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Abstract—Online bin packing requires immediate decisions
to be made for placing an incoming item one at a time into
bins of fixed capacity without causing any overflow. The goal
is to maximise the average bin fullness after placement of a
long stream of items. A recent work describes an approach for
solving this problem based on a ‘policy matrix’ representation
in which each decision option is independently given a value and
the highest value option is selected. A policy matrix can also be
viewed as a heuristic with many parameters and then the search
for a good policy matrix can be treated as a parameter tuning
process. In this study, we show that the Irace parameter tuning
algorithm produces heuristics which outperform the standard
human designed heuristics for various instances of the online bin
packing problem.

I. INTRODUCTION

Heuristics have long been used to solve optimization prob-
lems, mostly whenever exact methods fail to produce high
quality solutions in a reasonable time. However, heuristics may
have different performances on different problem domains or
even on different instances of the same problem. In order
to achieve a higher level of generality, automated search
techniques have emerged [1], [2] and [3], and now are often
generically referred to as hyper-heuristics. Hyper-heuristics
take the search process to a level higher to the space of
heuristics. That is, there is a higher level (meta-)heuristic which
at each step of time, chooses/controls/generates some low level
heuristics. According to one classification [4], hyper-heuristics,
like many machine learning problems, can be divided into
three categories depending on the feedback mechanism they
employ: online learning, off-line learning and no learning.
If the hyper-heuristic framework learns while searching, it
is an online learning hyper-heuristic. Conversely, an off-line
learning hyper-heuristic learns prior to the search phase. When
no feedback is exploited from the search space, then the
corresponding hyper-heuristic framework is a ‘no learning’
framework. Hyper-heuristics can also be classified into two
groups: selection and generation hyper-heuristic. The former
type of hyper-heuristics controls and mixes a set of predefined
low level heuristics at each step during the search process,
while the latter type generates new heuristics from given
components. Both selection and generation hyper-heuristics
can be further categorized into construction or perturbation
heuristics. More on hyper-heuristics can be found in [5], [6]
and [7]. Selection hyper-heuristics have been well studied,
giving rise to a challenge ([8], [9]) and the winning online
learning hyper-heuristic was provided by Misir et al. [10].

In this paper, we specifically study the online bin-packing
problem for which decisions have to be made immediately
to place each incoming item into bins of fixed capacity
without causing any overflow. Moreover, the policy matrix-
based approach of Özcan and Parkes [11] is followed. A policy
matrix embeds an “index policy” ([12]) representing a heuristic
used for deciding which bin to place an item whenever it
arrives. An index policy assigns a score to all potential actions
and then selects the highest scoring action. In [11], a good
policy matrix for a given problem was evolved using a genetic
algorithm. Earlier related work on online bin-packing [13]
proposed a hyper-heuristic approach which learns how to
choose a heuristic based on the dynamically changing problem
state after placement of each item for bin packing. Subsequent
work (e.g. [14], [15]) employed genetic programming to evolve
arithmetic expressions representing scoring functions/policies.
Parkes, Özcan and Hyde [16] presented a method based on
policy matrices for analysing the behaviour of the mutation
operator in genetic programming for online bin packing.

Overall, we propose a generation hyper-heuristic which
significantly differs from the previous work in which either a
genetic programming or genetic algorithm is used to generate
heuristics. This study regards the heuristic generation process
as a parameter tuning problem in which a fine-grained rep-
resentation is used, and in which the number of parameters
is often (much) higher than usually assumed in standard
parameter tuning processes. We have arbitrarily chosen to use
the Iterated Racing algorithm [17] in order to find the most
appropriate policy. To the best of our knowledge, approaching
heuristic generation from a parameter tuning point of view has
not been considered elsewhere.

II. BACKGROUND

In this section, the online bin packing problem is described
followed by a description of the policy matrix representation
of heuristics which is the core representation used in this
study. The term online bin packing problem refers to the
one dimensional bin packing problem, where the bin capacity
as well as the item sizes are all scalar values, throughout
this paper. Finally, a general overview of parameter tuning
approaches is given in which our method of choice (Iterated
Racing) is discussed in further detail.



A. Online Bin Packing Problem

The bin packing problem is known to be a combinatorial
NP-hard problem [18] which deals with packing items of
different sizes to bins of fixed capacity. The objective is to
minimize the number of bins used. There is a number of
variants of the bin packing problem available in the literature,
such as, off-line, two dimensional, three dimensional bin
packing and more.

In this paper, online bin packing is studied which is the
problem of partitioning a set of integer values into subsets
while satisfying a constraint in which the sum of the integer
values within the subset does not exceed the capacity [11].
In off-line bin packing full information on the number of
items and their sizes is given beforehand, prior to solving the
problem. In contrast to this, in online bin packing, each item
arrives one at a time and an immediate decision has to be made
regarding which open bin will receive that item. In other words,
the assignment of each item to a bin is a decision based on
incomplete information. The next item(s) are not known by
the solver.

The bin capacity is a constant integer C > 1 and the item
sizes are integer values. While an open bin has a remaining
capacity which can accommodate at least one item assuming
that the sizes of items are known, a bin is considered to be
closed if its remaining space is smaller than the minimum item
size. A new empty bin is always available and it is opened
if the size of the current item is bigger than the remaining
capacity of all open bins. In such a case, the new bin is opened
and the item is placed into this new bin.

The uniform bin packing instances produced by a
parametrized stochastic generator are represented by the for-
malism: UBP (C, smin, smax, N) (adopted from [11]) where
C is the bin capacity, smin and smax are minimum and
maximum item sizes and N is the number of total items. For a
specific problem instance, the size of each item for N items is
chosen uniformly and independently at random as an integer
value from the range [smin, smax]. Also, we assume that
smin > 0 and smax ≤ C. For example, UBP (15, 5, 10, 104) is
a random instance generator and represents a class of problem
instances. Each problem instance is a sequence of 104 integer
values, each representing an item size drawn randomly from
{5, 6, 7, 8, 9, 10}. The probability of drawing the same instance
(meaning, exactly the same sequence of item sizes) using a
predefined generator of UBP (C, smin, smax, N) is very small
as it is controlled by the pseudo-random number generator, and
the seed applied to it. Different seeds are used for the training
and the tests, hence making them different samples from the
same distribution. The objective value for a given solution to
an instance is measured in terms of mean bin fullness given
N items assuming that the capacity is never exceeded:

f =
1

B

∑

t

ft (1)

where B is the number of bins used and ft is the fullness of
bin t.

First fit (FF) and best fit (BF) heuristics are human designed
heuristics which can be used for online bin packing. First
fit places an incoming item to the first open bin that it fits,

while best fit puts an item into the open bin which leaves the
minimum remaining space after placement.

B. Matrix Representation of Policies

Özcan and Parkes [11] proposed a genetic algorithm (GA)
as a hyper-heuristic method to generate heuristics to solve
instances of online bin packing problem. In their study, a
policy is represented as a matrix of scores, referred to as policy
matrix. A sample policy matrix is shown in Figure 1. Each row
in this matrix represents the remaining bin capacity (r) prior
to the item assignment and each column represents the current
item size (s) to be assigned to a bin. The values of each matrix
element are either −1 (indicated with a dot in Figure 1) for
inactive elements (irrelevant (r, s) pairs which never occur) or
Wrs which is the score associated with assigning item of size s
to a bin of remaining capacity r. The value for Wrs is chosen
from the range [wmin, wmax]. In this study, wmin = 1 and
wmax = n where n is the maximum number of active entries
among the columns of the matrix. Given a policy matrix, upon
the arrival of each item, a specific column within the matrix
which corresponds to the size of incoming item is determined.
Within this column, the bin capacity with the highest score is
found and the item is then assigned to the bin.

Figure 1 provides an example policy matrix for solving
(any problem instance generated by) UBP (15, 5, 10, 104). The
last row in the policy matrix contains the score values of the
assignment to the empty bin for various item sizes. The value
of n is 7 for this instance from the first column having the
largest number of active entries. Assuming that during the
packing process, an item with a size of 9 arrives, then the
column 9 is considered. That column in the figure contains
the scores of all bins associated with all possible remaining
sizes. In the example, there are only three possible remaining
sizes of 9, 10 and 15 which have been associated with the
scores of 4,1 and 2, respectively. Assuming that there are two
open bins, one with a remaining size of 9 and the other one
being the empty bin with remaining size 15, the item is placed
into the former bin. This is because the former bin has a score
of 4 which is higher than the other option which has a score
of 2.

r\s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1: . . . . . . . . . . . . . . .

2: . . . . . . . . . . . . . . .

3: . . . . . . . . . . . . . . .

4: . . . . . . . . . . . . . . .

5: . . . . 6 . . . . . . . . . .

6: . . . . 3 7 . . . . . . . . .

7: . . . . 6 3 1 . . . . . . . .

8: . . . . 1 1 1 7 . . . . . . .

9: . . . . 1 2 5 3 4 . . . . . .

10: . . . . 5 7 2 7 1 7 . . . . .

11: . . . . . . . . . . . . . . .

12: . . . . . . . . . . . . . . .

13: . . . . . . . . . . . . . . .

14: . . . . . . . . . . . . . . .

15: . . . . 2 3 5 4 2 3 . . . . .

Fig. 1: An example of a policy matrix for the
UBP (15, 5, 10, 104) generator of instances

C. Previous Work on Policy Matrices

As well as the original study on policy matrices, there have
been a number of relevant studies on this topic, encompass-



ing various techniques with which policy matrices are either
generated and/or used.

In the original work [11], the policy matrix was optimised
using an off-line learning GA for a given problem instance.
Each individual is represented by the values of the active
members of a policy matrix. A generation of these individuals
is then generated which goes through selection, recombination,
mutation and evaluation. Since a single policy matrix is a
heuristic, then the GA is acting as a hyper-heuristic which
searches in the space of heuristics. The experimental results
show that this method produces extremely effective policies
for a given UBP instance.

In [16], previous studies on policy matrices were combined
to present an approach based on policy matrices for analysing
the effect of the mutation operator in Genetic Programming
(GP) in a regular run using online bin packing. In a separate
study [19], a continuation of the original work in [11], a
form of dimensional reduction was considered in which entries
in the matrix were grouped into elements taken from one-
dimensional vectors. This approach effectively reduced the
number of variables from quadratic to linear in the bin capacity.
It was shown that evolving the one-dimensional vectors, in
a manner similar to the evolution of policy matrices, results
in high quality solutions. Apprenticeship Learning (AL) tech-
nique was also used in [20] to generate new heuristics based
on evolved policy matrices. The AL framework observes and
learns the actions of a policy matrix (evolved/optimized by
the GA framework in [11]) on instances with a small range of
item sizes. These observations are then generalized, resulting
in a new heuristic. The generated heuristic is shown to be
particularly effective on instances with a large range of item
sizes.

D. Parameter Tuning

Numerous algorithms have been designed to tackle op-
timization problems, and they usually have many parame-
ters whose values (often) influence the performance of the
algorithm dramatically. Parameter tuning is the process of
finding the best (if possible optimal) setting for the parameters
of a given optimization algorithm. Many researchers have
been working on the ideas to automatically tune a given
parametrized algorithm (target algorithm) to its best perfor-
mance. However, the best setting for the parameters of a given
algorithm yielding a better performance vary with the problem
which is being optimized by the target algorithm [21].

There are various approaches and tools provided for pa-
rameter tuning. CALIBRA described in [22] is based on
an approach which uses a local search algorithm after a
Taguchi fractional experimental design. Parameter Iterated
Local Search (ParamILS) was proposed in [23] and used on
various algorithms and problem instances (examples are [24],
[25] and [26]). Briefly, ParamILS starts by an initial set of
parameters defined by the user. This initial set is compared
with randomly generated parameter values and the best one
is chosen to proceed with. An iterated first improvement
search is then conducted in the neighbourhood of the chosen
parameter values, producing a new parameter configuration.
Then, iteratively, a number of parameter settings are generated
randomly in the neighbourhood of this parameter configuration

and the iterated first improvement method is applied on each
of them, resulting in a new best parameter setting. This process
continues until a pre-determined time threshold is reached.
Two instantiations of the ParamILS exists: BasicILS and
FocusedILS. The former considers a fixed number of training
instances while the latter determines the number of training
instances adaptively, using dominance criterion.

Iterated racing method (Irace) [17] is an automatic config-
uration method which is based on Iterated F-Race proposed
in [27] and [28]. The basic assumption in this method is
that each configurable parameter has a sampling distribution
of its own which is independent from other parameters. The
distribution is considered to be a normal distribution in case of
numerical parameters and discrete in case of categorical ones.
In Irace, the search is biased towards sampling distribution(s)
with which better parameter configurations are found. The
selection of the sampled configurations is based on the racing
method. Racing was first proposed in [29] and later adapted
for automatic algorithm configuration in [30]. In Irace, at each
iteration the set of parameter configurations are applied to the
target algorithm. Those configurations which are statistically
worse than at least another configuration are discarded. A
pseudo-code of the Irace algorithm is given in Algorithm 1.

Similar to ParamILS, Irace has been used in different fields
for different purposes, including to tune parameters of various
optimization algorithms, such as, Ant Colony Optimization
[31] and Particle Swarm Optimization [32], to configure the
timetabling scheduling algorithm as in [33], and to generate
optimization algorithms based on grammar descriptions for bin
packing and permutation flowshop scheduling as in [34]. In
this study, we use Irace as a part of a dual-phase approach
to directly generate heuristics which are fully parametrized in
matrix form for online bin packing. The first phase consists
of training the system using Irace followed by a testing phase.
During the first phase, a set of initial values for the parameters
is obtained for the target algorithm over a set of training
instances. Those settings are then used while solving unseen
problem instances. The goal is to achieve a level of generality
of the parameter settings under which the target algorithm
performs well over a wide range of unseen problem instances.
Indeed, one can view the parameter tuning as a higher level
algorithm (hyper-heuristic) searching the space of parameter
values of the target algorithm (generating low level heuristics)
when the target algorithm is represented as a set of integer
values forming the active entries of a policy matrix for online
bin packing. Considering the train-test sessions, Irace hyper-
heuristic can be categorized as an offline learning generation
hyper-heuristic according to the hyper-heuristic classification
given in [4].

III. PROPOSED APPROACH

As mentioned earlier, we have employed the Irace au-
tomatic algorithm configuration method as a search method
which performs the search in the space of heuristics (policy
matrices). That is, a policy matrix for a class of bin packing
instances is seen as a set of parameters. However, comparing
to the applications of widely used algorithm configuration
packages (such as Irace or ParamILS), in our approach, the
number of parameters is higher than usually considered for
parameter tuning. Irace is reportedly used to configure a



Algorithm 1 Pseudocode of Iterated Racing Algorithm [17]

Require: I = {I1, I2, ...}
parameter space,X
objective value,f
tuning budget,B

θ1∼SampleUniform(X)
θelite = Race(θ1, B1)
j = 2
while Bused ≤ B do

θnew = Sample(X, θelite)
θj = θnew

⋃
θelite

θelite = Race(θj , Bj)
j = j + 1

end while
Output: θelite

TABLE I: Number of configurable parameters for each in-
stance generator.

Instance Generator No. of parameters

UBP (6, 2, 3) 7

UBP (15, 5, 10) 27

UBP (20, 5, 10) 57

UBP (30, 4, 20) 272

UBP (30, 4, 25) 297

UBP (40, 10, 20) 187

UBP (60, 15, 25) 297

UBP (75, 10, 50) 1517

UBP (80, 10, 50) 1722

number of parameters as high as 207 in [35]. To the best
of our knowledge, this is the highest number of parameters
considered by the Irace package. The highest number of
parameters configured by ParamILS is reported to be around
786 [36] where ParamILS is used to configure the WEKA
machine learning library [37]. In contrast, in our study, the
number of configurable parameters for instances generated by
UBP (75, 10, 50, 105) and UBP (80, 10, 50, 105) are 1517 and
1722 respectively (Table I), both significantly higher than those
of the studies mentioned earlier.

We also employ a dual-phase strategy of train and test.
Our approach first trains and generates a policy matrix via
parameter tuning using one online bin packing problem in-
stance, produced from a fixed UBP generator (see Section
II-A). Afterwards, the (tuned) policy matrix obtained in the
training phase is tested on 100 unseen problem instances which
are produced by the same UBP generator. In other words, 100
runs (trials) are performed for each test case. Figure 2 shows
the schematic of the training phase of our proposed approach.

As demonstrated in Figure 2, in the first step, the initial
policies are constructed and fed into the configuration cycle.
The construction of the initial pool of policy matrices consists
of automatically determining the number of active entries of
the policy matrix (please refer to Section II-B for the definition
of active entries). Later, a uniform random population of policy
matrices is generated. At this stage, the policy is vectorized
and is merely a vector of values which are then columnized
and converted to a policy matrix. Each of these matrices are
then applied on the online bin packing training instance for
one trial. This is in contrast with the original Irace package
where a configuration is applied multiple times (>= 5) on the

Fig. 2: The proposed approach - training phase

instance whereupon the individuals are ranked statistically. It
suits our purpose though to do this without a statistical test as
the range of average bin fullness is wide, and even slightest
difference is almost all the time significant. Subsequently, the
current population of policies are subjected to racing where,
again, unlike in original Irace package, a third of the population
survives after ranking.

After discarding the worse part of the population, a new
population is generated using the surviving individuals. That is,
each surviving individual is taken and an offspring is generated
by applying a Gaussian distribution (N (µ, σ)) on the elements
of the parent. The mean (µ) of the distribution is the current
value of the element, whereas the standard deviation (σ) is
monotonically decreasing. Centering the normal distribution
around the current value of the parent’s element and decreasing
σ during the tuning process biases the search towards regions
close to good performing individuals. The offspring generation
is continued until the size of the population reaches that of the
previous population. The algorithm then enters a new cycle
of evaluation and racing and this process is continued until a
predefined number of iterations has been reached.

IV. EXPERIMENTS

A. Experimental Design

As discussed in Section III, we have employed a dual-
phase strategy consisting of a training phase followed by a
test session, both of which are considered per generator (per
fixed UBP ). The training phase is in fact tuning an initially
random population of policy matrices to a single policy which
performs well for a certain problem instance obtained from
the fixed generator. After the training session, testing of a
policy is repeated for 100 independent runs, in which, at each
run, a different online bin packing problem instance, produced
from the same generator, is used. Two classes of train-test
sessions are considered in our experiments, depending on the
size of the instances that the generator produces. That is,
instances generated using the same bin capacity, minimum and
maximum item sizes are categorized into small (N = 104) and
large (N = 105) instances depending on the number of items.
For example, UBP (6, 2, 3, 104) generates small instances,
while UBP (6, 2, 3, 105) generates relatively large ones as the
number of items in the latter is 10 times more than the former.

In the first set of train-test sessions, a policy has been
trained on a single small instance and tested on a set of



unseen large instances. In this set of experiments, the main
goal is to see whether any speed-up in the training is possible
or not without (unduly) compromising the performance and
generality of the tuned policies by training the system on a
small instance and applying the generated policy on larger
instances. The second set of experiments consists of training
using a single large instance and testing the tuned policy
on unseen large instances. The training and testing problem
instances for each case are of equal size. The former and latter
approaches will be referred to as π104 and π105 , respectively.

The performance of policies generated by π104 and π105

are compared to each other as well as against the Genetic
Algorithm (GA) approach as presented in [11], Apprenticeship
Learning (AL) in [20] and the Best First (BF) heuristic
over the generators in {UBP (6, 2, 3), UBP (15, 5, 10),
UBP (20, 5, 10), UBP (30, 4, 20), UBP (30, 4, 25),
UBP (40, 10, 20), UBP (60, 15, 25), UBP (75, 10, 50),
UBP (80, 10, 50)}, where N is fixed as 105 for testing and so
this value is omitted for simplicity from the generators. The
BF heuristic simply packs the items in the fullest bin available.
The parameter setting of GA is as follows. The GA has a
population size equal to half of the bin capacity for a given
problem (⌈C/2⌉). The selection mechanism is tournament
selection with a tour size of 2. A uniform crossover operator
with a probability of 1.0 has been chosen for recombination.
The traditional mutation operator perturbing a locus with a
probability of 1

ChromosomeLength
is used. A trial is terminated

when the maximum iterations of 200 is exceeded. As for
the racing algorithm, the same setting as in GA is used
for the sake of a fair comparison. The budget in the racing
algorithm is set equal to the allowed iteration count in the
GA framework. Moreover, since the GA framework also
consists of train and test session, all the parameters regarding
train and test (population size, number of trials during train
and test and etc) are set to the same value as in GA. The
tie braking in policy matrices, regardless of the way it was
generated (using GA or racing), is First Fit (FF).

B. Experimental Results

Table II provides the best, worst and average results
obtained from the policies produced by the algorithms π104 ,
π105 , BF, GA and AL over 100 runs (instances). Moreover, the
Wilcoxon signed-rank test is used for evaluation of the average
performance difference between various pairs of algorithms
and results are summarised in Table III.

Comparing the performance of each policy generated by
π104 and π105 separately to the BF heuristic shows that on
almost all of the cases, the tuned policies outperform the
BF heuristic in a statistically significant manner. The only
exception is the performance of π104 on the instances generated
by UBP (15, 5, 10) for which it performs slightly worse than
the BF heuristic (see Table III). Even the worst performing
tuned policy performs better than the BF heuristic on a given
generator for most of the cases. Tuning policy matrices is
indeed possible and the automatically generated policies via
tuning are capable of outperforming the human designed
heuristic for the selected generators in this study.

The average performance comparison between π104 and
π105 based on % average bin fullness shows that π105 is better

TABLE III: Average performance comparison of various ap-
proaches. The Wilcoxon signed rank test is performed on the
% average bin fullness over 100 instances (runs) obtained
from a pair of algorithms for each UBP generator. Given
two algorithms X vs. Y, ≥ (>) denotes that the algorithm
X performs slightly (significantly) better than Y (within a
confidence interval of 95%), while ≤ (<) indicates vice versa.
≈ indicates that both algorithms have similar performance. In
case there are no reported results for a particular algorithm on
a given instance generator, it is indicated by NA.
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4) vs. (πr, 10

5) ≈ < < > < < < > >

(πr, 10
4) vs. BF > ≤ > > > > > > >

(πr, 10
5) vs. BF > > > > > > > > >

(πr, 10
4) vs GA ≈ NA < NA NA < NA NA NA

(πr, 10
5) vs GA ≈ NA < NA NA < NA NA NA

(πr, 10
4) vs. AL NA NA > NA > > > < <

(πr, 10
5) vs AL NA NA > NA > > > < <

than π104 in the overall. π105 wins on 5 generators while π104

wins on 3 of them, and they both deliver a similar performance
on the UBP (6, 2, 3) generator. The same phenomena is ob-
served considering the best results obtained by each algorithm.
Considering the results obtained by each tuning approach for
each generator during the experiments, π104 tends to perform
better than π105 particularly on instances with larger range
of item sizes and bin capacity. Hence, training policies via
tuning on small instances is a viable strategy and can achieve
high quality policies which can be then applied to larger
instances yielding a reasonable performance. In some cases,
this performance could be even better than training policies
on larger instances.

The original GA framework [11] only has reported av-
erage results on a couple of instance generators, namely
UBP (6, 2, 3), UBP (20, 5, 10) and UBP (40, 10, 20). GA per-
forms significantly better than the tuning approach on the latter
two instances. The policy generated via tuning performs very
much similar to the one generated by GA for UBP (6, 2, 3).
When the AL approach is compared to the policy matrices
tuned via the racing algorithm, we have observed that both pro-
posed approaches outperform AL over four out of six instance
generators. On the instances generated by UBP (75, 10, 50)
and UBP (80, 10, 50), however, the AL approach produces
better solutions. All those performance variations between the
proposed approaches and AL on each generator are statistically
significant. The AL approach is considered to be particularly
effective on instances with a large range of item sizes and bin
capacity. The results confirm a claim in our previous study [20]
that the AL framework tends to perform particularly well on
instances of large bin capacity and large range of item sizes.
However, on the instances with smaller bin capacity and item
sizes, the tuned policies outperform the AL algorithm.

Figure 3 compares the structure of the policy matrix
achieved by parameter tuning versus the BF policy. The matrix
generated via parameter tuning does not have the smooth
structure of human-designed heuristics like BF. This is in line



TABLE II: The performance of policies generated via tuning (π104 and π105 ), GA and AL approaches over the 100 instances
(runs) obtained from each given UBP generator. Avg indicates the mean performance while Min and Max are the best and
worst results achieved based on the % average bin fullness. Bold entries correspond to the algorithm which performs the best
on average. NA indicates that no result is available.
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(πr, 10
4)

Avg 99.99 99.60 97.65 99.43 98.46 96.22 99.01 97.17 97.51

Min 99.99 99.12 97.51 99.26 98.17 96.38 98.65 96.98 97.45

Max 100.0 99.90 97.76 99.49 98.73 96.03 99.22 97.38 97.55

(πr, 10
5)

Avg 99.99 99.66 98.21 99.09 99.51 96.81 99.49 96.93 97.36

Min 99.99 99.19 97.87 99.00 99.36 96.65 98.93 96.82 97.27

Max 100.0 99.91 98.38 99.16 99.61 96.91 99.84 97.05 97.44

BF

Avg 92.30 99.62 91.55 96.84 98.38 90.23 96.08 96.39 95.82

Min 92.26 99.15 91.45 96.80 98.31 90.12 96.04 96.32 95.77

Max 92.31 99.89 91.62 96.90 98.46 90.31 96.13 96.44 95.87

GA[11] Avg 99.99 NA 98.43 NA NA 97.12 NA NA NA

AL[20]

Avg NA NA 94.32 NA 97.69 93.83 98.50 98.17 98.32

Min NA NA 94.21 NA 97.36 92.91 98.44 98.13 98.26

Max NA NA 94.41 NA 97.92 94.80 98.54 98.21 98.37

with the discussion in [11] where it has been demonstrated that
heuristics which outperform human-designed methods like BF
may have a spiky structure.

V. CONCLUSION

In this study, the Irace parameter tuning method is used
to generate effective heuristics represented in terms of policy
matrices for online bin packing. A policy matrix is treated
as a heuristic with many parameters. Policies generated by
the Irace tuning method are observed to be of high quality.
These policies not only surpass human-made heuristics in
terms of performance, they also deliver better performance on
small instances when compared to the policies generated by an
apprenticeship learning approach [20]. However, a previously
proposed genetic algorithm [11] remains the best method for
policy generation. To the best of the authors knowledge, Irace
(or any other parameter tuning package) has not been used
in the way that it is used in this study to generate heuristics
directly. This indicates that optimization via parameter tuning
is a viable approach.
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