributes of all sub-criteria considered in the TOPSIS analysis.

A heuristic approach is adopted to adjust the thickness of the un-optimised model iteratively until the

strain energy of the optimised model is within 5% of the glass/carbon benchmark. This enables fair

comparisons to be made between the continuous fibre and DFP models of similar stiffness levels.

Two case studies are presented in the following section: One seeks a high stiffness and lightweight

design regardless of cost, and the other takes component cost into consideration to provide the most

economical solution for the same target stiffness. Further refinement can be achieved by restricting

the materials available from the material library at the selection stage, by imposing limits on total

mass and cost. It is irrational, for example, to consider materials that would yield a higher component



mass than the glass/carbon option or a material cost higher than the all-carbon fabric solution.

Therefore the TOPSIS analysis only ranks materials that would yield a composite mass of less than

4.3kg (calculated for the design in Figure 2), and a material cost of less than £63.20 (the cost for the

design in Figure 3) for this case. The properties for all materials used are summarised in Table 1.

4 Results

4.1 TOPSIS sensitivity analysis

A sensitivity analysis has been performed to investigate the influence of key parameters associated

with the fibre architecture (section thickness, volume fraction, tow size and fibre length) on the

TOPSIS score, for the current set of ratios between the sub-criteria. This information can be used to

identify the likelihood of materials being selected and can also be used to explain observed trends, for

example why the recommended architectures may all share the same fibre length or tow size. The

TOPSIS scores for all permutations of the selection criteria (different weightings for stiffness, cost,

mass criteria) have been summed for each of the 385 fibre architectures considered. The weighting for

each criterion was changed in 1% increments, with the sum of all weights remaining unity. A total of

171700 weighting permutations were analysed. Higher TOPSIS scores reflect the possibility that

certain fibre architectures may be ranked as the best option more frequently than others (it does not

indicate the best solution in all cases). Therefore, it is worth noting that varying each fibre architecture

parameter does not necessarily affect all TOPSIS criteria at the same time: Varying fibre tow size for

example, only affects the tensile stiffness, the bending stiffness and the material cost, whilst varying

fibre length only affects the tensile stiffness and the bending stiffness according to the sub-criterion

outlined in Section 2.

A ‘Main Effects’ analysis on the total TOPSIS score is presented in Figure 4, where the influence of

tow size, fibre length, volume fraction and thickness are isolated. Analysis of the data is performed

using Minitab v16.2.2, and the value of each data point is calculated as the mean value of all options

of the same fibre parameter. The first data point in Figure 4 for instance, is obtained by firstly

summing the TOPSIS scores from all permutations for each DFP material consisting 3K fibre, and



then calculating the corresponding mean value. It should be noted that in Figure 4, attentions should

be paid not only to the total TOPSIS score at each data point, but also the gradient of the lines: a

steeper line indicates that the fibre architecture parameter is more significant. According to Figure 4,

tow size has the most significant effect on the total TOPSIS score. The TOPSIS score reflects the cost

to stiffness ratio of each tow, which is the lowest for the 3K fibre and highest for the 12K and 24K

fibre. Thickness is the second most significant variable, but the effects are more complicated as most

sub-criteria are affected. The influence of varying thickness is demonstrated in more detail in Figure

5, where the example data is taken from all of the 3K DFP materials with a 25mm fibre length and

35% volume fraction. Figure 5 shows the relative contribution of each sub-criteria on the TOPSIS

score, due to changes in section thickness. Clearly bending stiffness dominates the TOPSIS score,

because of the 1:2:1 ratio between tensile stiffness, bending stiffness and the stiffness retention

criteria. This explains why the TOPSIS score appears to increase for section thicknesses greater than

3.4mm in Figure 4. However for thinner panels, the TOPSIS score is dominated by the mass, material

cost and cycle time (see Figure 5) and this therefore explains why the TOPSIS score is initially higher

for thinner panels in Figure 4.

Both volume fraction and fibre length have a relatively minor influence on the total TOPSIS score.

The influence of varying fibre volume fraction is also complicated, as stiffness, mass and material

cost are all affected. All criteria are found to exhibit a linear relationship with volume fraction. The

overall TOPSIS score is dominated by the negative effects of increased mass, material cost and cycle

time, and therefore continuously decreases as the volume fraction increases.

Fibre length only affects the stiffness of the part, but there are insufficient entries in the current

database to study its effect on the total TOPSIS score in detail. Whilst the Young’s modulus for DFP

materials with a 50mm fibre length are generally 5% higher than those with a 25mm fibre length, a

50mm fibre length has a lower optimality due to lower stiffness retention (caused by the segmentation

step).



Whilst this sensitivity study has considered the overall influence of each parameter, the following two

case studies will discuss the suitability of using selected architectures for the demonstrator

component. The TOPSIS weights for each criterion will be selected to suit the design objective in

each case.

4.2 Case 1: Optimum solution for high stiffness and lightweight

The current case study analyses all permutations of which the weighting for the stiffness criterion is ≥ 

40% and the weighting for the mass criterion is ≥ 40% (weighting for cost  is zero in all cases), 

providing a total of 21 weighting strategies to be analysed. DFP fibre architectures are ranked

according to their frequency of producing a ‘top 5’ TOPSIS score.

The top 5 materials (compared in Figure 6) are dominated by 3K and 6K tow sizes because of their

high specific stiffness, but the areal mass limit effectively restricts the material thickness to a

maximum of 2.8mm. According to Figure 6, the TOPSIS score generally decreases as thickness

increases from 2mm to 2.8mm, as the score is affected by the increase in mass more than the increase

in stiffness. Therefore, restricting the areal mass means that the top 5 options all adopt the lowest

thickness value (2mm). This is supported by the results presented in the Main Effects plot in Figure 4,

which shows that the lower section thicknesses tend to have a higher TOPSIS score. The cost

restriction on the other hand, limits the volume fraction to a maximum of 30% for 3K DFPs, and a

maximum of 35% for 6K DFP. Comparisons between Options 1 and 2 and Options 4 and 5 suggest

that higher volume fractions are preferable.

The starting thickness of Option 1 in Figure 6 has been reduced to 1.8mm by iteratively adjusting the

thickness, yielding a total strain energy of 1207.9J and a maximum deflection of 3.35mm after

stiffness optimisation. The resulting fibre architecture of the high stiffness, lightweight spare wheel

well is presented in Figure 7. The stiffness of this optimised DFP solution is 0.5% higher than that of

the original glass/carbon woven hybrid design and the material cost (£48.46) is just 2.5% higher.

However the final mass is only 2.91kg, which is 32% lower than the glass/carbon design, and is

comparable with the all-carbon woven solution (2.62kg).



4.3 Case 2: Optimum solution for low cost

This case aims to produce a high performance, lightweight part whilst targeting more aggressive cost

savings. This study summarises all permutations for which the weightings for the stiffness, mass and

material cost criterions are all equal to, or greater than 30% (i.e. between 30% and 40%). This

produces a total of 66 weighting strategies.

The top 5 resulting materials are presented in Figure 8. They are dominated by 24K tows, except

Option 4 which uses 12K. Whilst the mass limit restricts the material thickness to a maximum of

2.8mm, all 12K or 24K materials are acceptable within the cost limit. Comparisons between Options 2

and 3 and Options 1 and 5 suggest that thinner sections are more preferable for this scenario, which is

the same as the observation from Case 1.

From Option 1 in Figure 8, the thickness of the model is increased to 2.3mm in order to achieve a

total strain energy of 1341J and maximum deflection of 3.59mm. The optimised fibre architecture is

presented in Figure 7(b). Naturally, this option has a lower stiffness and is heavier than the 3K fibre

solution from Case 1. However, this 24K solution is the cheapest of all of the composite solutions

under investigation, where the material cost is 69% lower than the glass/carbon benchmark. Whilst

the stiffness of this optimised 24K DFP model is 2.2% lower than that of the original woven

glass/carbon hybrid design, the total mass is just 3.59kg, offering a 16% reduction compared with the

glass/carbon benchmark.

4.4 Discussion of Models

This section discusses the suitability of replacing the woven glass/carbon boot floor structure with the

proposed carbon fibre options. The optimised continuous carbon and the two DFP options are

compared in Figure 9, in terms of material cost, mass and stiffness (where the stiffness is calculated

from the inverse of strain energy for each model). The hatched bars in Figure 9 indicate the properties

of the corresponding un-optimised models in each case.

The optimised all-carbon textile solution offers a 3% stiffness increase and a 38% mass reduction

compared with the glass/carbon benchmark. Whilst this is an attractive option, the reduction in mass



carries an additional material cost, which is calculated to be greater than 34%. The 3K DFP material

from Case 1 yields a similar specific stiffness to the all-carbon textile solution, but with material costs

in line with the glass/carbon hybrid (and 25% lower than the all-carbon textile). This is achieved by

more efficient use of materials, by redistributing fibres to areas experiencing higher stress. This is

only possible with DFP, as it does not rely on a ply-based laminate architecture. Further cost savings

are possible by adopting higher filament count tows and it has been demonstrated in Case 2 that these

materials can still yield stiffness and mass levels comparable to the continuous fibre benchmark. This

study has shown that it is possible to produce a structure from optimised DFP architectures, with

stiffness levels approaching a continuous carbon fibre fabric, but at material cost levels typically

associated with lower performance glass fibre fabrics.

It should be noted that the model currently only considers the cost of moulded materials, with no

reflection of material wastage in the raw material cost. This suggests that there is potential for higher

cost savings when using optimised DFP materials over carbon fibre fabric. In addition, the

manufacturing cost is expected to be much lower for the DFP option according to [28], as it requires

less touch labour and the manufacturing cycle time is also much shorter. The areal mass distributions

for both optimised models are relatively simple according to Figure 7, which make them suitable for

high production volumes via the DFP process. The part thickness profiles are somewhat more

complex, but these can be achieved through CNC machined matched tools.

5 Conclusions

The stiffness optimisation algorithm in Part 1 of this 2 part paper series [15] has been further

developed to include a material selection algorithm to automatically select candidate materials, in

order to meet more complex design objectives. Developments in the current paper enable the tow size

and fibre length to be determined as part of the optimisation process, in the form of design variables,

rather than regarding them as design constraints.

The model has been successfully used to demonstrate the benefits of discontinuous fibre architectures

for structural applications, in the form of an automotive spare wheel well. The production component



is currently manufactured from a combination of woven carbon and glass fibre composites. An

alternative all-carbon fibre fabric version has been proposed as a lightweight replacement for the

original design, but the material cost of continuous carbon is prohibitive. Two DFP options have been

derived as a form of compromise, by optimising the discontinuous fibre architecture based on the

most appropriate materials available. A DFP database was formed from experimental data which

included 385 separate entries, consisting of different fibre volume fractions, tow sizes and fibre

lengths etc.

Results from this study have shown that quite different structural performances can be achieved

depending on the material selection criteria. The first optimised DFP architecture (Case 1) uses high

performance 3K fibre to compete with the continuous carbon option, whilst the other (Case 2) uses

24K fibre to provide a low cost option, albeit with a compromised specific stiffness. Results show that

the 3K option can produce performance levels and mass savings comparable to the continuous carbon

option at cost levels closer to the glass/carbon option, with further benefits of low material wastage

and reduced manufacturing costs. The 24K DFP option is also shown to be a viable option in terms of

high specific stiffness and low cost in comparison to the original glass/carbon fabric benchmark. It

has been demonstrated that DFP materials can provide direct substitutes for continuous carbon fibre

composites in stiffness driven designs, which could potentially lead to the application of composite

materials into new areas where cost has previously been prohibitive.
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8 Tables

Table 1: Material parameters for all benchmark materials and un-optimised DFPs used for the case study. (Fibre areal mass values shown in brackets).

E1 (E2) Nu12 G12 (G13) G23 Ply thick Density Unit price

(MPa) (MPa) (MPa) (mm) Kg/m3 (£/m2)

3x1 Twill Glass Fibre (600gsm) [30] 26585 0.256 4090 3560 0.44 1946 5.12

2x2 Twill 12K Carbon Fibre (650gsm) [31] 71515 0.256 4444 3787 0.66 1524 24.40

Case 1: DFP 3K 25mm , 30% vf (967gsm) 21570 0.3 8296 8296 1.8 1377 42.72

Case 2: DFP 24K 25mm, 25% vf (1029gsm) 13510 0.3 5196 5196 2.3 1347 15.74



Table 2: Material selection model for spare wheel well demonstrator .



9 Figures

Figure 1: Flow chart of optimisation model



Figure 2: Left: Un-deformed shape of the spare wheel well. (0.01MPa uniform pressure applied on the
pink surface) Right: Ply layup arrangement of the current composite laminate, as modelled using
Abaqus/Standard composite layup. Each ply of woven fabric has been modelled as two UD plies at
0/90°. Layup asymmetry is copied from the original production part.

Figure 3: Ply configuration of the continuous carbon model. Numbers indicate the ply count of
650gsm 2×2 twill weave carbon fibre. The compass shows the material orientation where x- axis
refers to 0 deg and y-axis refers to 90 deg.
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Figure 4: Main effects plot for the total TOPSIS score of all weight permutations. The weights are
changed in step size of 0.01, therefore a total of 171700 permutations are included. The TOPSIS score
for a single permutation is between 0 and 1.

Figure 5: Effects of varying thickness on the tensile stiffness, bending stiffness, mass, material cost
and cycle time. Example data are based on DFP of 3K, 25mm fibre length and 35% vf. Vertical axis
values are normalised to 2mm thickness.



Figure 6: Comparison of top five fibre architectures for Case 1: high stiffness, lightweight. Values on
the top indicate the frequency that each option is ranked as one of the top five options. Vertical axis
values are normalised to option 1 (3K 25mm / 30%vf 2mm).

Figure 7: Case 1 (a): Optimum solution for high stiffness and lightweight - 3K, 25mm DFP. Case 2
(b): Optimum solution for low cost – 24K, 25mm DFP.
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Figure 8: Comparison of top five fibre architectures for Case 2: high stiffness, lightweight and low
cost. Values on the top indicate the frequency that each option is ranked as one of the top five options.
Vertical axis values are normalised to option 1 (24K 25mm / 25%vf 2mm).

Figure 9: Comparison of the carbon fibre models against the original glass/carbon design. Stiffness is
compared as the inverse of total strain energy. All values are normalised to the continuous
glass/carbon model. Values on the top indicate the maximum deflection of the model. Hatched bars
represent the models before optimisation.


