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Determining the flow of rays or non-interacting particles driven by a force or velocity field is

fundamental to modelling many physical processes. These include particle flows arising in fluid

mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many

practical applications, the driving field is not known exactly and the dynamics are determined only

up to a degree of uncertainty. This paper presents a boundary integral framework for propagating

flows including uncertainties, which is shown to systematically interpolate between a deterministic

and a completely random description of the trajectory propagation. A simple but efficient discreti-

sation approach is applied to model uncertain billiard dynamics in an integrable rectangular

domain. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903064]

Many physical transport problems can be formulated in

terms of ray tracing or trajectory methods. Applications

range from particle tracking in fluids1,2 and the simula-

tion of molecular dynamics3 to illumination and render-

ing problems in computer graphics4 or, more generally,

the geometric optics limit of linear wave equations. A

range of techniques have been developed for solving ray

tracing problems. One distinguishes between direct ray-

tracing
5,6

based on following ray paths from a source to

receiver point and variants thereof; and indirect methods

using transport equations based on conservation laws

such as the Liouville equation7 to propagate phase space

densities. In the latter case one arrives at a model for

propagating phase-space densities using deterministic

transfer operators of the Frobenius-Perron (FP) type.
8

In

this paper, we will introduce a boundary integral method

for determining phase-space densities propagated via a

stochastic trajectory flow using a transfer operator

approach.

I. INTRODUCTION

A variety of techniques have emerged recently with the

aim of turning transfer operators into an efficient numerical

tool for practical applications. Domain based transfer opera-

tor approaches, for example, start by subdividing the phase-

space into distinct cells and considering transition rates

between these phase-space regions. One of the simplest and

most common approaches of this type is Ulam’s method

(see, e.g., Ref. 9). Other methods include wavelet and spec-

tral methods for the infinitesimal FP-operator,10,11 eigen-

function expansion methods12 and periodic orbit expansion

techniques.8,13 Also the modelling of many-particle dynam-

ics, such as protein folding, has been approached using short

trajectories of the full, high-dimensional molecular dynamics

simulation to construct reduced Markov models.3 For a

discussion of convergence properties of the Ulam method in

one and several dimensions, see Refs. 14 and 15, respectively.

However, such methods have only found a fairly limited range

of applicability, with difficulties arising due to the high-

dimensionality of the phase-space.

In the following we will focus on integral equation for-

mulations for propagating phase space densities along ray

trajectories using transfer operators. One such formulation is

given by the rendering equation4 which has its origins in

computer graphics, but has been applied more widely

since.16,17 The rendering equation can again be formulated in

terms of transfer operators.17,18 A boundary integral FP-

operator approach called dynamical energy analysis (DEA)

has been introduced in Ref. 17 and further developed in Ref.

19. In a sequence of papers,20,21 the method has evolved into

an mesh-based tool called discrete flow mapping (DFM)

described in Refs. 22 and 23. This has proven to be an effi-

cient numerical tool making it possible to handle trajectory

flow problems on complex surfaces (consisting of circa 105

to 106 mesh cells) on the time-scale of a few hours on stand-

ard desktop computers.23

Here, we will extend the DEA approach towards dynam-

ical systems with uncertainties and stochastic dynamics. The

reasons for doing so are twofold: first, in many physically

relevant situations, the system dynamics are inherently sto-

chastic or system parameters are not known exactly and a

probabilistic approach will be necessary. Second, including

stochasticity in a transfer operator changes the properties of

the operator fundamentally in a way that opens the door for a

wider range of numerical solution techniques. Techniques

for constructing stochastic ray-tracing operators have been

presented in Refs. 24–27 in the context of the FP operator,

and in acoustics in terms of the radiosity equation.28

In this paper, we construct a stochastic ray-tracing oper-

ator that leads to a boundary integral formulation for stochas-

tic dynamics in billiards. That is, the underlying dynamical

system is that of a particle or point mass moving on a billiard

table with constant velocity (without friction) inside a com-

pact domain X with piecewise smooth boundary C as

described by Sinai,29 see also Ref. 8, Chap. I, Sec. 8. The
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particle is assumed to undergo specular reflections upon col-

lision with the smooth sections of C. As the overall energy

of the system is constant, the billiard dynamics (integrable,

mixed or chaotic) is completely controlled by the geometry

of C. However, for the stochastic evolution considered here,

both the position of the transported particle and the nature of

its reflection at the boundary will be considered as uncertain.

Typically, the mean transported position and reflected direc-

tion will be those of the standard (deterministic) billiard

map. The effect is that total energy remains constant, but the

stochasticity will clearly influence the billiard dynamics as

will be explored in Sec. III C. The resulting stochastic evolu-

tion operator will be of Fokker-Planck type as discussed in

Refs. 13 and 24.

We note that statistical methods related to the stochastic

approach proposed here have been used in a variety of engi-

neering applications. In particular, the so-called statistical

energy analysis (SEA) (see, for example, Refs. 30 and 31)

for modelling vibro-acoustic energy distributions and the

random coupling model (RCM)32 for modelling electromag-

netic fields, see also Ref. 33. In SEA and RCM the structure

is subdivided into a set of subsystems and ergodicity of the

underlying ray dynamics as well as quasi-equilibrium condi-

tions are postulated. The result is that the density in each

subsystem is taken to be approximately constant leading to

greatly simplified equations based only on coupling con-

stants between subsystems. The disadvantage of these meth-

ods is that the underlying assumptions are often hard to

verify a priori or are only justified when an additional aver-

aging over “equivalent” subsystems is considered. The short-

comings of SEA have been addressed by Langley34,35 and

more recently in a series of papers by Le Bot.16,28,36

In this work, we focus on stochastic ray-tracing approxi-

mations for linear wave problems in two-dimensions, or

equivalently on stochastic billiard dynamics; the models

developed can easily be generalized to higher dimensions.

We propose a new boundary integral approach based on the

use of stochastic evolution operators to incorporate uncertain

ray dynamics into our model in a quantifiable manner.

Propagating densities with uniformly distributed probability

of location and direction leads to the quasi-equilibrium

approaches mentioned above (SEA and RCM). We will

show that choosing a scaled and truncated Gaussian proba-

bility distribution instead leads to a model that interpolates

between SEA and deterministic ray tracing. This interpola-

tion takes place at the level of the governing model, in con-

trast to DEA which provides a similar interpolation due to

the precision of the chosen numerical approximation

method.17 Once an estimate of the level of uncertainty in the

model has been prescribed, an appropriate numerical solu-

tion approach can be applied.

The paper is structured as follows: in Sec. II a boundary

integral description of deterministic ray tracing in billiards

will be presented. The addition of noise into the model will

then be outlined and an approach that interpolates between a

deterministic and a random trajectory flow will be described.

In Sec. III, the numerical implementation of the model will be

outlined and illustrated via the example of stochastic ray trac-

ing in a rectangular billiard. The decay of correlations and the

asymptotic escape rate will be studied to diagnose the behav-

iour of the rectangular billiard model as it makes the transition

from regular and deterministic to probabilistic dynamics.

II. BOUNDARY INTEGRAL EQUATION FORMULATION

A. A boundary integral description of deterministic ray
tracing via transfer operators

Consider the trajectory flow described by a Hamiltonian

Ĥ ¼ cjpj in a finite two-dimensional domain X as depicted

in Fig. 1, where c is the speed of propagation and p is the

inward momentum (or slowness) vector. Denote the phase-

space on the boundary of X with fixed total energy Ĥ ¼ 1 as

Q¼C� (�c�1, c�1), where C is the boundary of X. The

associated coordinates are X¼ [s, p] 2 Q with s 2 [0,L) (arc-

length) parameterising C and p 2 (�c�1, c�1) parameterising

the component p tangential to C. Explicitly, the momentum

coordinate p is defined in terms of the angle h between p and

the normal to C at s (see Fig. 1) as p¼ c�1sin(h). We adopt

the convention that h2 (�p/2, p/2) and is positive for

counter-clockwise propagation. The deterministic boundary

flow map is denoted u : Q! Q, and maps a vector in Q via

the Hamiltonian flow to another vector in a subset of Q. This

map defines a deterministic evolution of the form

uðX0Þ ¼ X, where X0 ¼ [s0, p0], X¼ [s, p]. Fig. 1 shows that

geometrically u corresponds to the composition of a transla-

tion (from s0 to s) and a rotation to the direction correspond-

ing to a specular reflection.

The propagation of a phase-space density q by the

boundary map u through a single reflection is given by the

Frobenius-Perron operator acting on this map

LqðXÞ ¼
ð

Q

dðX � uðX0ÞÞqðX0ÞdX0: (1)

For an initial boundary distribution q0 on Q, the final density

after adding contributions from all reflections may be com-

puted using the following boundary integral equation (see

Refs. 17, 20, and 21):

ðI � LÞq ¼ q0: (2)

Note that for the sum over all reflections to converge, energy

losses must be introduced into the system, which could take

place at the boundaries themselves, or along the trajectories.

In general, a weight factor w will be added inside the integral

in the definition of L which contains a dissipative term, and

FIG. 1. Propagation of ray trajectories using a deterministic boundary map.
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for the extension to multiple domains connected at interfaces

w will also contain reflection/transmission probabilities at

these interfaces. For non-convex polygons, w will addition-

ally include a visibility function.

B. Stochastic trajectory tracking in billiards

1. The stochastic propagation operator

Building upon the deterministic propagation models

described in Sec. II A, we propose a family of phase space den-

sity propagation models with transfer operators of the form

LrqðXÞ ¼
ð

Q

frðX � uðX0ÞÞqðX0ÞdX0: (3)

This operator bears a strong similarity to (1), but the d distri-

bution term has been replaced with a probability density

function (PDF) fr such thatð
Q

frðXÞdX ¼ 1: (4)

Here, fr is the probability distribution and r is the parameter set

controlling its shape. With reference to applications, such a prob-

abilistic behaviour could be attributed to, for example, fluctua-

tions in the wave speed c, roughness of the reflecting surface or

uncertainty in the exact position of the boundary. In the follow-

ing, we will always assume that the total energy Ĥ ¼ cjpj ¼ 1

remains fixed and that the total probability is conserved, that is,

condition (4) holds throughout. Note that in contrast to the mod-

els considered in Refs. 13 and 24, the range of integration in the

billiard models considered here is in general bounded, which has

implications for the choice of suitable PDFs fr.

The simplest case is to take fr ¼ const, upon which one

arrives at a model describing propagation to all admissible

positions and directions with equal probability. The system

is thus by definition ergodic and independent of the underly-

ing classical dynamics. Note that ergodicity is a key assump-

tion for an SEA or RCM treatment to be valid.

In general, we would like to arrive at a stochastic opera-

tor which includes both the deterministic operator in Eq. (1)

and the random propagation model described above as limit-

ing cases. In addition, the PDF fr needs to obey conditions

on the sampling ranges due to the limited range of the

boundary map u. For simplicity, we will restrict to convex

domains X to avoid additional complications due to incorpo-

rating visibility functions.

2. The probability density function-normalisation

We may interpret the evolution given by the operator in

Eq. (3) as originating from a stochastic boundary map ur

with added noise, that is,

urðX0Þ ¼ X;

¼ uðX0Þ þ Xe;
(5)

where Xe ¼ ½se; pe� are random variables drawn from the

PDF fr. Note that se is understood as a shift in counter-

clockwise direction. For X 2 Q given, we have to ensure that

uðX0Þ ¼ X � Xe is still in the range of the deterministic map

u; this yields restrictions on the possible values of Xe and

thus on the domain of fr.

We define u ¼ ½us; up� in terms of its position and mo-

mentum components and write the initial coordinate as

X0 ¼ [s0, p0]. The range of admissible values for usðX0Þ is

½0; LÞnEðs0Þ, where E(s0) is the (closed) set of all points on

the same straight edge as s0, see Fig. 2. Note that for curved

edges we set E(s0)¼ s0 as shown on the RHS of Fig. 2.

Furthermore, we have that upðX0Þ 2 ð�c�1; c�1Þ. It is there-

fore necessary to truncate the ranges from which Xe are

sampled to the ranges where for fixed X; uðX0Þ 2
ð½0; LÞnEðs0ÞÞ � ð�c�1; c�1Þ in Eq. (5). Denoting these trun-

cated ranges by ðX�;XþÞ, where X6 ¼ ½s6; p6�, the PDF fr
will have support on Xe 2 ðX�;XþÞ only. The truncated sam-

pling ranges are given as sþðs0; sÞ ¼ minfx > 0 : sþ x 2
Eðs0Þ ðmod LÞg and correspondingly s�ðs0; sÞ ¼ maxfx < 0 :
sþ x 2 Eðs0Þ ðmod LÞg (see Fig. 2). Likewise in the momen-

tum coordinate, pþðpÞ ¼ c�1 � p and p�ðpÞ ¼ �c�1 � p.

Using Heaviside functions, we define a cut-off function for

restricting the support of fr to ðX�;XþÞ as follows:

vðXe; X�;XþÞ ¼ ðHðsþ � seÞ � Hðs� � seÞÞðHðpþ � peÞ
� Hðp� � peÞÞ: (6)

Note that we have omitted the dependence of s6 and p6 on

X0 and X for brevity.

Having obtained the domain of the PDF, we can now

construct fr explicitly; we will derive the PDF from an

uncorrelated bivariate Gaussian distribution with mean

0¼ [0, 0] and standard deviation r ¼ ½r1; r2�. A normalized

PDF is then obtained by setting

FIG. 2. Tracking ray trajectories via a

noisy boundary map and truncation

limits s6 for the random variable se.
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fr Xe; X�;Xþ
� �

¼
v Xe; X�;Xþð Þexp � s2

e

2r2
1

 !
exp � p2

e

2r2
2

 !

2pr1r2wr1
s�; sþð Þwr2

p�; pþð Þ ;

(7)

where the normalization defined through wr1
and wr2

is

given as

wr1
s�; sþ
� �

¼ 1

2
erf

sþffiffiffi
2
p

r1

 !
� erf

s�ffiffiffi
2
p

r1

� � !
; (8)

and wr2
is defined analogously. The normalisation ensures

that the PDF satisfies condition (4) for the truncated sam-

pling ranges specified through v. Note that the mean and var-

iance of fr differs in general from that of the underlying

Gaussian distribution.

The two limiting PDFs are obtained by considering the

limiting values of r. Taking the limit of (7) as r! 0 then

fr Xe; X�;Xþ
� �

! lim
r!0

v Xe; X�;Xþð Þ
2pr1r2

� exp � s2
e

2r2
1

 !
exp � p2

e

2r2
2

 !
: (9)

The distribution becomes increasingly sharp and the bivari-

ate Gaussian tends to a two-dimensional delta distribution

localised around Xe ¼ X � uðX0Þ ¼ 0, which describes the

deterministic flow discussed in Sec. II A. Taking the limit as

r1, and r2 go to 1 and using the leading order asymptotic

expansion of the error function about 0 returns

fr Xe; X�;Xþ
� �

! c

2 sþ � s�ð Þ v Xe; X�;Xþ
� �

: (10)

Note that this is just the uniform distribution for se 2
ðs�; sþÞ and pe 2 ðp�; pþÞ (since pþ � p� ¼ 2c�1) leading to

the fully probabilistic regime described above. The mean and

variance of the normalized distribution may be calculated from

the PDF (7) using the standard formulae. The variance of the

bivariate distribution will tend to r as r! 0. For large rj,

j¼ 1, 2 we have the variance of the uniform distribution. That

is, as r1!1, VarðseÞ ¼ ðsþ � s�Þ2=12, and as r2!1, then

VarðpeÞ ¼ 1=ð3c2Þ. Clearly such data are vital for applications

in uncertainty quantification, for example, for modelling uncer-

tain high frequency vibro-acoustic or electromagnetic wave

propagation through a manufactured structure or device.

We turn our attention to propagating a density along sto-

chastic ray paths according to the PDF (7) via the transfer

operator (3). We proceed by considering the numerical eval-

uation of Lr; we will in particular, consider some important

dynamical quantities, namely, the rate of escape and the

decay of correlations. These will be studied to help diagnose

the behaviour of the model for different ranges of r.

III. IMPLEMENTATION AND RESULTS

A. Discretisation

A number of efficient methods for evaluating L numeri-

cally in domains including complex multi-component

systems have recently been developed.22,23 One advantage

of instead working with Lr is that it is a compact integral op-

erator and hence may be evaluated more simply via direct

discretisation methods rather than the variational approaches

described in Refs. 22 and 23 and references therein.

Here, we approximate Lr on a rectangular billiard as

shown in Fig. 3. The reason for choosing this simple domain

is that its integrable dynamics make it ideal for identifying

the effect of varying r in isolation of other sources of ray

chaotic behaviour. In particular, we make use of our experi-

ence in dealing with domains with corners in Refs. 22 and 23

and employ a piecewise constant collocation method with n
elements in the position variable, collocating at element cen-

ters. That is, we separate out and approximate the spatial de-

pendence of q in the form

qðs; pÞ � ~qðpÞ
Xn

j¼1

ajbjðsÞ; (11)

where bj(s)¼ 1 if s lies on the jth element and zero else-

where. The coefficients aj are the unknowns to be deter-

mined. The semi-discrete operator Lr is then evaluated at

the collocation points s¼ si for i¼ 1,…,n using Eq. (3) as

Lrqðsi; pÞ ¼
Xn

j¼1

aj

ðc�1

�c�1

~qðp0Þ
ð

ej

frðXi � uðX0ÞÞds0dp0; (12)

where Xi¼ [si, p] and the range of integration with respect to

s0 is on the jth element ej. The phase space coordinate

X0 ¼ [s0, p0] provides the variables integration s0 2 ej and

p0 2 ð�c�1; c�1Þ. Note that the integral with respect to s0

may be calculated analytically in terms of the error function

for discretisation by flat (straight line) elements and using

the normalised PDFs described in the last section. This step

is important for efficient computations of the discretised

transfer operator.

A full discretisation is then achieved by applying the

Nystr€om method in momentum space with N-point trapezoi-

dal integration and a step size h. Note that in order to evenly

discretize with respect to the direction of ray propagation,

the integration variable is changed from p0 to h0 using the

relation cp0 ¼ sin(h0). This reduces the calculation in (12) to a

matrix-vector multiplication, with matrix entries of the form

LI;J ¼
h cos h0ð Þ

c

ð
ej

fr XI � u X0J
� �� �

ds0: (13)

FIG. 3. A rectangular billiard with prescribed boundary condition q0.
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Here, XI ¼ ½si; pi� and so I is the multi-index (i, i), with

pi; i ¼ 1;…;N giving the values of the momenta corre-

sponding to the trapezoidal rule grid points. Likewise,

X0J¼ [s0, pk] and J is the multi-index (j, k), where s0 2 ej is the

integration point and pk, k¼ 1,…,N runs over the trapezoidal

rule grid points as before. The density q can (by extension)

be considered as periodic in the momentum variable since

qðs; c�1Þ ¼ qðs;�c�1Þ ¼ 0, and so the semi-discretisation in

momentum space should converge super-algebraically for

smooth initial data. The convergence properties of the

method overall are demonstrated in Sec. III B. A further

major advantage of this combination of methods is that the

need for numerical integration methods is completely

avoided.

B. Convergence

To test the convergence of the approximation of Lr, we

propagate a stochastic boundary (line) source through a sin-

gle reflection. The dimensions of the rectangle are taken to

be 0.75 by 0.25 and we let c¼ 1 meaning that both the posi-

tion and momentum variables have the same total range. We

also take r1¼r2¼ r for simplicity, although the extension

to distinct r1 and r2 is clearly straightforward. We number

the edges as shown in Fig. 3 so that edges 1 and 3 have

length 0.75 and take

q0 s; pð Þ ¼
I4 sð Þexp

�p2

2r2

� �
ffiffiffiffiffiffiffiffiffiffi
2pr2
p

erf
1ffiffiffi
2
p

r

� � ; (14)

where I4 is an indicator function for edge number 4. That is,

the source is applied along edge 4 as shown in Fig. 3 and its

directivity depends on the parameter r. Figure 4 shows the

result of approximating Lrq0 on sides 1 to 3 of the rectan-

gle. The plot shows the mean ray density along each of the

3 edges plotted against the outgoing angle. The horizontal

axis is a shifted value of this outgoing angle which is

unshifted on side 1, shifted by p on side 2 and by 2p on side

3. This is simply to show the results for each edge side-by-

side.

Figure 4 shows the transition from probabilistic to deter-

ministic dynamics as r is decreased, and therefore illustrates

the theory outlined in Sec. II B. In particular, for r¼ 10, we

see a uniformly distributed ray density across all edges and

all outgoing directions. For r¼ 0.01, one sees that the ray

density localises on edge 2 with outgoing angle 0, i.e., per-

pendicular to the boundary. This is a close approximation to

the expected deterministic evolution. The intermediate cases

(r¼ 1 and r¼ 0.1) show the transition between these two

limiting cases. This transition will be considered in more

depth in Sec. III C.

FIG. 4. Convergence of the ray density after one reflection and the effect of changing r on the dynamics. For all plots except r¼ 0.01: � � �: N¼ 16, – –:

N¼ 32, —: N¼ 64, �-�: N¼ 128. For the r ¼ 0:01, the previous N values should all be multiplied by 4. The horizontal axis shows the outgoing angle in the

range �p/2 to p/2 on edge 1, on edge 2 it is shifted by p and on edge 3 it is shifted by 2p. Edge numbers are indicated on the plot.
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In order to test the convergence of the results shown in

Figure 4, we integrate the boundary phase-space density

over Q to estimate the total density

qtot ¼
ð

Q

Lrq0dX: (15)

For the basic discretisation approaches employed here and

taking n¼N one typically sees convergence in computing

qtot to the first few significant figures with absolute errors of

estimated order between OðN�1Þ and OðN�2Þ as shown in

Figure 5. Note that these rates appear to be superior to the

sub-linear rates expected from a standard Ulam approach.14

Convergence rates are generally higher for smaller values of

r, and usually increase slightly when the number of discreti-

sation points n¼N in both the position and momentum vari-

ables is increased. Note that for r¼ 0.01, the method has

only converged sufficiently to produce meaningful results

when N� 128 and as such this case has been omitted from

the figure. This suggests that the singularly perturbed prob-

lem for small r should be tackled using an adaptive meshing

procedure to resolve the peak(s) more efficiently, rather than

the uniform grid employed here. The development and anal-

ysis of such approaches will be considered as part of future

work.

C. Rate of escape and decay of correlations

The rates of escape and decay of correlation provide

useful information about the dynamics of the billiard system

being studied in terms of their description and classification

(chaotic, mixed or integrable). The escape rate c measures

the decay of the total phase space density, that is, the sur-

vival probability, in the case of an open or absorbing billiard.

This decay is exponential for chaotic dynamics, that is,ð
Q

½Ln
rq0�ðXÞdX � e�cn;

similarly, for closed, chaotic systems, the decay of correla-

tion scales exponentially with a decay rate � according toð
Q

q0ðXÞ½Ln
rq0�ðXÞdX �

ð
Q

q0ðXÞ�qðXÞdX

� �2

� e��n;

where �q ¼ limn!1 Ln
rq0 is the natural density (if the limit

exists). Both, c and � are closely linked to the spectrum of

Lr with exp(�c) and exp(��) being the magnitude of the

leading and next-leading eigenvalue of Lr for ergodic

dynamics.8

The rates c, � are also important when considering wave

energy propagation through a built up structure.37 In particular,

the suitability of the random wave superposition hypothesise of

an SEA-type approach can be analysed in this framework, since

a fast decay of correlations compared to the escape rate provide

the ideal setting for a diffuse random wave field to be created.17

On the other hand, slow or non-decaying correlations in the dy-

namics indicate regularity in the wave field and will introduce

non-random fluctuations and potentially long range correlations

between multiple sub-domains.

In this section, we study the decay of correlations in the

rectangular billiard described earlier for different choices of

the parameter r. In addition, we consider the rate of escape

when a small opening is introduced on the boundary and

consider the effect of changing both r and the size of the

opening.

Figure 6(a) shows a plot of the asymptotic escape rate c
against r2, where the escape rate is given by minus the loga-

rithm of the spectral radius of the (numerical approximation

to the) operator Lr. In each case the opening is on edge 2,

and the two plots shown are for openings of size 0.05 (from

y¼ 0.1 to 0.15) and 0.1 (from y¼ 0.15 to 0.25). For large r
values we see c settling down to a constant, the size of which

is approximately proportional to the opening size. This

would be expected, since for chaotic maps the asymptotic

escape rate due to a small opening is an exponential decay

which to leading order is proportional to the hole size (see,

for example, Refs. 38 and 39). For small sigma values, we

see that the escape rate decreases towards zero. Again, this

reflects the supporting theory since as the map approaches a

deterministic billiard map in a rectangle, the integrable dy-

namics and “sticky” trajectories (small perturbations of the

bouncing ball modes) slow the decay to an algebraic rate.40

Such a decay would be reflected by Lr having a spectral ra-

dius of 1, and hence c! 0.

Figure 6(b) shows a plot of the correlation decay rate �
against r2, which may also be estimated from the spectrum

of the operator Lr. In this case, we look at the size of the sec-

ond largest eigenvalue k* of the closed billiard (the largest

eigenvalue is always one for a closed system). The plot

shows � ¼ �logðjk	jÞ increasing with r2. For very small r2

the plot shows an almost zero decay rate as would be

expected for a system with deterministic and regular dynam-

ics. For large r2, we see convergence to a value of just over

0.5, which clearly indicates the stochastic behaviour intro-

duced from the noise in the billiard flow. In fact, the depend-

ence of the decay rate on r appears to follow two distinct

behaviours. For r2< 0.1 one sees a rapid increase of � with
FIG. 5. Convergence rate in computing the total ray density (15) for differ-

ent values of r.
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r, and for r2> 0.1 the rate of increase is far slower. This can

perhaps be attributed to the PDF governing the noise in the

billiard flow. For r2< 0.1, the noise added to the flow is

closer to a non-correlated Gaussian distribution and for

r2> 0.1, the scaling and shifting become increasingly signif-

icant and the model approaches a uniform distribution.

Considering Figures 6(a) and 6(b) together, a change of

behaviour in the escape rate is also evident close to r2¼ 0.1.

Here, the escape rate begins to increase more quickly before

peaking just below r¼ 1, and then decreasing to a constant

rate for r2> 10. The behaviour for 0.1<r2< 10 indicates a

transition region where the trajectory flow is not yet effec-

tively random (uniformly distributed), but is also not behav-

ing as a flow with uncorrelated Gaussian noise. The dotted

lines in each case show a lower precision computation with n
and N both halved. The similarities between the plots suggest

a good level of convergence in the computations. This serves

to highlight a further advantage of working with Lr rather

than the FP operator, where such computations typically

show little evidence of convergence.37

IV. DISCUSSION AND CONCLUSIONS

A new boundary integral model to propagate ray den-

sities via an uncertain trajectory flow has been presented.

The resulting phase-space boundary integral representation

reduces the dimensionality of the model, and was shown to

directly interpolate between a deterministic and a random

trajectory flow. The model was implemented numerically via

a simple discretisation approach using piecewise constant

collocation in space and a Nystr€om method in the momen-

tum variable. Discrete flow mapping type methods were

applied to give a highly efficient computational procedure.

An application to uncertain billiard dynamics in an integra-

ble rectangular domain was presented; the numerical results

demonstrated the transition between a deterministic and a

random flow. Using the rate of escape and the decay of

correlations to further diagnose the behaviour of the model

gave parameter ranges where the model was effectively

behaving as a deterministic trajectory flow with a small

amount of uncorrelated Gaussian noise, a random (uniformly

distributed) flow and a transition phase in between.

In the future, the framework will be extended to three

dimensional billiards by introducing the analog of the PDF

(7) on the boundary surface and its corresponding hemi-

spherical momentum space (see Ref. 20). Practically one

would have to also define an efficient discretisation scheme,

but in principle similar methods to those here can be

employed provided the closed boundary surface consists of

(or can be well approximated by) a union of flat surfaces

joined together at their edges. Such an extension would be

important for applications in room acoustics.

A further natural extension arises since one could allow

the parameters r to depend on the phase space coordinate. In

fact, since the PDF (7) already depends on the phase space

point indirectly through dependence on X6, this extension

could be implemented directly in the model here without

extra modification. On a practical note, the dependence of r1

on the spatial coordinate should to be assumed to be piece-

wise constant to match the collocation scheme and maintain

the tractability of the integrals appearing in (13). This exten-

sion would be important for applications in computer

graphics, where reflections may take place from surfaces

with different properties. A further consideration here is that

the methods also extend directly to built-up multi-component

structures in the same way as DEA.19 This opens up the for-

mulation to applications to built-up vibro-acoustic structures

and complex electromagnetic environments.
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FIG. 6. (a) The dependence of the as-

ymptotic escape rate on r2 in a rectan-

gular billiard for two different hole

sizes. (b) The dependence of the decay

of correlations on r2 in a closed rectan-

gular billiard. In each case the dotted

lines show the same quantities as the

solid lines, but computed using half

number of discretisation points for

both n and N.
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