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Convergence Analysis and Tuning of a
Sliding-Mode Ripple-Correlation MPPT

Alessandro Costabeber Member, IEEE, Matteo Carraro and Mauro Zigliotto Member, IEEE

Abstract—The development of fast Maximum Power Point
Tracking (MPPT) algorithms for photovoltaic (PV) systems
with high bandwidth and predictable response to irradiation
transients is attractive for mobile applications and installations
under fast changing weather conditions. This paper proposes
the convergence analysis of a sliding-mode version of the MPPT
based on ripple correlation control (RCC). The contribution of
the paper is a dynamic model, useful to derive a set of design
guidelines to tune the sliding-mode RCC-MPPT and achieve
a desired dynamic performance under irradiation transients,
without a dedicated commissioning phase. The research is based
on sliding control theory and it includes both the chattering
phenomena analysis and a discussion on the effects of reactive
parasitic elements in the PV module. The proposed analysis and
design have been validated by Matlab simulations first and then
with experimental tests on a 35W panel with a boost converter
charging a 24V battery. The results support the effectiveness
of the proposed modelling procedure and design guidelines,
showing good agreement between the model prediction and the
experimental transient response.

Index Terms—Photovoltaic, Efficiency, Sliding mode control,
Modelling, MPPT

I. INTRODUCTION

AMAXIMUM Power Point Tracking algorithm should
track any variation in solar irradiation, temperature or

system parameters with minimum delay, maximising the total
energy harvested from the PV system. The tracking becomes
critical for PV plants installed in locations with fast changing
weather conditions [1], applications like electric solar vehicles
[2] or PV generation for auxiliary services or range extension
in commercial cars, boats or airplanes. In these cases, the
PV system undergoes frequent transients, due to turn in the
weather or shading objects (buildings, trees, poles etc.).

The most common MPPT methods in literature are P&O
(perturb and observe) [3], [4], hill climbing [5], incremental
conductance [6], fractional voltage [7] and ripple correlation
control [8]. A comprehensive review and comparison of the
most popular MPPT methods can be found in [9]–[11],
where the different control solutions are classified in terms
of complexity, true MPPT capability, number of sensors and
effect of parametric variations. The cited papers include some
comparisons in terms of convergence speed, but the inherent
non-linearity of MPPT controllers often pushes towards a
heuristic approach. Therefore, it is not always evident whether

Alessandro Costabeber is with the Department of Electrical and Electronic
Engineering, University of Nottingham, Nottingham NG7 2RD, UK Email:
alessandro.costabeber@nottingham.ac.uk.

Matteo Carraro and Mauro Zigliotto are with the Department of Technique
and Management of Industrial Systems (DTG), University of Padova, Italy.
Phone +39 (0444) 998818 Email: mauro.zigliotto@unipd.it.

the dynamic performance of each controller is optimised or
not. In practical implementations, the maximisation of the
convergence speed usually requires a commissioning phase
to adapt the controller to the specific application. This paper
is an attempt to provide a more rigorous approach to MPPT
dynamic response design, and applies to systems where a fast
and predictable response is desirable. The sliding-mode RCC-
MPPT has been selected for its inherent fast response, ease
of implementation even with analogue circuits and absence
of external disturbances to the operating point of the PV
system. The technique was first proposed in [12], where RCC
was applied to detect the maximum power operating point
on the power-voltage curve of a photovoltaic panel. Several
relevant features have been addressed in this first paper,
such as stability and limitations introduced by the parasitic
capacitance. An insight on RCC-MPPT is found in [13], where
the authors review several possible implementations, while a
detailed digital RCC-MPPT implementation can be found in
[14]. From the theoretical point of view, techniques in [12],
[13], [14] belong to Extremum-Seeking controls (ESC), as
demonstrated in [15]. The relevance of RCC is also confirmed
by its multidisciplinary nature [8], [16]. Since the original
version of [12], several variations have been proposed. Among
them, [17] uses the voltage ripple at twice the line frequency
in single phase inverters to drive the ripple correlation control
and an alternative is proposed in [18], where the correlation is
a XOR port, receiving in input the squared voltage and power
ripples, simplifying the hardware. The solution proposed in
this paper modifies the original scheme in [12] to turn it into
a sliding-mode controller whose dynamics can be modelled
under appropriate hypotheses. Particular emphasis is placed
in the properties of stability and convergence of the proposed
sliding-mode RCC-MPPT, with the aim of providing a set of
guidelines to predict the dynamic response to solar transients,
without post-characterization or manual tuning.

The paper is organised as follows: Sect.II recalls the ba-
sics of RCC-MPPT, and presents the proposed sliding mode
scheme. Sect.III analyses the model of the PV panel used
throughout the paper and the influence of reactive parasitics.
The theoretical formalization of the control is in Sect.IV,
with particular emphasis on convergence and stability. Sect.V
derives a simplified analysis of the chattering phenomena,
based on the describing function method. The simulation and
experimental results that validate the outcomes of Sect.IV and
Sect.V are presented in Sect.VI. Finally, Sect.VII summarises
the procedure required for the practical implementation of the
sliding-mode RCC-MPPT.
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II. REVIEW OF RCC-MPPT BASICS AND SLIDING-MODE
RCC-MPPT

The MPPT scheme is applied to a battery charger from
single PV module. The converter is a boost with direct duty
cycle control, operating in CCM (Continuous Conduction
Mode). The proposed analysis can be extended to any other
control configuration, i. e. with current loop and/or voltage
loop.
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Fig. 1. Photovoltaic battery charger setup.

According to [13], the RCC-MPPT drives the boost input
voltage toward the MPP by zeroing the power gradient with
respect to the voltage. The generic (p − u) curve of a PV
module reported in Fig.2 indicates that the derivative of the
power with respect to the voltage is positive before the MPP,
negative after it and of course zero at the MPP itself. If δRC
is the duty cycle of the boost converter imposed by the RCC-
MPPT, then a straightforward control law for MPP tracking
is:

δRC = γ

∫ t

0

∂p

∂u
dt (1)

where γ is a real gain. For a boost converter operating in
CCM, the reciprocal of the conversion ratio is N = u/UCC =
1 − δRC . According to (1), the system converges to the
MPP when γ < 0. In fact, when the derivative is positive,
δRC decreases and the input voltage u increases, moving the
operating point toward the MPP. The opposite happens if the
derivative is negative.
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Fig. 2. General representation of the steady state p − u curve p(t) =
f(u(t), ISH) of a PV panel under constant irradiation.

The same information contained in the derivative in (1) can
be found in the correlation function ε(t) [18], reported in (2).
The original solution proposed in [13] is similar, except for
the absence of the two sign functions before the product.

ε(t) = sign
(∂p
∂t

)
sign

(∂u
∂t

)
⇒ δRC = γ

∫ t

0

ε(t)dt (2)

Adopting the small signal approximation, the AC power
and voltage disturbances ∆p and ∆u in Fig.2 can be used
to replace the power and voltage time derivatives, and they
are extracted by high-pass filters (HPFs), as in Fig.3. In
the following analysis, the AC disturbances are considered
as sinusoidal, for the sake of simplicity. Starting from the
correlation (2), the RCC-MPPT scheme can be turned into the
sliding-mode controller proposed in this paper by interposing
a low-pass filter (LPF) and a sign function before the integral
action:

δRC = γ

∫ t

0

sign(εF (t))dt (3)

where εF (t) is the low-pass filtered correlation. Two possi-
ble implementation schemes are reported in Fig.3. Stability
and convergence analysis will be provided for the upper
side scheme of Fig.3. The second scheme has a simpler
implementation while maintaining the same dynamic response,
is used in the experimental setup.
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Fig. 3. Sliding-mode RCC-MPPT schemes (Top: based on [13] Bottom: based
on [18]).

III. PV PANEL MODELLING

The PV module has been modelled in steady state adopting
the lumped parameters scheme in Fig.4a, including parasitic
series and shunt resistances.

i = ISH − Is

e

u+RSi

ηVTNc − 1

− u+RSi

RP
(4)

where ISH is the photo-generated current, or short circuit
current, which depends on solar irradiation, Is is the inverse
saturation current, u and i are voltage and current of the
module, NC the number of cells, RS and RP the total series
and shunt resistances, η is the ideality factor of the junction
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and VT the temperature equivalent voltage VT = KT/q where
K = 1.38 × 10−23 J/◦K is the Boltzmann’s constant, T is
the temperature in K and q the charge of the electron. A
more detailed model includes a series inductor LP , accounting
for cells bonding and cables, and a shunt capacitor CP ,
accounting for the non-linear cells junction capacitance and
the bypass diode capacitance, if present. The inductance LP
can be considered constant, the capacitor depends irradiation
and operating voltage. The model is always intended as a small
signal model, valid in a specific operating point and is reported
in Fig.4b, where RP and RS are neglected.
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Fig. 4. Fig.4a: Steady-state PV model and Fig.4b: PV small-signal linearised
dynamic model including reactive parasitics.

The differential resistance r can be obtained by linearising
(4) around a generic operating point (U0, ISH):

r =
(∂u
∂i

)∣∣∣∣
U0,ISH

= −ηVTNc
Is

e
−

U0

ηVTNc (5)

The dynamic behaviour is described by the transfer function
between ∆u and ∆i, bearing in mind the dependence of the
capacitance on both the operating voltage and the irradiation
condition CP (U0, ISH) [19]:

−Y (s) =
I(s)

U(s)

∣∣∣∣
U0,ISH

=
1

r

1− srCP

1− sLP
r

+ s2LPCP
(6)

Y (s) represents the input admittance and in absence of
parasitics it is the reciprocal of the differential resistance r.

The small-signal transfer function H(s) =

L(∆p)/L(∆u)
∆
= P (s)/U(s), around a specific operating

point (U0, I0, ISH ), can be obtained as follows:

p = ui = (U0 + ∆u)(I0 + ∆i)→ ∆p = I0∆u+ U0∆i

H(s) =
P (s)

U(s)

∣∣∣∣
U0,ISH

= I0(1 + Y (s)R0), R0 = −U0

I0

(7)

And by defining:

M =
R0

r
, ω0 =

1√
LPCP

, ξ = − 1

2r

√
LP
CP

(8)

The dynamic relation between the PV power and voltage
ripples becomes:

H(s) =

I0

(
(1−M) +

s

ω0

(
2ξ − 1

2ξ
M

)
+
s2

ω2
0

)
1 + 2s

ξ

ω0
+
s2

ω2
0

H(s) = HP (s) +HLC(s), HP (s) = I0(1−M)

(9)

where all the terms are functions of the operating point
(U0, ISH). H(s) is expressed as the sum of the ideal HP and
a function HLC that accounts for the parasitics. With reference
to Fig.3, the equilibrium is reached when the mean value of
the correlation ε(t) equals zero. That is, either the high pass
filtered AC disturbances are phase-shifted by ±π/2 rad or the
power disturbance is zero. In absence of parasitics, HP (s) ≡
H(s), and the only possible equilibrium is when the power
disturbance goes to zero, that is:

H(s) = I0(1−M) = 0→M = 1→ r = R0 (10)

Equation (10) shows that, in absence of parasitics, the
transfer function is a pure gain depending on the operating
point, and the only possible equilibrium for the RCC-MPPT
is when the gain equals zero. As a step further, it is possible
to add the effect of CP (U0, ISH). Rearranging (9), H(s)
becomes:

HLC(s) = − I0M
2ω0ξ

s→ H(s) = I0 (1−M + sMrCP )

(11)
The linearised transfer function has a single zero whose time

constant depends on the operating point. The magnitude of ∆p
cannot be zero, regardless of the ripple frequency. Therefore,
the RCC-MPPT equilibrium, corresponding to the operating
point where the mean value of ε(t) is equal to zero (i.e. the
integrator in (2) is in steady state), is possible only when the
phase shift between ∆p and ∆u is π/2 rad. This is equivalent
to the condition M = 1, as in the ideal case. This confirms
that CP does not affect the convergence of the RCC-MPPT to
the ideal point. From a different perspective, the same result
was obtained in [12], where p − u RCC was proposed as an
alternative to p− i RCC for its insensitivity to the capacitance
CP . The research in [12] also highlighted the implicit effect
of the ripple frequency in (11), that is that all the transfer
functions calculated for a varying operating point have a phase
diagram converging to −π/2 rad. Therefore, the greater the
ripple frequency, the lower the sensitivity of the MPPT and it
is difficult to distinguish the MPP. Conversely, the inclusion
of the inductor LP leads to a different MPP. The equilibrium
point is still where the phase of H(s) is ±π/2 rad, but that
point is in general different from the MPP point computed in
absence of parasitics. The new equilibrium point is obtained
by finding the value of M that makes <(H(jωAC)) = 0, i.e.
∆p and ∆u are in quadrature:

M =

(
1− ω2

AC

ω2
0

)2

+

(
2ξ
ωAC
ω0

)2

(12)

where M , ω0 and ξ depend on the operating point
(U0, ISH). The implicit form of (12) calls for a numerical



4

solution to find the equilibrium point, as a function of the
AC disturbance frequency ωAC [19]. The relevant information
contained in (12) is that an equilibrium error is unavoidable in
presence of both CP and LP , and the only possible action is to
reduce the ripple frequency to values where the impact of LP
can be neglected. If CP was independent from the operating
point, a compensation of the phase shift would be possible,
but its non-linear nature prevents this opportunity. A further
theoretical extension of these concepts can be found in Sect.IV
and in the experimental evidences reported in Sect.VI.

IV. MPPT CONVERGENCE AND STABILITY ANALYSIS

This section presents stability and convergence analysis
of the first Sliding-Mode RCC-MPPT scheme in Fig.3. The
first subsection describes voltage and power ripples, including
the effect of reactive parasitics described in the previous
section. The remaining subsections focus on the trajectory of
the operating point during transients, proving the stability of
the control system and estimating the convergence time for
dynamic design purposes.

A. Control properties

The overall analysis is based on the following assumptions:
• The boost converter operates in CCM, connected to the

battery UCC . Naming G(s) the transfer function between
the duty cycle δRC and the PV voltage u, we assume
G(s) ≈ −UCC , i.e. the DC gain replaces the input filter
dynamic. This is acceptable when the dynamic of the
input filter is faster than the desired MPPT response. The
full G(s) will be used in the chattering analysis.

• The disturbance used to extract the information on the
p − u curve is the input voltage ripple, modelled as an
additive sinusoidal disturbance ∆u.

• The extraction of power ripple ∆p and voltage ripple ∆u
is based on two high pass filters (HPF), HPF1 and HPF2.
Their cut-off frequencies are ωHPF1 and ωHPF2.

• The filtered power ∆p and voltage ∆u are named O1

and O2. ε is the correlation, then filtered by a low pass
filter (LPF) with cut-off frequency ωLPF . The residual
AC ripple after filtering is assumed negligible. The sign()
block output is integrated by the RCC-MPPT integrator
with gain γ.

Overall, the previous assumptions allow to consider the sim-
plified scheme in Fig.5, where:

∆u = u− U0 = A sin (ωACt)

∆pLC = AkPkLC sin(ωACt+ ϕLC )

∆pP = AkP sin(ωACt+ ϕP ) = ∆u
∂f(u(t))

∂u

∣∣∣∣
U0,ISH

U0 = (1− δRC)UCC

P0 = f(U0, ISH)
(13)

Where ωAC is the voltage perturbation frequency, A its
amplitude, kLC = |HLC(jωAC)|, ϕLC = ∠HLC(jωAC),
kP = |HP (jωAC)| and ϕP = ∠HP (jωAC). Defining the
attenuations kHFi = |HHFi(jωAC)| , i = 1, 2 and the phases
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Fig. 5. MPPT detector linearised around a generic operating point, including
reactive parasitics effect.

ϕHFi = ∠HHFi(jωAC), i = 1, 2 introduced by HPFs, the
mean value of the correlation ε(t) is computed as:

εF (t) =
A2

2
kHF1kHF2kP cos (ϕHF1 − ϕHF2 + ϕP )

+
A2

2
kHF1kHF2kLC cos (ϕHF1 − ϕHF2 + ϕLC)

(14)

In absence of parasitics, i.e. kLC = 0, the natural filters
tuning is HPF1 = HPF2 = HPF, which leads to εF (t) = 0
in the MPP operating point (kP = 0). Including the parasitic
components, the filtered output error εF (t) can be written as

εF (t) =
A2k2

HF kP
2

cos(ϕP ) +
A2k2

HF kLC

2
cos(ϕLC) (15)

and the equilibrium condition becomes:

kP cos (ϕP ) + kLC cos (ϕLC) = 0 (16)

Equation (16) derives from (12) by placing < [H(s)] = 0,
s = jωAC , i.e. by imposing, at the equilibrium point, the
condition of quadrature between power and voltage ripples.
Compared to (12), (16) clearly highlights the wrong conver-
gence occurring when the parasitic reactance at frequency ωAC
cannot be neglected. In this case, the system might converge
to the correct ideal point (M=1), or either to a point below
(M<1) or above (M>1) the ideal point, depending on which
of the following conditions is verified at ωAC :

M = 1 if kLC cos (ϕLC) = 0→ ϕLC =
π

2
+ kπ

M > 1 if kP = kLC cos (ϕLC)

M < 1 if kP = −kLC cos (ϕLC)

(17)

with k ∈ Z and all the parameters dependent on the operating
point. Equation (16) can be rewritten assuming the additional
degree of freedom of different high pass filters for power and
voltage ripples measurements. Let ∆ϕ = ϕHF1 − ϕHF2, the
equilibrium condition becomes:

kP cos (∆ϕ+ ϕP ) + kLC cos (∆ϕ+ ϕLC) = 0 (18)
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The ideal MPP (i. e. M = 1) is reached by forcing
cos (∆ϕ+ ϕLC) = 0, that is:

∆ϕ =
π

2
+ kπ − ϕLC (19)

where ϕLC is the phase shift due to the parasitics under the
ideal MPP condition with M = 1. Equation (19) shows that a
phase shift introduced in the measurement filters can be used
to compensate the effect of the parasitic components. As an-
ticipated in Sect.III, the compensation would be possible only
if CP was constant, while in practice it varies with operating
voltage and irradiation. Consequently, the only countermeasure
to attenuate the effect of parasitics is to reduce the switching
frequency to values where LP is negligible.

B. Convergence and stability proof

To prove the stability and convergence properties of the
system, the scheme in Fig.5 has been simplified as in Fig.6,
which is based on the assumptions that the operating fre-
quency allows to neglect reactive parasitics and that all the
measurement filters, including the boost converter input filter,
do not affect the dynamic of the operating point during
irradiation transients. Once the RCC-MPPT is designed for
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Fig. 6. Simplified scheme for stability and convergence analysis.

a specific response, the choice of the filters must respect these
hypotheses. The idea behind these assumptions is to decouple
the fast AC sensing dynamics from the slow dynamics of the
operating point. The result is a single-state non-linear system,
with two non-linearities, i. e. the sign function and the voltage

derivative
∂f(u(t))

∂u

∣∣∣∣
U0

. Equation (14) can be rewritten as:

εF (t) =
A2

2
k2
HF

∂f(u(t))

∂u

∣∣∣∣
ISH ,U0

= KεF

∂f(U0)

∂U0

∣∣∣∣
ISH

(20)

Under these hypotheses, the system can be modelled as an
elementary sliding-mode controller [20], where the state x is
the duty cycle δRC , the sliding surface σ(x, t) is the filtered
correlation εF (t) and the state derivative changes depending
on sign of the sliding surface:

ẋ = g(x, t) = δ̇RC = γsgn(εF )

g(x, t) =

{
g+(x, t) if σ(x, t) > 0

g−(x, t) if σ(x, t) < 0

σ(x, t) = εF (t) sliding surface

(21)

In the model, the concept of sliding surface collapses to a
sliding line and the dynamics in sliding regime collapses to a
motion around a single point, the state corresponding to σ = 0.
This state automatically becomes also the equilibrium point,

and corresponds to the maximum power point. The existence
of the sliding mode, the reachability of the sliding point and
the stability of the motion around the point are all verified if:

σσ̇ = εF (t)
dεF (t)

dt
< 0 ∀δRC (22)

meaning that for any state x, the state velocity is directed
toward the sliding line. The inequality (22) can be verified by
substituting the definition of σ:

εF
dεF (t)

dt
= εFKεF

∂f(U0)

∂U0

∣∣∣∣
ISH

dU0

dt
(23)

Assuming that dU0/dδ = G(j0) = −UCC and by applying
the chain differentiation rule, it follows that:

dU0

dt
=
dU0

dδ

dδ

dt
=
dU0

dδ
γsgn(εf ) ≈ G(j0)γsgn(εf ) (24)

where Kεf > 0, γ < 0 and G(j0) = −UCC < 0. The sign of
(23) is only dependent on the sign of the second derivative of
the p-u curve, and if the latter is negative for all U0 up to the
open circuit voltage, the condition (22) is verified. The sign
of the second derivative can be analytically studied calculating
the power p from (4), neglecting the parasitic resistances and

by defining β ,
1

ηVTNc
. For positive operating voltages U0 >

0 it follows that:

∂2f(U0)

∂U2
0

= −
(
2βIse

βU0 + β2U0Ise
βU0
)

(25)

which proves the inequality (22).

C. Convergence time estimation

The previous analysis can be further extended to derive a
design criterion for the integral gain γ that guarantees an upper
bound to the convergence time towards a new MPP, in response
to a solar irradiation step variation. From (24) and (23), it is:

σσ̇ = −KεF

∂2f(U0)

∂U2
0

UCCγ|σ| (26)

According to (20), the second time derivative can be rewritten
as:

∂f2(U0)

∂U2
0

=
1

KεF

∂σ

∂U0
(27)

By replacing (27) into (26):

σσ̇ = − ∂σ

∂U0
UCCγ|σ| →

σ

|σ|
∂U0 = −UCCγ∂t (28)

When the system experiences a solar radiation step, it is now
possible to calculate the convergence time from an initial MPP
voltage Ui to the new MPP characterized by a voltage Uf , by
integrating the right hand term of (28):

T = −|Uf − Ui|
UCCγ

→ γ = −|Uf − Ui|
UCCT

(29)

The integral gain γ in (29) can be driven by the definition of
a maximum convergence time. The numerator of (29) can be
obtained identifying a set of relevant solar irradiation transients
for the specific application. For instance, naming Ui,min the
MPP voltage at a predefined minimum solar irradiation level
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ISH,min, and Uf,max the MPP voltage at the maximum
irradiation level ISH,max, and TMAX the maximum desired
convergence time, the integrator gain is:

γ = max
ISH

(
−|Uf,max − Ui,min|

UCCTMAX

)
(30)

The validity of (30) will be confirmed by the experimental
results of Sect.VI, despite the approximations used to derive
TMAX . In particular:

• The MPPT dynamic is slower than those of the measure-
ment filters and the boost converter input filter G(s).

• The reactive parasitics have been neglected, i.e. the
operating frequency allows to neglect LP .

• A range of relevant transients should be identified a priori,
and the MPP locus be obtained from characterization of
the PV module. The tuning of γ could also be executed
online: starting from a low value, and fixing a target
for TMAX , a tuning algorithm could keep trace of the
operating MPP voltage extremes and the correspondent
powers, and periodically update the value of γ. This
comes at the cost of an increased complexity of the
controller.

It is worth noting that (30) is also independent from the
operating temperature of the PV module. Assuming the open-
circuit voltage VOC to be the only parameter varying with
temperature, the MPPs locus tends to be shifted to lower volt-
ages as the temperature increases, but the voltages difference
in (30) makes the dynamic design independent from voltage
shifts.

V. SIMPLIFIED CHATTERING ANALYSIS

So far, the analysis has assumed an ideal sliding motion,
neglecting the chattering around the equilibrium. The chatter-
ing is now modelled as a limit cycle, adopting the describing
function method. From the linearised scheme in Fig.5, the
encircled small signal-model, the filters, the correlation and
the sign can be replaced by a describing function A(U, ωC).
In Fig.7, which assumes the existence of a chattering oscil-
lation at ωC , the output OC(jωC) is the fundamental of the
square wave after the sign function contained in A(U, ωC),
corresponding to 4/π for any sinusoidal input. Instead, the
phase of A requires a Taylor expansion of the p − u curve
around the MPP. Assume the voltage u to be the sum between

)( CC jO  Cj 

!

RC"
# $CjG  

)( CC jU  

),( CUA  

Fig. 7. Simplified scheme for chattering analysis.

U0 (the DC equilibrium voltage) and the chattering uC :

u = U0 + UC sin (ωCt) = U0 + uC (31)

By expanding the exponential (4) around U0 and truncating
the power series to the second order term, while assuming
RS = RP = 0, the corresponding power results:

p = ui =PDC + k1 sin (ωCt) + k2 cos (2ωCt) + · · ·
· · ·+ k3 sin (3ωCt)

(32)

PDC is the average power and ki i = 1..3 are coefficients
whose explicit equations are not necessary for the analysis, that
only needs to identify the component at ωC in the correlation
output. By using trigonometric identities, the only term in (32)
generating ωC after HPF and multiplication with filtered uC
is cos (2ωCt). The component at ωC after correlation and LPF
is:

εf,ωC
=KC sin(ρ) KC < 0 (33)

where ρ = ωCt+ ϕC , ϕC = ϕHPF (j2ωC)− ϕHPF (jωC) +
ϕLPF (jωC). Therefore, the describing function is:

A(ωC , U) =
OC(jωC)

UC(jωC)
= − 4

π|U |
ejϕC =

4

π|U |
ej(ϕC+π)

(34)
The oscillation condition on the module is:

|A(ωC , U)||G(jωC)|| γ
jωC
| = 1→ |U | = 4|γ||G(jωC)|

πωC
(35)

and the corresponding phase condition becomes

ϕC +
3π

2
+ ∠G(jωC) = 2kπ (36)

Also the frequency of the oscillation ωC can be directly
calculated from (36), while the amplitude UC is derived from
(35).

VI. SIMULATION AND EXPERIMENTAL RESULTS

This section aims at validating the previous theoretical
analysis. It begins with the experimental static and dynamic
characterisation of the PV module under test. Based on the PV
module data, a validation of the predicted convergence time,
chattering analysis and effect of the LPF is first obtained by
simulation and then confirmed by experimental results.

A. Description of the experimental setup

The experimental setup implements the scheme in Fig.1:
a 35 W PV module charges a 24 V lead-acid battery with a
boost converter with duty cycle driven by the sliding-mode
RCC-MPPT. The implementation reflects the second scheme
in Fig.3, using an XOR function as correlation block. The
instantaneous power is measured with an analog multiplier IC
and all the filters are op-amps based. The HPFs are first order
filters, the LPF is a second order filter. Table I collects the
main parameters of the system. The dynamic testing requires
a controllable solar emulator, whose implementation details
can be found in [21]. It is based on a matrix of 1344 LEDs,
divided in 24 modules of 56 LEDs, each module driven by
a dedicated buck converter with current control loop with
bandwidth BLED = 2 kHz. The maximum power on the PV
module surface has been estimated to be PLED ≈ 680 W/m2.
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PV module and LED lamp

(a)

Boost converter

RCC-MPPT board

(b)

Fig. 8. Fig.8a: PV module and LED solar emulator and Fig.8b: boost converter
and sliding-mode RCC-MPPT analog control board.

Table I
PV MODULE AND BOOST CONVERTER PARAMETERS

BOOST Converter

Nominal Power PN = 200 W

Output Voltage UCC = 24 V

Switching frequency fSW = 220 kHz

Boost inductor L = 50µH

Input capacitor C = 6.2µF

Input capacitor ESR ESR = 5 Ω

PV module

Nominal Power PPV = 35 W

Open circuit voltage VOC = 19.4 V

Short circuit current ISH = 2.5 A

MPP voltage VMPP = 15.5 V

MPP current IMPP = 2.25 A

Size WxLxH 540× 630× 55 mm

B. PV module characterization

1) Steady state model: A correct steady state experimental
modelization of the PV module is necessary to obtain the
MPPs locus, required to design the dynamic response of the
sliding-mode RCC-MPPT with (29). The V −I curve has been
derived at the maximum radiated power P1 = 680 W/m2,
corresponding to a short circuit current ISH1 = 1.7 A, and
at the temperature T = 40◦C. The results have been fitted
with a LMS (Least Mean Square) algorithm to the model
in (4). The outputs of the fitting are the parasitic resistances
RS = 0.693 Ω and RP = 424.3 Ω and the ideality factor
η = 2.04. To experimentally validate the dynamic behaviour of
the sliding-mode RCC-MPPT, a set of two transient conditions
has been programmed in the solar emulator. The first is the
maximum power P1 = 680 W/m2 (ISH1 = 1.7 A), the second
is equal to P2 = 280 W/m2 (ISH2 = 0.7 A). According to the
fitted model, the MPPT locus and the p− u curves calculated
at T = 27◦C are reported in Fig.9.

2) Approximated dynamic model: An approximated dy-
namic identification of the PV panel can be performed to
estimate the non-linear capacitor CP . To measure CP , the
PV module has been connected to the measurement circuit
proposed in [19]: a MOSFET is operated in its saturation
region, driven by a gate voltage with a DC component and
a small AC perturbation, with frequency fi = 500 Hz. If the
frequency is low enough, the inductor LP can be neglected,
and the phase shift between u and i ripple depends on the
capacitor CP . By extracting the component of the current
ripple leading the voltage ripple by π/2 rad, the capacitor can
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(b) Steady state p− u characteristics

Fig. 9. Fig.9a: MPP locus and corresponding steady state p−u characteristics
in the two considered irradiation levels.

be estimated for a set of operating points. An FFT has been
used to filter out non-linearities caused by the PV module.
Fig.10a reports the set of estimated values: As expected, the
capacitor is non-linear, ranging from few hundreds of nF to
few tens of µF depending on operating voltage and irradiation,
for the combined effects of non-linear junction capacitance,
mostly dependent on the voltage u and diffusion capacitance,
mostly influenced by ISH . To complete the approximated
dynamic analysis, LP has been measured connecting the PV
module to the boost converter operated in open-loop. By
varying the duty cycle, the p − u curves at ISH1 and ISH2

have been swept, measuring for each point the voltage and
power ripples ∆p and ∆u at the switching frequency. The
phase shift between p and u has been calculated and compared
with the expected value from the linearised transfer function
(9), calculated at ωAC = 2πfSW for each operating point.
A rough approximation of LP has then been then found by
fitting the measured phase shifts and the ones predicted with
(9), resulting in LP = 480 nH. The measured phase shift is
reported in Fig.10b.

C. Simulations results

The first simulations validate the convergence time and
chattering neglecting LP , but including CP . For simplicity,
a constant CP = 0.5µF and an average model of the
boost converter are used. The ripple is emulated with an
additive duty cycle disturbance set to produce the same voltage
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Fig. 10. (a) Estimated non-linear capacitor CP (ISH1 = 0.7A indicated
with circles, ISH2 = 1.7A indicated with crosses) and (b) measured phase
shift between ∆p and ∆u (9). U1 and U2 are the MPPT voltages from Fig.9.

ripple as the experimental converter, at the temperature of
T = 27 ◦C.

1) Convergence time: The convergence time has been
tested with three integral gains γ and a sequence of irradiation
transients. Table II reports the sequence, the measured times Ts
and the expected times T (29) calculated using the MPP locus
in Fig.9. The first order HPFs have cut-off frequency ωHPF =
2π(3fSW ), while the second order LPF is the cascade of
two first order cells with cut-off ωLPF = 2π12000 rad/s,
as in the experimental board. Fig.11 shows the simulated
response to the sequence of transients. Examining table II, the
correspondence between theoretical and simulated measured
time can be appreciated. The errors are due to the unmodelled
dynamics like the LPF and G(s). The high error in the
intermediate transient (500 to 1000 W/m2) is due to the small
voltage variation required to get into the new MPP. Fig.11
shows the duty cycle during the transients and offers a first
insight on the chattering effect, as it changes with the operating
point and with γ: in fact, the differential resistance r of the
PV module affects G(s), influencing the chattering conditions.

2) Chattering: Writing G(s) from the parameters in table I,
(36) can be numerically solved for the voltages corresponding
to the MPP locus in Fig.9, giving the expected chattering
frequency ωC in each MPP point, depending only on the point
and on the filters, and the corresponding amplitude U , depend-
ing also on γ. The results are reported in Fig.12, showing
the chattering frequency fC and the correspondent chattering
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Fig. 11. Simulated duty cycle response to the step sequence in Table II for
γ = 15 (continuous line) γ = 30 (dashed line) γ = 90 (dotted line).

Table II
SIMULATED CONVERGENCE TIMES Ts COMPARED WITH T FROM (29) FOR

DIFFERENT VALUES OF γ AND fLPF = 12 kHz

TransientW/m2 200− 500 500− 1000 1000− 200

Time ms 4 9 14

|UMPP,f − UMPP,i| V 0.8 0.2 1

Ts if γ = 15 2.469 ms 0.841 ms 3.011 ms

T if γ = 15 2.200 ms 0.556 ms 2.800 ms

Ts if γ = 30 1.254 ms 0.498 ms 1.583 ms

T if γ = 30 1.100 ms 0.278 ms 1.400 ms

Ts if γ = 90 0.430 ms 0.302 ms 0.519 ms

T if γ = 90 0.370 ms 0.093 ms 0.463 ms

amplitude U at the MPP as a function of the irradiation.
Note that, for the particular G(s), the chattering frequency
has a small variation with irradiation, as well as the amplitude,
that mainly depends on γ. To validate the analysis, table III
shows a good agreement between the chattering predicted as a
limit cycle with the simplified model in Fig.7 and the results
given by the simulink model. In some conditions, the model
predicts a chattering that in the time-domain simulation does
not appear, making the prediction a worst case scenario that
is useful for design purposes.

Table III
SIMULATED AND EXPECTED CHATTERING @ 1000 W/m2 .

Integral gain Expected Simulated

γ = 15 fC = 6.186 kHz No chattering

U = 11.8 mV No chattering

γ = 30 fC = 6.186 kHz fC = 6.3 kHz

U = 71.0 mV U = 70 mV

γ = 90 fC = 6.186 kHz fC = 6.3 kHz

U = 23.6 mV U = 20 mV

3) Effect of LPF on convergence and chattering: The LPF
has to attenuate the AC ripple after correlation, to fulfil the
hypothesis on which the convergence time definition is based.
Increasing the attenuation tends to increase the phase shift
at lower frequencies, lowering ωC from (36). And lower ωC
causes higher chattering amplitude from (35). The impact
on chattering can be analytically evaluated plotting the same
curves in Fig.12 with fixed γ = 30 and varying the cut-
off frequency of the second order LPF ωLPF in the set
ωSET = {0.6, 1.8, 5.4, 12, 36, 108} kHz, reported in Fig.13 in
the MPPs corresponding to the experimental irradiation levels
280 W/m2 and 680 W/m2. To conclude, Fig.14 shows the
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Fig. 12. Chattering conditions (35) and (36) (top and bottom) solved in the
MPP locus as the irradiation varies from 200 to 1000 W/m2 and T = 27◦C.

transient response for a 280 → 680 W/m2 irradiation step.
The expected convergence time can be calculated from (29)
using the information from the MPP locus and is equal to
T = 0.7917 ms. It can be seen that an high cut-off frequency
moves the RCC-MPPT out of the sliding-mode, showing a first
order response. Decreasing the filter frequency the response
reaches the expected convergence time (Ts = 1 ms measured
in simulation) with fLPF = 12 kHz without chattering while
a further reductionfLPF only increases the chattering.

D. Experimental results

1) Effect of reactive parasitics: The theoretical analyses of
convergence and chattering assume negligible parasitics, but
the evidences in Fig.10b prove that the parasitics are far from
being negligible and they play a major role in the p−u transfer
function. In fact, the equilibrium point corresponding to a
phase equal to −π/2 rad moves far from the theoretical MPP
voltages U1 and U2. This result was expected also from (12),
observing that ω0 and ωAC have the same order of magnitude.
To partially compensate for the parasitics and enable the
experimental validation of the convergence analysis, a fixed
phase shift was introduced in the HPFs to guarantee the ideal
MPP when ISH = ISH2 = 1.7 A. The MPP was reached by
∆ϕ = ϕHPF1−ϕHPF2 = −52◦, obtained by shifting the cut-
off frequency of HPF1 (power ripple) with respect to HPF2

(voltage ripple). With the original cut-off ωHPF = 2π(3fSW ),
the phase at ωAC is ϕHPF1

(ωAC) = ϕHPF2
(ωAC) = 71.56◦.

To achieve the desired phase shift, the cut-off of the power fil-
ter was reduced to ωHPF1

= 2π(0.315fSW ), while ωHPF2
=
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Fig. 13. Chattering conditions (35) and (36) (top and bottom) solved for
γ = 30 in the MPP at 280 and 680 W/m2 as a function of fLPF .
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Fig. 14. Sliding mode RCC-MPPT response to a 280 → 680 W/m2

irradiation step with γ = 30 for different values of fLPF .

2π(3fSW ). Conversely, the LPF was the same as the one used
in simulation, i.e. a second order with fLPF = 12 kHz. This
compensation is effective only when ISH = 1.7 A. In the
other experimental condition, where ISH = 0.7 A, the system
will not be able to reach the true MPP, but the convergence
and the chattering can still be validated, knowing the voltage
corresponding to the wrong MPP. Adding in Fig.10b the
HPFs phase shift, the expected wrong equilibrium voltage
will be UWR = 16.24 V, corresponding to a power PWR =
8.42 W, 7.5% less than the ideal maximum power. Despite
the error, the results validate the analysis by confirming, at
the same time, the critical influence of the parasitics in the
RCC-MPPT. Having in mind the above considerations, the
Fig.9 returns a voltage step during the transient of ∆U =
16.24 − 15.44 = 0.8 V. Table IV reports the convergence
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Fig. 15. Experimental transient response to the irradiation step 280→ 680 W/m2 @ 27◦.

times expected from (29), which have to be compared with
the corresponding experimental waveforms of Fig.15a and
Fig.15b, showing a good agreement with the predicted data.
The final results in Fig.15c and Fig.15d validate the chattering
analysis providing a set of transients 280 → 680 W/m2

where the integral gain is kept constant to γ = 20 and
the LPF varies. The behaviour observed in the experimental
setup reflects the analytical expectations: exceeding in the
reduction of the cut-off frequency, the chattering phenomenon
dominates, reducing the effectiveness of the MPPT. Observe
that the approximated chattering prediction made in Sect.V can
be applied also to the experimental setup, adding to G(s) the
estimated reactive parasitics LP and CP . Redrawing Fig.13 for
γ = 20 and irradiation 680 W/m2, it is possible to compare
the approximated chattering prediction and the experimentally
measured chattering. Table V reports the comparison between
the expected chattering and the measured one at 680 W/m2,
confirming that the prediction provides a valuable even if
approximated tool to estimate the chattering.

Table IV
EXPECTED CONVERGENCE TIME T FROM (29) FOR DIFFERENT VALUES OF

γ AND fLPF = 12 kHz - EXPERIMENTAL SETUP.

TransientW/m2 280− 680

|UMPP,f − UMPP,i| V 0.8

T if γ = 15 2.2 ms

T if γ = 89 0.374 ms

Table V
PREDICTED AND MEASURED CHATTERING AT 680 W/m2 FOR THE LPFS

IN FIG.15C AND FIG.15D.

Condition Frequency kHz AmplitudeV

fLPF = 0.62 kHz− predicted 0.59 0.25

fLPF = 1.8 kHz− predicted 1.6 0.09

fLPF = 0.62 kHz−measured 0.9 0.18

fLPF = 1.8 kHz−measured 1.59 0.08

VII. SUMMARY

The design steps for the practical implementation of the
proposed sliding-mode RCC-MPPT can be summarized as
follows:
• Step 1: An approximated characterisation of the MPPT

locus of the PV module is required by (30). The relevant
information is the interval of MPP voltages where a
controlled convergence time is desired.

• Step 2: An estimation of LP and CP is needed to set
the maximum allowable switching frequency. A possible
implementation is described in Sect.VI. The information
could be limited to the order of magnitude, as a safety
margin is necessary anyway.

• Step 3: The switching frequency limit is used to design
the boost converter. Subsequently, the boost transfer func-
tion G(s) is known.

• Step 4: The dynamic performances specification sets the
convergence time limit TMAX . For the hypothesis of
negligible effect of G(s) to be valid in the transient
response, it must be 1/TMAX << fG, where fG is the
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resonance frequency of the boost filter. The gain γ is
calculated by (30).

• Step 5: The HPFs have to approximate a derivative
behaviour at ωAC , therefore ωHPF > ωAC .

• Step 6: Once defined the maximum allowed chattering,
the LPF can be designed as shown in Sect.V, using the
information on G(s) and γ.

VIII. CONCLUSIONS

The paper proposes a detailed dynamic analysis of a sliding-
mode RCC-MPPT scheme. The goal is to provide a set of
design guidelines useful to develop and tune the MPPT con-
troller to guarantee a desired dynamic behaviour in response
to irradiation transients. This can be translated into an upper
bound for the convergence time that is always respected by
a set of relevant transients. Convergence time modelling and
stability have been developed based on sliding-mode theory.
Chattering effect has been modelled and included in the
design, as it might reduce the effectiveness of the MPPT.
Also the presence of reactive parasitics of the PV module has
been included in the analysis, showing their detrimental effect
on the controller. The analysis and design process have been
validated with a combination of simulations and experimental
results with a single PV module charging a lead-acid battery,
showing a good match with the theoretical models both for
convergence time and chattering.
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