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Abstract

This article proposes a test to determine if two price series that each contain an explosive
autoregressive regime consistent with the presence of a bubble are related in the sense that
a linear combination of them is integrated of order zero. We refer to such a phenomenon
as ‘co-explosive behaviour’, and propose a test based on a stationarity testing framework.
The test allows the explosive episode in one series to lead (or lag) that in the other by
a number of time periods. We establish the asymptotic properties of the test statistic
and propose a wild bootstrap procedure for obtaining critical values that are robust to
heteroskedasticity. Simulations show that the proposed test has good finite sample size and
power performance. An empirical application to detect whether co-explosive behaviour
exists among a set of precious and non-ferrous metals is presented.

I. Introduction

Detecting the presence of asset price bubbles has long been of interest to applied
economists. Following the global financial crisis in 2008, which was preceded by
suspected price bubbles in housing, commodity, and stock markets, there has been a
renewed interest in econometric methods for detecting bubbles, and several new tests for
bubbles have been proposed. The tests developed by Phillips, Wu and Yu (2011) (PWY)
and Phillips, Shi and Yu (2015) (PSY) adopt an autoregressive framework and propose
tests for bubbles based on whether a price series contains an explosive autoregressive
component, while the corresponding fundamentals series does not. These tests have
proved to be extremely popular in empirical research. In empirical applications, PWY
and PSY apply their tests to detect US stock market bubbles, and the tests have also
been found to be useful for detecting bubbles in commodity prices (Gutierrez, 2012;
Figuerola-Ferretti, Gilbert and McCrorie, 2015; Harvey et al., 2016), real estate prices
(e.g. Pavlidis et al., 2016; Deng et al., 2017), and bond markets (e.g. Phillips and Yu, 2011;
van Lamoen, Mattheussens and Droes, 2017; Huston and Spencer, 2018). It is widely
recognized that these types of bubble-detection tests can provide very useful information
for central banks, financial regulators, and investors.
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In contrast to the burgeoning literature on detecting bubbles in individual price
series via econometric methods for detecting explosive autoregressive behaviour, a much
smaller literature exists on modelling the relationship between price series that contain
bubbles. However, it is important for risk managers, portfolio managers, and monetary
policymakers to understand whether bubbles in different markets are related. A particularly
important issue is whether bubbles that appear in one market are likely to migrate to another
market, since if bubbles migrate between markets, their systemic risk to the financial
sector as a whole will be greater than if they do not. Phillips and Yu (2011) propose a
method for detecting bubble migration between two price series, based on dating bubble
regimes in the individual series, obtaining two sets of recursively estimated autoregressive
parameters, and then testing for a relationship between the recursive estimates using
regression-based methods. Other papers that have considered the relationship between
different price series that contain bubbles have tended to focus primarily on comparing the
timeline of when explosive autoregressive behaviour is detected in the individual series,
using the bubble-dating methodology proposed by PWY and PSY, see, for example, Shi
et al. (2016) and Pavlidis et al. (2016) for housing market applications.

In this article, we focus on the explosive autoregressive characteristics of bubble
series, and our approach differs from the aforementioned research in that, rather than
comparing the results from simply detecting explosive autoregressive regimes in each
series individually, we develop a regression-based test to determine whether two series
with explosive regimes are related. More specifically, in the context of two price series
that each contain one or more regimes of explosive autoregressive behaviour consistent
with the presence of bubbles, our test can be used to determine if a linear combination
of the series is integrated of order zero, I(0), a property we refer to as ‘co-explosive
behaviour’.

1
Our work is in the same vein as Engsted and Nielsen (2012) who consider

co-explosive behaviour in the context of a bivariate vector autoregression (where the
explosive behaviour is present for the full sample), testing the null of no co-explosivity
against the alternative of co-explosive behaviour. The test we develop in this article
employs a variant of the stationarity test of Kwiatkowski et al. (1992) (KPSS) to test
the null of co-explosive behaviour, allowing for the explosive behaviour in the series to
possibly be present in sub-sample regimes only. The test is straightforward to compute
and allows an explosive episode in one series to lag or lead that in the other by a number
of time periods, thereby allowing detection of contemporaneous or dynamic correlation
between series that contain explosive regimes, and providing information on the nature
of potential explosive regime migration from one price series to another. In the context of
processes with mildly explosive regimes, we show that the asymptotic null distribution of
the test statistic does not depend on the precise properties of the regressor series, but will
depend on the pattern of any heteroskedasticity present in the regression model errors – a
relevant consideration when any application involves financial data. To overcome this
problem, we adopt a simple wild bootstrap procedure that reproduces that same pattern of
heteroskedasticity in the bootstrap samples, thereby allowing asymptotic size-controlled

1
In what follows, a generic I(0) series εt say, is one which permits a representation εt = c(L)εt where L is the

lag operator and c(L) = ∑∞
k=0 ckLk with

∑∞
k=0 k|ck | < ∞ and c(1) �= 0. Here εt is a (possibly heteroskedastic)

martingale difference sequence, cf. Cavaliere and Taylor (2009).
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inference to be conducted. Monte Carlo simulation exercises show that the bootstrap
procedure appears to control size well in the presence of heteroskedasticity. We also
demonstrate the power performance of our bootstrap test to reject under an alternative of
no co-explosivity, and examine the ability of the test to identify the timing of explosive
regime migration when co-explosivity is present.

As an empirical application, we employ our test to investigate whether co-explosive
behaviour exists among a set of precious and non-ferrous metals. Several recent empirical
studies have detected periods of explosive autoregressive behaviour in metals prices
consistent with the presence of bubbles – see Figuerola-Ferretti et al. (2015), Harvey
et al. (2016) and Figuerola-Ferretti and McCrorie (2016). However, there has been very
little previous empirical research on the impact of possible bubbles on the long-run
relationship between metals prices. While Escribano and Granger (1998) and Baur and
Tran (2014) do consider this issue, they focus only on the relationship between Gold
and Silver prices. Furthermore, both studies employ orthodox cointegration methods and
attempt to capture the impact of a bubble on the long-run relationship between the series
using dummy variables to allow for level shifts in the long-run model. Importantly,
neither of these studies explicitly allow for the presence of explosive autoregressive
behaviour in the regression models and subsequent hypothesis tests. Our co-explosive
testing methodology does not suffer from this limitation, and therefore can provide robust
insight into whether co-movements in explosive metal prices can be detected. Note that
for commodity prices the underlying fundamental (equivalent to the dividend for stocks)
is an unobserved ‘convenience yield’; see Pindyck (1993). Figuerola-Ferretti et al. (2015)
have, however, cast doubt on the efficacy of using an imputed convenience yield as a
fundamentals proxy variable to support running a bubble test on the ratio of the raw
prices and this imputed value. In our empirical exercise, we simply report results using
the price series alone, recognizing that findings of explosive autoregressive behaviour do
not necessarily imply the presence of bubbles when only the price series are examined.

The article is organized as follows. In section II we outline the range of explosive models
we consider for an individual series. Our model for a co-explosive relationship between
two individual series is presented in section III. Our test for co-explosive behaviour and
its asymptotic properties are explained in section IV; this section also discusses the wild
bootstrap algorithm and confirms its large sample validity. In section V, the finite sample
size and power properties of the co-explosive test procedure are considered. Section VI
discusses how to conduct the test when the lag/lead timing is unknown. Our application
to metals prices is discussed in section VII, while section VIII concludes. Proofs of our
main results and additional simulation and empirical results are collected in Appendix S1.
In what follows, we adopt the following notation: �·� denotes the integer part, 1(·) the
indicator function,

w−→ weak convergence,
p−→ convergence in probability, and

w−→ p

weak convergence in probability.

II. The explosive autoregressive model

We consider the following DGP for a generic series xt, t = 1, . . . , T , which is similar to
that used in Harvey, Leybourne and Sollis (2017),
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xt = μx + ux,t

ux,t =

⎧⎪⎪⎨
⎪⎪⎩

ux,t−1 + εx,t, t = 2, . . . , �τx,1T�,
(1 + δx,1)ux,t−1 + εx,t, t = �τx,1T� + 1, . . . , �τx,2T�,
(1 − δx,2)uxt−1 + εx,t, t = �τx,2T� + 1, . . . , �τx,3T�,
ux,t−1 + εx,t, t = �τx,3T� + 1, . . . , T

(1)

where μx is a constant term, τx,1, τx,2 and τx,3 are sample fractions, and δx,1 > 0 and δx,2 > 0.
We assume that ux,1 = op(T1/2) and that εx,t is an error process with zero mean and is
integrated of order zero, I(0). As such, the model (1) imposes autoregressive unit root,
or I(1), behaviour, on xt up to time �τx,1T�, after which xt is an explosive autoregressive
process until time �τx,2T�. This is followed by a stationary (mean-reverting) regime until
time �τx,3T�. The series then returns to I(1) behaviour for the final regime.

In terms of modelling possible bubble behaviour, (1) allows for a number of different
specifications (models) simply by changing τx,1, τx,2 and τx,3. If 0 < τx,1 < τx,2 = 1
the explosive regime, possibly arising from a bubble, emerges at (sample proportion)
τx,1 and runs up to the sample end (Model 1); while if 0 < τx,1 < τx,2 = τx,3 < 1 the
explosive regime terminates at τx,2 and is unit root to the sample end (Model 2). If
0 < τx,1 < τx,2 < τx,3 = 1 the explosive regime terminates with an offsetting stationary
collapse regime, proxying a possible bubble crash, that continues to the sample end
(Model 3); while if 0 < τx,1 < τx,2 < τx,3 < 1, the collapse is followed by a unit root
period to the sample end (Model 4). Here δx,1 and τx,2 − τx,1 together control the magnitude
and duration of the explosive period, while δx,2 and τx,3 − τx,2 determine the speed and
duration of the collapse (should one occur as in Models 3 and 4). For simplicity, we
refer to an explosive regime, possibly followed by a stationary collapse regime, as an
‘explosive episode’.

In what follows the explosive autoregressive component δx,1 will be parameterized as
δx,1 = δx,1,T = cx,1T−αx,1 with αx,1 ∈ (0, 1), such that the process is mildly explosive (cf.
PWY). For the stationary collapse autoregressive component, we correspondingly assume
δx,2 = δx,2,T = cx,2T−αx,2 with αx,2 ∈ (0, 1).

III. The co-explosive model

Suppose yt and xt are two observed series, with xt containing an explosive episode that
has been generated from one of Models 1–4. Also, let zt define a latent, or unobserved,
process that is also generated from one of Models 1–4, where x is replaced by z in (1),
and δz,1,T , δz,2,T , cz,1, cz,1, αz,1 and αz,2 are the corresponding model parameters with αz,1,
αz,2 ∈ (0, 1). We may then consider a DGP for yt of the following form:

yt = μy + βxxt−i + βzzt + εy,t, (2)

where εy,t is a mean zero I(0) error term. We permit correlation to exist between εy,t, εx,t

and εz,t. Here, yt is a process containing explosive dynamics, either driven by xt−i if βx > 0
and βz = 0, or driven by zt if βz > 0 and βx = 0 (or both xt−i and zt if βx > 0 and βz > 0).
In (2), if βz = 0 and βx > 0, we can then consider that yt and xt−i are ‘co-explosive’,
in the sense that a linear combination of these processes, yt − μy − βxxt−i, is I(0). This
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implies that the linear combination is stationary across all sub-regimes involved in yt and
xt−i, so that ‘co-explosivity’ also implies cointegration in the I(1) regimes of yt and xt−i

as well as a stationary linear combination in the explosive regimes. The co-explosivity is
contemporaneous if i = 0. If i > 0, the co-movement occurs with a lag of i time periods,
with the explosive episode in xt preceding that in yt; in this circumstance we can therefore
think of the explosive regime in xt migrating into yt after i time periods. If i < 0, then a
co-explosive relationship again exists between yt and xt−i, but now the explosive episode
in yt leads the corresponding episode in xt by i periods. If βz > 0 and βx = 0, then yt

contains an explosive episode driven by the unobserved process zt; the observed process
xt is then irrelevant as a co-explosive variate for yt. In this article, we focus on the concept
of positive co-explosivity βx > 0. However, if significant periods of negative explosivity
are detected in a price series, then our approach could also be used to analyse negative
co-explosivity with other relevant series.

2 ,3

In terms of testing for co-explosive behaviour between the observed series, the
hypotheses of interest may be stated as

H0 :βx > 0, βz = 0,

H1 :βx = 0, βz > 0.

Under the null hypothesis H0, yt and xt are co-explosive, with the linear combination
yt − μy − βxxt−i being I(0); under the alternative hypothesis H1, the processes are not
co-explosive but ‘differ’ by a process that retains explosive dynamics. In the case where
βx > 0 and βz > 0, xt alone is not sufficient to explain the explosive behaviour observed
in yt since it depends on the additional unobserved component zt. Such a scenario is not
consistent with the null hypothesis since there is no linear combination of yt and observed
xt that is I(0), hence we implicitly treat such a case as part of the alternative of no
co-explosivity.

4

We allow for heteroskedasticity in εy,t via the following assumption:

Assumption 1. Let εy,t = σtvt where vt ∼ IID(0, 1) with E|vt|r < K < ∞ for some
r ≥ 4. The volatility term σt satisfies σt = ω(t/T), where ω(·) is non-stochastic and
strictly positive.

Assumption 1 implies that the error variance is non-stochastic, bounded and displays
a countable number of jumps. A detailed discussion of the class of variance processes
allowed is given in Cavaliere and Taylor (2007); this includes variance processes
displaying (possibly) multiple one-time volatility shifts (which need not be located at the
same point in the sample as the putative regimes associated with explosive behaviour),
polynomially (possibly piecewise) trending volatility and smooth transition variance

2
For example, Figuerola-Ferretti, McCrorie and Paraskevopoulos (2019) find statistically significant evidence of

negative mild-explosivity in crude oil prices. It is possible that such behaviour may be in a co-exploding relationship
with related credit derivatives. A further investigation of this point lies outside the scope of this article, but would
be an interesting topic for future research.

3
Taking a different approach, Phillips and Yu (2011) consider a negative relationship between the autoregressive

coefficients in the yt and xt processes in their model of bubble migration.
4
Note that we exclude the possibility βx = βz = 0 from our analysis, since in such a case yt would be I(0) and

our focus is on yt (and xt) series containing an explosive regime.
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breaks, among others. The conventional homoskedasticity assumption, that σt = σ for
all tt, is also permitted, since here ω(s) = σ for all s. Assumption 1 requires that the
volatility process is non-stochastic and that vt is an IID sequence. These restrictions are
placed in order to simplify our analysis but can be weakened, without affecting the main
results of the article, to allow for cases where ω(·) is stochastic and independent of vt and
where vt is a martingale difference sequence satisfying certain moment conditions; see
Cavaliere and Taylor (2009) for further details. While Assumption 1 requires the εy,t to be
serially independent for the purposes of transparency in our theory, this assumption can
be relaxed to permit serially correlated εy,t so long as an appropriate modification is made
to the variance estimator in the test statistic we propose – see section IV.

In what follows we make use of the variance profile of the process:

η(s) =
(∫ 1

0
ω(h)2dh

)−1 ∫ s

0
ω(h)2dh.

This variance profile satisfies η(s) = s under homoskedasticity while it deviates from s in
the presence of heteroskedasticity. Notice also that the quantity ω2 = ∫ 1

0 ω(h)2dh is equal
to the limit of T−1 ∑T

t=1 σ 2
t , and is the (asymptotic) average error variance. We will also

make use of the invariance principle from Theorem 1(i) of Cavaliere and Taylor (2007),
which establishes that

T−1/2
�rT�∑
t=1

εy,t
w−→ ωWη(r),

where the process Wη(r) = ∫ r
0 dW(η(s)), with W(r) denoting a standard Brownian motion

on [0, 1], is known as a variance-transformed Brownian motion.

IV. Testing for co-explosivity

To test H0 against H1 we consider the KPSS-type statistic:

S = σ̂−2
y (T − |i|)−2

T+i1(i<0)∑
t=i1(i>0)+1

⎛
⎝ t∑

s=i1(i>0)+1

êy,s

⎞
⎠

2

, (3)

where êy,t = yt − μ̂y − β̂xxt−i is the OLS residual from a regression of yt on a constant and
xt−i, and σ̂ 2

y = (T − |i|)−1 ∑T+i1(i<0)
t=i1(i>0)+1 ê2

y,t. Statistics of this general form were previously
suggested in the context of cointegration testing where xt is I(1), with the aim to
distinguish between the model errors (i.e. a linear combination of yt and xt) being I(0) or
I(1) processes; see Leybourne and McCabe (1993) and Shin (1994). However, we would
a priori expect this form of statistic to also be suitable in the current co-explosive testing
context where xt contains an explosive episode, with S having the ability to distinguish
between the residuals êy,t being I(0) or containing an unobserved explosive component.
At this stage we assume i is known, so that the test is being implemented with the true
lag/lead.

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Asymptotic behaviour of S

We next establish the large sample behaviour of S.

Theorem 1. For Models 1–4, under Assumption 1,

(i) Under H0,

S
w−→

∫ 1

0
Vη(r)2dr

where
Vη(r) = Wη(r) − rWη(1).

(ii) Under H1,
S = Op(T

2αz,1−1).

The result of Theorem 1(i) shows that the limit null distribution of S is dependent on the
pattern of heteroskedasticity present in εy,t. This obviously makes tabulation of limit critical
values infeasible. In the homoskedastic case where Wη(r) = ∫ r

0 dW(s) = W(r), the limit
critical values coincide with those of Table 1 of KPSS (the demeaned case). Otherwise,
these critical values will not be appropriate due to the impact of the heteroskedasticity.
Theorem 1(ii) implies that, provided αz,1 ∈ (1/2, 1), comparison of S with any finite critical
values will result in a consistent test under the alternative since limT→∞ Pr (S > c) = 1
for any finite c. Although S does not diverge when αz,1 ∈ (0, 1/2], in the next section we
find that comparison of S with wild bootstrap critical values can still result in a consistent
test for the full range of αz,1 ∈ (0, 1).

Remark 1. Notice that the limit null distribution does not depend in any way on the
process for the regressor xt. This arises since, as is shown in the proof of Theorem 1(i),
we find that the partial sum process of êy,t is such that

T−1/2
�rT�∑
t=1

êy,t = T−1/2
�rT�∑
t=1

(εy,t − εy) + Op(T
(αx,1−1)/2) (4)

and, under our assumption of mild-explosivity in xt, αx,1 < 1, which in turn implies that
the effect of xt is asymptotically negligible as far as S is concerned. The negligibility
of xt is essentially due to its stochastic order of magnitude being sufficiently large. This
is not the typical situation for KPSS tests based on regression residuals. For example,
the Shin (1994) KPSS test is based on regression residuals with an xt regressor that is
I(1); in such a case, the limit distribution of the test statistic depends on the xt regressor
because an I(1) order of magnitude is not large enough to induce asymptotic negligibility.
The asymptotic negligibility of xt in (4) explains why we can allow εx,t to be a generic
I(0) process and also be correlated with εy,t. An obvious implication of this result is that
Theorem 1(i) would continue to hold if εx,t was heteroskedastic.

Note that in Assumption 1 we have assumed that the εy,t are not serially dependent. If
we relax this assumption to permit serial correlation in the model errors, then the results

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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of Theorem 1 will continue to hold provided σ̂ 2
y in (3) is replaced with a suitable long-run

variance estimator, such as the estimator proposed by Newey and West (1994) that uses a
quadratic spectral kernel with automatic lag selection.

A wild bootstrap procedure

Since we cannot rely on the homoskedastic critical values of KPSS to guarantee large
sample size robustness of S in the heteroskedastic case, we propose a bootstrap procedure
in order to deliver large sample size-controlled inference. Specifically, the bootstrap
procedure we employ is a wild bootstrap scheme (see, e.g. Liu, 1988; Mammen, 1993) as
follows:

Algorithm
1. Generate a bootstrap sample ytb = wtêy,t , t = i1(i > 0) + 1, . . . , T + i1(i < 0),

where wt denotes an IIDN(0, 1) sequence.
2. Calculate the bootstrap KPSS test statistic Sb using residuals êtb obtained from the

regression of ytb on a constant and xt−i. That is,

Sb = σ̂−2
b (T − |i|)−2

T+i1(i<0)∑
t=i1(i>0)+1

⎛
⎝ t∑

s=i1(i>0)+1

êsb

⎞
⎠

2

,

where σ̂ 2
b = (T − |i|)−1 ∑T+i1(i<0)

t=i1(i>0)+1 ê2
tb.

3. Repeat for b = 1, 2, . . . , B bootstrap replications and calculate the (upper tail)
π -level critical value, cπB say, of the empirical CDF of Sb.

4. Reject H0 in favour of H1 if S > cπB.
We next demonstrate the large sample behaviour of Sb.

Asymptotic behaviour of Sb

Theorem 2. For Models 1–4, under Assumption 1,
(i) Under H0,

Sb
w−→ p

∫ 1

0
Vη(r)2dr.

(ii) Under H1,
Sb = Op(T

αz,1−1).

Theorem 2(i) shows that under the null H0, the limit distribution of Sb coincides with
that of S. Thus, when the number of bootstrap replications B is large, the empirical CDF
of Sb is such that Pr (S > cπB) = π , that is, the size of S is controlled asymptotically. This
robustness is obtained due to the fact that the pattern of heteroskedasticity present in the
original errors εy,t is replicated in the bootstrap data ytb = wtêy,t.

Remark 2. In principle, there is no need to include the regressor xt−i when constructing
the bootstrap residuals êtb (i.e. the êtb can be obtained from the regression of ytb on a

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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constant alone). This is because the limit null distribution of Sb does not involve xt.
However, as is apparent from (4), the ‘regression effect’ of xt on S may still be significant
in finite samples when αx,1 is close to 1. Consequently, excluding xt−i when constructing
êtb may result in the finite sample distributions of Sb and S being less similar than
when xt−i is included. On the basis of unreported simulation evidence, we indeed found
this to be the case. As such, we strongly advocate inclusion of xt−i in the bootstrap
regressions.

It follows from Theorems 2(ii) and 1(ii) that, for αz,1 ∈ (1/2, 1), S diverges
to +∞ while Sb converges to zero; for αz,1 = 1/2, S is Op(1) with Sb again
converging to zero; while for αz,1 ∈ (0, 1/2), S converges to zero, but Sb converges
to zero at a faster rate than S. Taken together, under H1, S/Sb = Op(Tαz,1),
which implies that S/cπB = Op(Tαz,1), and therefore that limT→∞ Pr (S > cπB) = 1.
Hence the bootstrap-based test is consistent under the alternative for the full range
αz,1 ∈ (0, 1).

Remark 3. It is important to note that our testing procedure requires knowledge of
xt, but never requires us to model its specific attributes. We do not need to know which
of Models 1–4 generated it (nor zt for that matter), only that it contains some form of
explosive component. Further, the procedure will be valid in the presence of multiple
explosive episodes in xt (or zt) formed from sequentially conjoining DGPs of Models
1–4; for example, a model with two explosive episodes that conjoins Models 2 and 4
(I(1), explosive, I(1), explosive, stationary collapse, I(1)). Hence the procedure can be
used to determine whether a linear combination of yt and xt is stationary when xt contains
multiple explosive episodes.

Note that in the case where εy,t is permitted to be serially dependent, there is no need
to use a long-run variance estimator in the construction of Sb (in contrast to S), since there
is no serial dependence in the wild bootstrap sample ytb.

In the next section, we investigate the size and power performance of our bootstrap
procedure via Monte Carlo simulation techniques.

V. Monte Carlo simulations

In this section, we examine the finite sample properties of our wild bootstrap procedure
based on S for Models 1–4. We implement the bootstrap at the nominal 0.05 level (i.e.
π = 0.05) and use B = 500 bootstrap replications. We consider a sample size of T = 200.
In the simulations, we generate vt, εx,t, and εz,t as IIDN(0, 1) variates, independent of each
other. Since the regression for êy,t includes a constant, we can set μx = μy = 0 without loss
of generality. Our main simulations are conducted using αx,1 = αx,2 = αz,1 = αz,2 = 0.6,
in line with the setting adopted in PSY. In this section, we set i = 0 in the DGP for
yt in (2) and assume correct knowledge of this value when constructing the regression
residuals êy,t, that is, êy,t = yt − μ̂y − β̂xxt. This allows us to set βx = 0 without loss of
generality since the êy,t are also invariant to βx. Our results are based on 5,000 Monte
Carlo replications throughout.

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Behaviour under H0

Our first set of simulations involves quantifying the size of the bootstrap procedure under
H0, for both homoskedastic and heteroskedastic errors. The DGPs we initially consider
for xt in (1) are as follows:

Model 1: τx,1 = {0.2, 0.4, 0.8}
Model 2: τx,1 = {0.2, 0.4, 0.6}; τx,2 = 0.8

Model 3: τx,1 = {0.2, 0.4, 0.6}; τx,2 = 0.9; cx,2 = 1

Model 4: τx,1 = {0.2, 0.4, 0.6}; τx,2 = 0.7; τx,3 = 0.8; cx,2 = 1

with cx,1 = {0.3, 0.7, 1.4}. In the homoskedastic case we set σt = 1 for all t in Models
1–4. For the heteroskedastic specifications we adopt two settings for each model, given
by:

Model 1: σt = 51(t ≤ �τx,1T�) + 1(t > �τx,1T�);
σt = 1(t ≤ �τx,1T�) + 51(t > �τx,1T�)

Models 2, 3: σt = 51(t ≤ �τx,1T�) + 1(�τx,1T� < t ≤ �τx,2T�) + 21(t > �τx,2T�);
σt = 21(t ≤ �τx,1T�) + 1(�τx,1T� < t ≤ �τx,2T�) + 51(t > �τx,2T�)

Model 4: σt = 51(t ≤ �τx,1T�) + 1(�τx,1T� < t ≤ �τx,2T�)
+ 21(�τx,2T� < t ≤ �τx,3T�) + 31(t > �τx,3T�);

σt = 31(t ≤ �τx,1T�) + 21(�τx,1T� < t ≤ �τx,2T�)
+ 1(�τx,2T� < t ≤ �τx,3T�) + 51(t > �τx,3T�).

For brevity, we adopt a shorthand notation for these heteroskedasticity settings, with
σt = [σ1; σ2; σ3; . . . ] denoting the values of σt in each of the sequential regimes defined
above, for example, the first Model 1 specification is denoted σt = [5; 1] and the last
Model 4 specification σt = [3; 2; 1; 5]. Our specifications introduce heteroskedasticity
via volatility shifts whose number and timings are coincident with various autoregressive
regimes present in the DGP xt. This is done largely to avoid introducing further
(essentially arbitrary) break timings into the simulation DGP and, while not a requirement,
would seem a plausible restriction to impose. For each model, the second volatility
pattern simply reverses the volatility magnitudes chosen in the first. To gauge the
effectiveness of the wild bootstrap procedure in correcting size under heteroskedasticity,
in addition to the bootstrap based on ytb = wtêy,t (the wild bootstrap), we also
compute a bootstrap based on ytb = wt (an IID bootstrap), denoting these by W and I ,
respectively.

Table 1a shows the size of the bootstrap procedures under Model 1. In the benchmark
homoskedastic case, σt = 1, both I and W have rejection frequencies close to the nominal
0.05 level throughout. In the first heteroskedastic case, σt = [5; 1], I is seen to over-reject
the null for the smaller values of τx,1, while in the second heteroskedastic case, σt = [1; 5],
it under-rejects for small τx,1 and over-rejects for the larger τx,1. In contrast, W controls

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



Testing for co-explosive behaviour in financial time series 11

T
A

B
L

E
1

F
in

ite
sa

m
pl

e
re

je
ct

io
n

ra
te

s
of

bo
ot

st
ra

p
S

un
de

r
H

0

(a
)

M
od

el
1

σ
t
=

1
σ

t
=

[5
;1

]
σ

t
=

[1
;5

]

c x
,1

=
0.

3
c x

,1
=

0.
7

c x
,1

=
1.

4
c x

,1
=

0.
3

c x
,1

=
0.

7
c x

,1
=

1.
4

c x
,1

=
0.

3
c x

,1
=

0.
7

c x
,1

=
1.

4

τ x
,1

I
W

I
W

I
W

I
W

I
W

I
W

I
W

I
W

I
W

0.
2

0.
04

9
0.

04
7

0.
04

7
0.

04
8

0.
05

0
0.

05
2

0.
12

3
0.

05
1

0.
15

7
0.

05
3

0.
16

2
0.

05
3

0.
03

7
0.

04
9

0.
02

7
0.

04
7

0.
02

7
0.

04
9

0.
4

0.
04

9
0.

04
8

0.
04

9
0.

04
9

0.
05

0
0.

05
1

0.
08

0
0.

05
0

0.
08

5
0.

05
5

0.
08

9
0.

05
9

0.
05

1
0.

05
1

0.
04

0
0.

04
9

0.
03

8
0.

05
1

0.
8

0.
05

1
0.

05
3

0.
04

8
0.

05
0

0.
04

8
0.

05
0

0.
04

6
0.

04
9

0.
04

5
0.

04
8

0.
05

0
0.

04
9

0.
09

3
0.

06
2

0.
08

0
0.

05
9

0.
07

9
0.

05
8

(b
)

M
od

el
2,

τ x
,2

=
0.

8

σ
t
=

1
σ

t
=

[5
;1

;2
]

σ
t
=

[2
;1

;5
]

c x
,1

=
0.

3
c x

,1
=

0.
7

c x
,1

=
1.

4
c x

,1
=

0.
3

c x
,1

=
0.

7
c x

,1
=

1.
4

c x
,1

=
0.

3
c x

,1
=

0.
7

c x
,1

=
1.

4

τ x
,1

I
W

I
W

I
W

I
W

I
W

I
W

I
W

I
W

I
W

0.
2

0.
05

1
0.

05
0

0.
05

2
0.

05
3

0.
05

1
0.

05
2

0.
10

3
0.

04
9

0.
13

7
0.

05
4

0.
15

2
0.

05
3

0.
08

7
0.

05
4

0.
02

4
0.

05
1

0.
00

7
0.

04
5

0.
4

0.
05

2
0.

05
1

0.
05

2
0.

05
1

0.
05

1
0.

05
1

0.
07

5
0.

05
0

0.
07

9
0.

05
1

0.
08

0
0.

05
4

0.
07

6
0.

05
4

0.
02

5
0.

05
3

0.
00

6
0.

04
6

0.
6

0.
05

2
0.

05
2

0.
04

8
0.

05
0

0.
04

8
0.

05
0

0.
06

0
0.

05
2

0.
07

1
0.

05
3

0.
07

2
0.

05
7

0.
07

5
0.

05
5

0.
04

0
0.

05
2

0.
01

4
0.

04
9

(C
on

tin
ue

d)

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



12 Bulletin

T
A

B
L

E
1

(C
on

tin
ue

d)

(c
)

M
od

el
3,

τ x
,2

=
0.

9,
c x

,2
=

1

σ
t
=

1
σ

t
=

[5
;1

;2
]

σ
t
=

[2
;1

;5
]

c x
,1

=
0.

3
c x

,1
=

0.
7

c x
,1

=
1.

4
c x

,1
=

0.
3

c x
,1

=
0.

7
c x

,1
=

1.
4

c x
,1

=
0.

3
c x

,1
=

0.
7

c x
,1

=
1.

4

τ x
,1

I
W

I
W

I
W

I
W

I
W

I
W

I
W

I
W

I
W

0.
2

0.
05

1
0.

05
0

0.
05

2
0.

05
1

0.
04

9
0.

05
2

0.
10

7
0.

05
0

0.
14

8
0.

05
4

0.
16

2
0.

05
4

0.
19

5
0.

06
2

0.
08

2
0.

05
3

0.
03

0
0.

04
7

0.
4

0.
05

4
0.

05
0

0.
05

0
0.

04
9

0.
04

9
0.

05
2

0.
07

2
0.

05
2

0.
07

8
0.

05
3

0.
08

6
0.

05
6

0.
16

1
0.

06
0

0.
06

1
0.

05
3

0.
02

4
0.

04
6

0.
6

0.
05

4
0.

05
5

0.
04

7
0.

04
7

0.
04

9
0.

04
9

0.
05

8
0.

05
1

0.
06

7
0.

05
4

0.
06

6
0.

05
9

0.
13

3
0.

06
0

0.
06

9
0.

05
4

0.
02

5
0.

05
0

(d
)

M
od

el
4,

τ x
,2

=
0.

7,
τ x

,3
=

0.
8,

c x
,2

=
1

σ
t
=

1
σ

t
=

[5
;1

;2
;3

]
σ

t
=

[3
;2

;1
;5

]

c x
,1

=
0.

3
c x

,1
=

0.
7

c x
,1

=
1.

4
c x

,1
=

0.
3

c x
,1

=
0.

7
c x

,1
=

1.
4

c x
,1

=
0.

3
c x

,1
=

0.
7

c x
,1

=
1.

4

τ x
,1

I
W

I
W

I
W

I
W

I
W

I
W

I
W

I
W

I
W

0.
2

0.
05

6
0.

05
4

0.
05

5
0.

05
4

0.
05

4
0.

05
5

0.
09

8
0.

05
5

0.
08

3
0.

05
4

0.
10

8
0.

05
6

0.
13

5
0.

06
0

0.
15

0
0.

06
1

0.
11

6
0.

06
1

0.
4

0.
05

8
0.

05
7

0.
05

6
0.

05
6

0.
05

5
0.

05
5

0.
06

6
0.

05
5

0.
05

2
0.

05
5

0.
05

1
0.

05
5

0.
11

6
0.

06
1

0.
12

6
0.

06
2

0.
10

0
0.

05
8

0.
6

0.
05

7
0.

05
5

0.
05

6
0.

05
5

0.
05

5
0.

05
2

0.
04

9
0.

05
3

0.
04

6
0.

05
4

0.
04

4
0.

05
0

0.
09

2
0.

06
1

0.
09

4
0.

05
9

0.
09

4
0.

05
8

N
ot

es
:E

nt
ri

es
in

th
e

ta
bl

e
re

pr
es

en
tt

he
fin

ite
sa

m
pl

e
si

ze
s

of
no

m
in

al
0.

05
-l

ev
el

bo
ot

st
ra

p
S

te
st

s,
w

ith
I

an
d

W
de

no
tin

g
th

e
te

st
im

pl
em

en
te

d
us

in
g

an
II

D
bo

ot
st

ra
p

an
d

a
w

ild
bo

ot
st

ra
p,

re
sp

ec
tiv

el
y.

T
he

sa
m

pl
e

si
ze

is
T

=
20

0
an

d
M

od
el

s
1

–
4

ar
e

as
de

fin
ed

in
se

ct
io

n
II

,w
ith

τ x
,1

,τ
x,

2
an

d
τ x

,3
de

no
tin

g
th

e
st

ar
to

f
th

e
ex

pl
os

iv
e

re
gi

m
e,

th
e

en
d

of
th

e
ex

pl
os

iv
e

re
gi

m
e,

an
d

th
e

en
d

of
th

e
st

at
io

na
ry

co
lla

ps
e

re
gi

m
e

in
x t

,
re

sp
ec

tiv
el

y.
T

he
ex

pl
os

iv
e

an
d

st
at

io
na

ry
co

lla
ps

e
of

fs
et

pa
ra

m
et

er
s

ar
e

gi
ve

n
by

δ x
,1

=
c x

,1
T

−0
.6

an
d

δ x
,2

=
c x

,2
T

−0
.6

,r
es

pe
ct

iv
el

y.
T

he
vo

la
til

ity
m

ag
ni

tu
de

s
ar

e
gi

ve
n

by
σ

t,
w

ith
th

e
fu

ll
σ

t
sp

ec
ifi

ca
tio

n
gi

ve
n

fo
r

ea
ch

m
od

el
in

se
ct

io
n

V
.

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



Testing for co-explosive behaviour in financial time series 13

the rejection rate well throughout. For Model 2, in Table 1b we observe a similar pattern
of results regarding I and W for σt = 1 and σt = [5; 1; 2] as seen in Model 1, although
I is generally over-sized for all τx,1 when σt = [5; 1; 2]. For σt = [2; 1; 5], while W
is well-behaved, under-rejection becomes even more of an issue for I , most evidently
when cx,1 = 1.4. Under Model 3, Table 1c shows that I over-rejects in more cases and
to a greater extent when σt = [2; 1; 5]. The same is true for Model 4 in Table 1d when
σt = [3; 2; 1; 5]. Under all the heteroskedasticity patterns of Models 3 and 4, W continues
to demonstrate rejection rate robustness. The results of Table 1a–d therefore highlight
the efficacy of our wild bootstrap procedure in controlling size over a broad range of
heteroskedastic settings. Its rejection rates lie within the range 0.045–0.062 across the
simulations we have considered, whereas for its IID counterpart, the corresponding range
is 0.006–0.195.

Behaviour under H1

We now examine the ability of the bootstrap procedure to differentiate between H0 and
H1. For brevity, we restrict attention to the homoskedastic case σt = 1 for all t, and only
consider the wild bootstrap procedure. The DGPs for xt we examine are a representative
subset of those in the previous subsection, which use the single values τx,1 = 0.4 and
cx,1 = 0.7, while for zt, we generate it in a similar way to the corresponding xt model, but
allow for various values of τz,1 and cz,1. Specifically, we have:

Model 1: τz,1 = {0.2, 0.4, 0.8}; cz,1 = {0.3, 0.7, 1.4}
Model 2: τx,2 = 0.8;

τz,1 = {0.2, 0.4, 0.6}; τz,2 = 0.8; cz,1 = {0.3, 0.7, 1.4}
Model 3: τx,2 = 0.9; cx,2 = 1;

τz,1 = {0.2, 0.4, 0.6}; τz,2 = 0.9; cz,2 = 1

Model 4: τx,2 = 0.7; τx,3 = 0.8; cx,2 = 1;

τz,1 = {0.2, 0.4, 0.6}; τz,2 = 0.7; τz,3 = 0.8; cz,1 = {0.3, 0.7, 1.4}; cz,2 = 1

The strength of the alternative H1 is controlled by the magnitude of βz > 0, and we
consider βz = {0.025, 0.05, 0.1}.

Table 2a gives the powers under Model 1. For a given set of values of τz,1 and cz,1,
we see that the rejection rate of the procedure is monotonically increasing with βz, while
for given values of cz,1 and βz, this rate monotonically decreases with τz,1. Both of these
findings are consistent with what intuition might suggest, since the larger is βz, the farther
H1 lies from H0; also, the smaller is τz,1, the longer is the explosive regime. For a given
τz,1 and βz, we find that the rejection rate, perhaps surprisingly, is not monotonic in the
explosive parameter cz,1. It is higher for cz,1 = 0.3 than for cz,1 = 0.7; however, it is then
higher for cz,1 = 1.4 than for cz,1 = 0.3. Table 2b gives the results for Model 2. Other
things equal, the results with respect to βz and τz,1 mirror the monotonic results of Table 2a.
Interestingly, the non-monotonicity regarding cz,1 is largely absent in Table 2b. For Model
3, we once more see monotonicity for βz and τz,1, but again some non-monotonicity for
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cz,1 is evident. In Table 2d, the rejection rates appear monotonic in βz, τz,1 and (apart from
a single very minor exception) cz,1. It is evident from the results of Table 2a–d then, that
while the results for βz and τz,1 are in line with what we would a priori expect, those for
cz,1 imply that it plays a rather complex role in determining finite sample rejection rates.

While the results reported in Table 2 pertain to only a single sample size (T = 200)
and a single setting for the parameters governing the degree of explosivity in the xt and
zt series (αx,1 = αx,2 = αz,1 = αz,2 = 0.6), additional results reported in Appendix S1,
using a range of sample sizes, demonstrate the consistency of the bootstrap procedure
for different explosive parameter settings, in line with the consistency result derived in
section IV.

VI. Identifying the timing of explosive regime migration

In practice, under the null of co-explosivity the value of the lag/lead parameter i is
typically not known. Suppose then, we construct the regression residuals on which S and
Sb are based from the fitted regression êy,t,j = yt − μ̂y − β̂xxt−j where j is a user-chosen
value for i. To examine the effects of the possibility that j �= i, we note that êy,t,j can be
decomposed as

êy,t,j = βxr1,t,i,j + r2,t,j,

where r1,t,i,j is a residual from a regression of xt−i − xt−j on a constant and xt−j, while r2,t,j

is a residual from a regression of εy,t on a constant and xt−j. Here, r1,t,i,j directly reflects
the contribution to êy,t,j arising from the incorrect choice of j since r1,t,i,j = 0 for all t if
and only if j = i. Taking the case where j > i as an example then, during the explosive
regime, it can be shown that

xt−i − xt−j ≈ (j − i)δx,1ux,t−i.

A priori, then, we might expect the êy,t,j to be rather larger in magnitude than when j = i,
that is, when êy,t,j = r2,t,j, due to the neglected explosive term (j − i)δx,1ux,t−i appearing in
r1,t,i,j, consequently leading to S over-rejecting, and increasingly so with the magnitudes
of j − i and βx.

5
Intuition would therefore suggest we might determine i by calculating

σ̂ 2
y,j = (T − |j|)−1 ∑T+j1(j<0)

t=j1(j>0)+1 ê2
y,t,j for a range of values ofj , and estimating i by the

value of j for which σ̂ 2
y,j is minimized. That is, we can estimate i using ı̂ = arg min j∈J σ̂

2
y,j

where J is the set of values of j considered and we implicitly assume that i is an element
of J .

To gauge the effects of incorrect specification of i, together with the performance
of the estimator ı̂, we conduct simulation exercises using null DGPs similar to those in
section, again setting i = 0 (such that the co-explosivity is contemporaneous). We set
βx = {0.25, 0.5, 1} but only now consider cx,1 = 0.7 in the homoskedastic case σt = 1.
We allow j to take the values j = {−6, −2, −1, 0, 1, 2, 6} in the fitted regression model,
such that misspecification exists unless j = 0. Table 3a gives the results for Model 1.
It is immediately evident that, for a given value of βx, rejection rates increase with |j|,

5
Notice that r2,t,j also depends on j, but in a much more benign way than r1,t,i,j as the regressand is simply εy,t.

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



16 Bulletin

T
A

B
L

E
3

F
in

ite
sa

m
pl

e
re

je
ct

io
n

ra
te

s
of

w
ild

bo
ot

st
ra

p
S

(a
)

M
od

el
1,

c x
,1

=
0.

7

β
x
=

0.
25

β
x
=

0.
5

β
x
=

1

j
j

j

τ x
,1

−6
−2

−1
0

1
2

6
ı̂

−6
−2

−1
0

1
2

6
ı̂

−6
−2

−1
0

1
2

6
ı̂

0.
2

0.
22

8
0.

06
0

0.
04

7
0.

05
3

0.
05

0
0.

06
0

0.
29

6
0.

05
2

0.
49

3
0.

08
3

0.
04

5
0.

05
3

0.
04

9
0.

08
7

0.
58

3
0.

05
3

0.
69

0
0.

12
7

0.
03

7
0.

05
3

0.
04

2
0.

14
1

0.
72

9
0.

05
3

0.
4

0.
25

2
0.

06
1

0.
04

7
0.

05
2

0.
05

0
0.

06
7

0.
37

8
0.

05
1

0.
55

2
0.

08
6

0.
04

5
0.

05
2

0.
05

0
0.

11
6

0.
67

2
0.

05
2

0.
74

2
0.

13
6

0.
03

6
0.

05
2

0.
05

0
0.

19
1

0.
80

9
0.

05
2

0.
8

0.
53

2
0.

11
6

0.
06

9
0.

05
6

0.
06

2
0.

11
4

0.
67

5
0.

05
5

0.
82

3
0.

25
1

0.
09

3
0.

05
6

0.
08

9
0.

26
3

0.
93

7
0.

05
6

0.
92

8
0.

44
2

0.
15

2
0.

05
6

0.
14

4
0.

51
9

0.
98

0
0.

05
6

(b
)

M
od

el
2,

τ x
,2

=
0.

8,
c x

,1
=

0.
7

β
x
=

0.
25

β
x
=

0.
5

β
x
=

1

j
j

j

τ x
,1

−6
−2

−1
0

1
2

6
ı̂

−6
−2

−1
0

1
2

6
ı̂

−6
−2

−1
0

1
2

6
ı̂

0.
2

0.
94

7
0.

76
2

0.
55

5
0.

05
2

0.
57

7
0.

78
3

0.
97

1
0.

05
2

0.
98

8
0.

87
2

0.
74

0
0.

05
2

0.
76

3
0.

89
3

0.
99

6
0.

05
2

0.
99

7
0.

92
7

0.
83

9
0.

05
2

0.
85

9
0.

96
2

0.
99

8
0.

05
2

0.
4

0.
87

9
0.

48
0

0.
21

8
0.

05
2

0.
24

1
0.

53
1

0.
93

1
0.

05
3

0.
97

1
0.

69
9

0.
44

7
0.

05
2

0.
49

0
0.

76
9

0.
98

7
0.

05
2

0.
98

8
0.

83
0

0.
61

8
0.

05
2

0.
68

1
0.

91
9

0.
99

6
0.

05
2

0.
6

0.
69

7
0.

12
6

0.
06

4
0.

04
9

0.
08

2
0.

18
5

0.
81

5
0.

05
0

0.
93

7
0.

31
8

0.
10

1
0.

04
9

0.
14

8
0.

45
2

0.
96

8
0.

04
9

0.
98

2
0.

56
5

0.
18

7
0.

04
9

0.
29

2
0.

74
6

0.
99

1
0.

04
9

(C
on

tin
ue

d)

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



Testing for co-explosive behaviour in financial time series 17

T
A

B
L

E
3

(C
on

tin
ue

d)

(c
)

M
od

el
3,

τ x
,2

=
0.

9,
c x

,1
=

0.
7,

c x
,2

=
1

β
x
=

0.
25

β
x
=

0.
5

β
x
=

1

j
j

j

τ x
,1

−6
−2

−1
0

1
2

6
ı̂

−6
−2

−1
0

1
2

6
ı̂

−6
−2

−1
0

1
2

6
ı̂

0.
2

0.
97

9
0.

89
5

0.
78

0
0.

05
0

0.
77

7
0.

88
5

0.
98

2
0.

05
0

0.
99

4
0.

94
6

0.
88

2
0.

05
0

0.
87

2
0.

94
3

0.
99

5
0.

05
0

0.
99

8
0.

97
1

0.
92

8
0.

05
0

0.
92

6
0.

97
3

0.
99

8
0.

05
0

0.
4

0.
95

0
0.

74
1

0.
50

3
0.

05
0

0.
50

2
0.

74
2

0.
95

4
0.

05
0

0.
98

5
0.

87
4

0.
71

1
0.

05
0

0.
71

5
0.

86
5

0.
98

8
0.

05
0

0.
99

5
0.

93
3

0.
82

5
0.

05
0

0.
82

0
0.

93
9

0.
99

6
0.

05
0

0.
6

0.
87

3
0.

38
5

0.
12

9
0.

05
1

0.
14

4
0.

37
7

0.
87

6
0.

05
1

0.
96

6
0.

67
1

0.
33

1
0.

05
1

0.
33

3
0.

65
3

0.
97

2
0.

05
1

0.
99

2
0.

82
4

0.
55

5
0.

05
1

0.
53

5
0.

82
0

0.
99

1
0.

05
1

(d
)

M
od

el
4,

τ x
,2

=
0.

7,
τ x

,3
=

0.
8,

c x
,1

=
0.

7,
c x

,2
=

1

β
x
=

0.
25

β
x
=

0.
5

β
x
=

1

j
j

j

τ x
,1

−6
−2

−1
0

1
2

6
ı̂

−6
−2

−1
0

1
2

6
ı̂

−6
−2

−1
0

1
2

6
ı̂

0.
2

0.
94

0
0.

67
6

0.
38

5
0.

04
9

0.
35

1
0.

62
8

0.
93

7
0.

04
9

0.
98

2
0.

84
2

0.
63

3
0.

04
9

0.
58

7
0.

80
1

0.
98

7
0.

04
9

0.
99

4
0.

92
6

0.
77

9
0.

04
9

0.
73

5
0.

90
3

0.
99

6
0.

04
9

0.
4

0.
86

6
0.

34
9

0.
12

5
0.

05
4

0.
11

0
0.

28
8

0.
85

0
0.

05
4

0.
95

7
0.

63
6

0.
29

1
0.

05
4

0.
23

9
0.

55
2

0.
96

6
0.

05
4

0.
98

4
0.

81
8

0.
50

6
0.

05
4

0.
42

1
0.

76
9

0.
99

0
0.

05
4

0.
6

0.
66

6
0.

13
1

0.
07

0
0.

05
3

0.
06

4
0.

11
4

0.
62

9
0.

05
3

0.
90

5
0.

30
8

0.
10

2
0.

05
3

0.
09

3
0.

25
9

0.
90

8
0.

05
3

0.
97

0
0.

56
1

0.
18

5
0.

05
3

0.
14

6
0.

49
6

0.
97

3
0.

05
3

N
ot

es
:

E
nt

ri
es

in
th

e
ta

bl
e

re
pr

es
en

t
th

e
fin

ite
sa

m
pl

e
si

ze
s

of
no

m
in

al
0.

05
-l

ev
el

w
ild

bo
ot

st
ra

p
S

te
st

s
un

de
r

ho
m

os
ke

da
st

ic
ity

,
fo

r
va

ri
ou

s
fit

te
d

la
g/

le
ad

va
lu

es
.

T
he

sa
m

pl
e

si
ze

is
T

=
20

0
an

d
β

x
is

th
e

co
ef

fic
ie

nt
on

x t
.M

od
el

s
1

–
4

ar
e

as
de

fin
ed

in
se

ct
io

n
II

,w
ith

τ x
,1

,τ
x,

2
an

d
τ x

,3
de

no
tin

g
th

e
st

ar
to

f
th

e
ex

pl
os

iv
e

re
gi

m
e,

th
e

en
d

of
th

e
ex

pl
os

iv
e

re
gi

m
e,

an
d

th
e

en
d

of
th

e
st

at
io

na
ry

co
lla

ps
e

re
gi

m
e

in
x t

,r
es

pe
ct

iv
el

y.
T

he
ex

pl
os

iv
e

an
d

st
at

io
na

ry
co

lla
ps

e
of

fs
et

pa
ra

m
et

er
s

ar
e

gi
ve

n
by

δ x
,1

=
c x

,1
T

−0
.6

an
d

δ x
,2

=
c x

,2
T

−0
.6

,r
es

pe
ct

iv
el

y.
T

he
tr

ue
le

ad
/la

g
ii

s
ze

ro
;r

es
ul

ts
ar

e
gi

ve
n

fo
r

te
st

s
us

in
g

di
ff

er
en

tfi
tte

d
le

ad
/la

g
va

lu
es

ja
nd

fo
r

th
e

es
tim

at
ed

le
ad

/la
g

ı̂.

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



18 Bulletin

that is, with the degree of estimating model misspecification (departures from j = 0),
as expected. Rejection rates tend to be slightly higher for the positive values of j than
for their negative counterparts. These rejection rates also clearly increase with βx, again
in line with expectations. For Model 2, Table 3b shows rejection rates again increasing
with |j|. Here, however, these rejection rates are generally substantially higher than for
Model 1, other things equal. This arises because the end of the explosive period (as well
as the beginning) is now being mis-timed, essentially thereby amplifying the effects of
misspecification. The results for Models 3 and 4 (Table 3c-d) share many more similarities
with those for Model 2 than for Model 1. This is perhaps to be expected as they both
also contain explosive regimes that terminate within the sample (albeit into a stationary
regime rather than a random walk). At a practical level, what this implies is that our test
will not be able to reliably distinguish between H0 and H1 being true when an incorrect
choice of lag/lead parameter is employed, since both will result in the test rejecting at
levels in excess of the true significance level. The results employing ı̂ are based on the
set of values J = {−6, −5, . . . , −1, 0, 1, . . . , 6}. Throughout Table 3a–d, we see that
the rejection rates using ı̂ are very close to those obtained under j = 0, implying that ı̂ is
selecting the correct value of 0 with substantial regularity. These results suggest that ı̂ is
performing very satisfactorily as an estimator of i, and on this basis, we would recommend
employing it as a matter of practice to construct the residuals used in S and Sb. Of course,
in any particular application, a user-specific decision will need to be made regarding the
search set J and some judgement exercised.

VII. Empirical application

Data

Our dataset consists of monthly observations for the period 1993:7–2019:5 on the
COMEX/NYMEX prices of four precious metals: Gold, Palladium, Platinum, and Silver,
and the LME prices for six non-ferrous metals: Aluminium, Copper, Lead, Nickel, Tin,
and Zinc. For completeness, we compute results using both spot price data and continuous
futures price data (we use the continuous price series that rolls to the nearest position
contract on the first day of each month). In both cases the price data are deflated using the
consumer price index (CPI) prior to testing. All of the data used were downloaded from
Datastream.

6

There are some important differences in the behaviour of precious and non-ferrous
metals over the sample period we consider, reflecting their different primary roles as
investment assets and manufacturing inputs. For example, driven by the increased demand
from rapidly industrializing emerging markets for non-ferrous metals as manufacturing
inputs (particularly Brazil, China, India, and Russia) and concerns over supply availability,
non-ferrous metals prices increased very significantly in the early- and mid-2000s, more
so than the precious metal prices over the same period (see Figuerola-Ferretti et al., 2015,

6
While several recent studies of bubbles in individual metals prices have successfully used weekly rather than

monthly data (e.g. Figuerola-Ferretti et al., 2015; Figuerola-Ferretti and McCrorie, 2016), we choose to use monthly
data for consistency with previous studies of the relationship between metals prices that have tended to use monthly
data (e.g. Escribano and Granger, 1998; Baur and Tran, 2014).
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for further details on the demand and supply factors behind the risk in non-ferrous metals
prices during this period). Similarly, following the 2007–08 global financial crisis and
collapse in global demand and production of manufactured products, falls in non-ferrous
metals prices were proportionately more extreme than for Gold and Silver. Interestingly,
following the 2007–08 global financial crisis, the price of Platinum did fall by a similar
proportionate amount to the non-ferrous metals, possibly reflecting its important role as a
manufacturing input in the automotive industry. More generally, while all of the metals
price series experienced higher volatility in the late-1980s/early-1990s and from 2005
onwards, and lower volatility in the 1990s and early 2000s, shifts in volatility are more
extreme for the non-ferrous metals than for the precious metals. It should be noted that
significant differences in market tightness and short-term production and consumption
elasticities also exist for the different types of metals that we analyse. For example,
short-term production and consumption elasticities are especially low for the case of
non-ferrous metals; this can impact on the volatility of prices and even induce explosive
behaviour (see Figuerola-Ferretti et al., 2015, for further details).

Tests for explosive autoregression in the individual series

Prior to applying our test for co-explosive behaviour, it is important to formally test
whether explosive autoregressive regimes are present in the individual series, since this
is a precondition for co-explosivity (although we do not need to know the form of the
explosive behaviour – see Remark 3). To do this, we use the PSY test of the unit root
null hypothesis against the alternative of at least one explosive autoregressive regime.
The PSY test is based on the supremum of forward and backward recursive statistics,
and has good power to detect single or multiple periods of explosive autoregressive
behaviour. In our empirical application, we choose the number of lagged differences in
the underlying Dickey–Fuller regressions using the Bayesian information criteria (BIC),
allowing for a maximum of six lags. To assess the statistical significance of the computed
test statistics, we use critical values that allow for heteroskedasticity (since it is clearly
a feature of our data set), obtained employing the wild bootstrap procedure proposed by
Harvey et al. (2016) with 1999 bootstrap replications. For completeness, we also assess
statistical significance using an IID bootstrap. The results are given in Table 4 in the form
of -values.

It can be seen in Table 4 that for both the spot and futures price series, when an
IID bootstrap is used, all of the PSY test statistics are significant at the 0.01 level,
with the exception of Aluminium prices. When the wild bootstrap critical values are
used, the evidence of explosive behaviour is a little weaker. However, rejections are still
obtained at conventional significance for all four precious metals and for the non-ferrous
metals apart from Aluminium. These results highlight that it is important to account for
heteroskedasticity when testing for explosive behaviour in the prices of precious and
non-ferrous metals using PSY tests, and there are fewer strong rejections when a wild
bootstrap is used compared with an IID bootstrap. This is consistent with the results
obtained by Harvey et al. (2016) and Figuerola-Ferretti and McCrorie (2016) in their
empirical applications of the PWY/PSY tests employing wild bootstrap critical values.
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TABLE 4

Application of bootstrap PSY tests for explosive behaviour to metals prices

Spot Futures

I W I W

Precious metals

Gold 0.000 0.035 0.000 0.028
Palladium 0.000 0.040 0.000 0.024
Platinum 0.000 0.082 0.000 0.086
Silver 0.000 0.034 0.000 0.041

Non-ferrous metals

Aluminium 0.140 0.309 0.143 0.317
Copper 0.000 0.008 0.000 0.006
Lead 0.000 0.021 0.000 0.018
Nickel 0.000 0.030 0.000 0.023
Tin 0.000 0.062 0.000 0.072
Zinc 0.000 0.002 0.000 0.002

Note: Entries in the table represent P-values associated with bootstrap PSY tests, with I and W denoting the test
implemented using an IID bootstrap and a wild bootstrap, respectively.

However, we still find that for all of the precious metals prices and the majority of the non-
ferrous metals prices, the PSY tests suggest explosive autoregressive behaviour consistent
with the possible presence of bubbles. Therefore it is possible that co-explosivity exists
among these metals prices, which we investigate in the following subsection.

In Table 5 we report the periods of explosive behaviour detected using the date-
stamping approach for bubbles proposed by PSY.

7
Note that this date-stamping approach

does not account for possible heteroskedasticity, but we nevertheless consider the identified
bubble periods as being illustrative of the behaviour of these series. We find identical
or very similar results for most of the spot and futures prices. For Gold and Silver
prices this approach detects explosive behaviour in 2007–08, leading up to the global
financial crisis, and in the recovery and Eurozone crisis periods after the financial crisis.
However, an earlier short period of explosive behaviour is also detected for Gold in
2003–04. For Platinum prices, this approach finds explosive behaviour in the period
leading up to the global financial crisis, but not after the crisis. For Palladium prices, short
explosive periods are detected in the late-1990s and early-2000s. PSY date-stamping for
the non-ferrous metals finds explosive behaviour in the early and mid-2000s. Interestingly,
for Copper (spot) and Lead (spot and futures), the third explosive period ends before
the global financial crisis, and slightly earlier than the pre-crisis periods of explosive
behaviour detected for Gold, Silver and Platinum. The explosive periods detected for
Tin prices before the global financial crisis seem to lag those for Copper and Lead and
are similar to the results for the precious metals. PSY date-stamping suggests only a
single explosive period for Nickel prices in 2006–07. While these date-stamping results

7
Note that PSY date-stamping is known for detecting periods of both positively and negatively explosive

behaviour. Given the focus of our approach on positive co-explosive behaviour, in Table 5 we only report positively
explosive periods detected by PSY date-stamping.
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TABLE 5

PSY date-stamping of explosive periods in metals prices

Precious metals Spot Futures

Gold 07/03–06/04 09/05–09/08 01/09–04/13 07/03–03/04 09/05–09/08 12/08–04/13
Palladium 03/98–07/98 12/98–05/99 07/99–05/01 01/98–09/98 12/98–05/01 12/10–01/11
Platinum 02/04–03/04 01/06–08/06 01/07–08/08 02/04–03/04 01/06–09/06 01/07–08/08
Silver 01/06–07/07 09/07–07/08 09/10–11/11 01/06–05/06 09/07–07/08 09/10–11/11

Non-ferrous metals

Copper 02/04–03/04 11/04–03/05 06/05–12/06 06/05–11/06 - -
Lead 12/03–03/04 11/04–04/05 10/06–04/08 12/03–02/04 11/04–12/04 10/06–04/08
Nickel 07/06–05/07 - - 07/06–05/07 - -
Tin 02/04–10/04 01/07–08/08 09/10–05/11 07/01–05/02 01/07–08/08 -
Zinc 07/97–08/97 12/04–03/05 05/05–02/07 07/97–08/97 12/04–03/05 05/05–12/06

Note: Entries in the table represent date ranges for positively explosive periods identified by the PSY date-stamping
procedure, with dates in the form MM/YY.

are not directly comparable with the date-stamping results for precious and non-ferrous
metals prices reported in Figuerola-Ferretti and McCrorie (2016) and Figuerola-Ferretti
et al. (2015) because of differences in the type of data used, there are some common
findings. For example, Figuerola-Ferretti and McCrorie (2016) also find evidence of
explosive behaviour in precious metals prices in the period leading up to the financial
crisis and after the crisis, and Figuerola-Ferretti et al. (2015) also find periods of explosive
behaviour for non-ferrous metals prices in the early and mid-2000s.

Although the presence of explosive autoregressive behaviour in precious and non-
ferrous metals prices might be consistent with the presence of speculative bubbles, it is
also possible that in some cases the periods of explosive behaviour that we detect may
be partly or entirely driven by improved fundamentals. However, it is very difficult to
separate out with accuracy the impact of speculation and fundamentals on the explosive
component of metals prices, particularly since, unlike equities, for precious and non-
ferrous metals there is no single primary measure of fundamentals and in practice, proxies
need to be used. Recent studies that have considered whether information on proxies for
relevant fundamentals can explain explosive behaviour in precious metals prices have
concluded that such proxies offer little support for the bubble hypothesis, other than for
Gold prices in the run-up to the high point of the financial crisis and for Silver and
Palladium prices linked to the launch of certain financial products (Figuerola-Ferretti
et al., 2015; Figuerola-Ferretti and McCrorie, 2016). Indeed, there is a growing consensus
that the dramatic increase in non-ferrous metals prices in the early- and mid-2000s
was primarily driven by the increased demand from rapidly industrializing emerging
markets for these metals as manufacturing inputs (particularly Brazil, China, India,
and Russia) and concerns over supply availability, rather than because of speculative
behaviour and bubbles (see Figuerola-Ferretti et al., 2015, for a detailed analysis of
the demand and supply factors behind the risk in non-ferrous metals prices during this
period).

An investigation of whether evidence of explosivity constitutes evidence of bubbles
lies outside of the scope of this article, and we recognize that evidence from our test
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supporting the null hypothesis of co-explosive behaviour could simply be evidence of
co-explosive behaviour driven by co-explosive fundamentals. However, it is important
to also recognize that our test is informative in empirical applications where data on
fundamentals are not available because it looks for evidence against the existence of
co-explosive behaviour (co-explosivity being the null hypothesis), and the absence of
data on fundamentals does not affect the ability of the test to reject this null when it is
false. Therefore, even when data on fundamentals are not available, a rejection from our
test can be used to rule out co-bubble behaviour between pairs of series where explosive
behaviour had already been detected (e.g. following an application of the PSY test), even
if the co-explosive finding associated with a non-rejection from our test cannot uniquely
be ascribed to co-bubbling.

Results from tests for co-explosive behaviour

The results from applying our bootstrap test statistic S are reported in Table 6. The
lag/lead parameters for constructing the residuals underpinning the S and Sb statistics
are estimated using ı̂ from section VI with J = {−12, −11, . . . , −1, 0, 1, . . . , 11, 12} ,
thereby permitting a lag/lead of up to 1 year. To account for possible serial correlation in
εy,t when computing S, we replace the short-run variance estimator σ̂ 2

y with the long-run
variance estimator proposed by Newey and West (1994), which employs a quadratic
spectral kernel with automatic lag selection. The computed test statistics are given, along
with the p-values computed from 5,000 bootstrap replications using the algorithm outlined
in section IV. We computed results for all possible pairs of metals price series, excluding
any pairs involving Aluminium (since this series was found to not contain explosive
regimes) and for each we considered both possibilities in terms of which series is specified
as yt and which as xt in the test for co-explosive behaviour. In order to focus on the
most robust findings, we report results only for those pairs of metals for which p ≥ 0.025
regardless of which series was specified as yt and which as xt ; for all other pairs of metals,
co-explosive behaviour was rejected at the 0.025 level for at least one of the two possible
orderings of yt and xt .

It can be seen from Table 6 that very similar results are obtained for both the spot
and the futures prices and the same co-explosive pairs are identified irrespective of which
type of data is used. Graphs of the pairs of spot prices for which our test finds evidence
of co-explosive behaviour are given in Figure S1 of Appendix S1, along with the relevant
co-explosive residual series. All the residual series show evidence of heteroskedasticity
(that our wild bootstrap procedure accounts for when we compute the p -values in
Table 6 ), with the volatility noticeably lower in the period up to 2005–06 than later in
the sample.

For both the spot and the futures prices, our test reveals evidence of co-explosive
behaviour for one or more pairs involving three of the four precious metal series considered:
Gold, Silver, and Platinum. Interestingly, we do not find statistically significant evidence of
co-explosive behaviour between any pairs of precious metals, but only for pairs involving
non-ferrous metals, including Copper and Silver, Copper and Platinum, and Lead and
Gold. Notice from Table 6 that for the Lead–Gold pair, ı̂ = −7 indicating that explosive
behaviour in the Lead price leads to explosive behaviour in the Gold price by 7 months.
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TABLE 6

Application of wild bootstrap S tests for co-explosive behaviour to metals prices

Spot Futures

yt xt ı̂ p-value ı̂ p-value

Copper Lead 0 0.391 0 0.391
Lead Copper 0 0.043 0 0.041
Copper Platinum 0 0.050 0 0.051
Platinum Copper 0 0.071 0 0.066
Copper Silver 0 0.095 0 0.100
Silver Copper 0 0.073 0 0.081
Lead Gold −7 0.188 −7 0.192
Gold Lead 7 0.076 7 0.076
Lead Tin −2 0.198 −2 0.202
Tin Lead 2 0.127 2 0.127
Tin Gold 0 0.346 0 0.369
Gold Tin 0 0.036 0 0.036
Nickel Zinc 3 0.041 3 0.040
Zinc Nickel −3 0.035 −3 0.036

Notes: Table rows provide results for a given pair of metals prices, stating which series is specified as yt and which
as xt in the S test for co-explosive behaviour. The estimated lead/lag value is given by ı̂. The p-values are obtained
from the wild bootstrap procedure. Results are reported for pairs of metals price series for which the p-value exceeds
0.025 regardless of which series was specified as yt and which as xt (pairs involving Aluminium were excluded as
this series was found to not contain explosive regimes).

This result is broadly consistent with previous research on the timing of speculative
behaviour in precious and non-ferrous metals prices. For example, Figuerola-Ferretti
et al. (2015) find that the main episodes of explosive behaviour for non-ferrous metals are
in the period 2003–07 and they appear to be driven by an increase in the demand for these
metals from emerging economies, while Figuerola-Ferretti and McCrorie (2016) find that
for precious metals the main periods of explosive behaviour tend to occur in the period
leading up to the global financial crisis and in the period after the crisis (see also Zhao
et al., 2015, who find explosive behaviour in the Gold price over 2009–13). It can be
seen in Table 6 that Gold and Lead are the only pair of precious and non-ferrous metals
where we do find a large lag/lead between the explosive behaviour detected. For the
Copper–Silver pair, and the Copper–Platinum pair, ı̂ = 0, indicating a contemporaneous
co-explosive relationship. We also find statistically significant evidence of co-explosive
behaviour for three pairs of non-ferrous metals prices. A contemporaneous co-explosive
relationship is found for Copper and Lead, while explosive behaviour in the Lead price
is found to lead explosive behaviour in the Tin price by 2 months. Nickel and Zinc are
also found to be co-explosive, with explosive behaviour in Nickel lagging that in Zinc by
3 months.

On comparing the computed lag values given in Table 6 and the start and end dates
of the explosive regimes suggested by the PSY date-stamping in Table 5, we do not
find an exact correspondence (perhaps not surprisingly given the different methodologies
involved), but we do observe some common patterns across the two sets of results. For
example, for both the spot and futures prices, while the first shorter explosive period
detected by PSY date-stamping for Gold precedes the first period detected for Lead, the
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positions of the second and third periods are broadly consistent with our finding of a
negative (positive) lag for the Lead–Gold (Gold–Lead) pair. Similarly, the explosive
periods detected by PSY date-stamping for Lead and Tin are broadly consistent with
our finding of a negative (positive) lag for the Lead–Tin (Tin–Lead) pair. Although our
test detects co-explosive behaviour for multiple pairs of precious and non-ferrous metals,
we recognize that it does not reveal conclusive information on whether this is due to
the migration of speculative behaviour in metals markets. A more detailed analysis of
fundamentals and trading volumes for the relevant pairs of metals would be required to
understand the extent to which our results represent evidence of speculative behaviour
spreading between the different types of metals.

Our finding of co-explosive links between some of the precious metals and non-
ferrous metals prices is interesting because while there has been considerable recent
research on the relationship between non-ferrous metals prices (e.g. Ciner, Lucey and
Yarovaya, 2020), and between precious metals prices (e.g. Kucher and McCoskey, 2017),
there has been relatively little recent research on the relationship between precious
and non-ferrous metals. A comprehensive empirical analysis of co-movements and
trends in a large sample of precious and non-ferrous metals prices by Rossen (2015)
does find evidence that certain precious and non-ferrous metals prices are strongly
correlated, including Copper, Zinc, and the main precious metals. However, in this
research, correlation is measured using the Pearson correlation coefficient, which is not
designed for processes with shifts between regimes of I(1) and explosive autoregressive
behaviour. In contrast, our procedure is designed for this situation and delivers robust
inference.

It is also interesting that we do not find statistically significant evidence of co-explosive
behaviour between Gold and Silver prices, since both Escribano and Granger (1998) and
Baur and Tran (2014) do find some evidence of cointegration between Gold and Silver
spot prices using monthly data and orthodox cointegration techniques. However, our
results, which are computed using a more recent sample of data that begins in the 1990s,
are not inconsistent with those in Escribano and Granger (1998) and Baur and Tran (2014),
as both of these studies find a weakening of the relationship between Gold and Silver
prices in the 1990s. Other empirical studies using conventional cointegration tests have
also found evidence that questions the existence of cointegration between Gold and Silver
prices, particularly since the 1990s. For example, using daily data for the 1990s and
Johansen (1991) trace and maximum eigenvalue test statistics, Ciner (2001) finds no
evidence of cointegration between Gold and Silver futures prices, while using monthly
spot price data for 1970:1–2015:5, Pierdzioch, Risse and Rohloff (2015) find that Gold
and Silver prices are cointegrated only occasionally and that for long periods there is
no evidence of a long-run relationship. Escribano and Granger (1998) and Baur and
Tran (2014) also investigate the short-run relationship between Gold and Silver prices
using linear and nonlinear error correction models (ECMs). Baur and Tran (2014) find
that short-run causality runs from the Gold price to the Silver price but not in the opposite
direction. However, their analysis does not explicitly account for the fact that the Gold and
Silver price series contain regimes of explosive autoregressive behaviour. When the Gold
and Silver prices are explosive autoregressive processes in levels, first-differences will
also be non-stationary since an explosive series cannot be differenced to stationarity – see

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



Testing for co-explosive behaviour in financial time series 25

Diba and Grossman (1988) for further details. Therefore, standard t-tests computed using
ECMs as in Baur and Tran (2014) could lead to erroneous conclusions. Escribano and
Granger (1998) also do not explicitly recognize the potentially explosive nature of the raw
price data, which could impact on the standard errors obtained for regressions employing
such series.

VIII. Summary

In this article, we have proposed a test procedure for the detection of co-explosive
behaviour involving two price series that each contain regimes of explosive autoregressive
behaviour. Our test statistic is built on a variation of the stationarity test of KPSS.
We establish the asymptotic properties of our test statistic and show that the null
distribution is dependent on the pattern of heteroskedasticity in the model errors. To
obtain appropriately size-controlled critical values for use in empirical applications, we
propose a wild bootstrap procedure and find that, in addition to its asymptotic size
control, the procedure has good finite sample size and power performance. The new
test for co-explosive behaviour constitutes a simple, robust, and effective procedure that
provides a valuable addition to the set of methods for analysing series with bubble
components, allowing an analysis of co-movements between pairs of series. An empirical
application to detect co-explosivity between the prices of precious and non-ferrous
metals is included, which illustrates the practical value of the proposed test. We find
convincing evidence from PSY tests that many of the metals prices in our sample include
regimes of explosive autoregressive behaviour. Interestingly, we only uncover statistically
significant evidence of co-explosive behaviour for pairs involving non-ferrous metals.
While previous empirical research using orthodox statistical methods has found evidence
suggesting that some precious and non-ferrous metals prices are strongly correlated, our
methods are significantly more robust because they permit episodes of explosivity and
heteroskedasticity.
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