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Vibrational frequencies for carbon clusters, fullerenes and nanotubes evaluated using empirical carbon-carbon potentials are
presented. For linear and cyclic clusters, frequencies evaluated with the reactive empirical bond order (REBO) potential provide
the closest agreement with experiment. The mean absolute deviation (MAD) between experiment and the calculated harmonic
frequencies is 79 cm�1 for the bending modes and 76 cm�1 for the stretching modes. The effects of anharmonicity are included
via second order vibrational perturbation theory and tend to increase the frequency of the bending modes while the stretching
modes have negative shifts in the region of 20 - 60 cm�1, with larger shifts for the higher frequency modes. This results
in MADs for the bending and stretching modes of 84 cm�1 and 58 cm�1, respectively. For the fullerene molecule C60, the
high frequency modes are predicted to have harmonic frequencies that are significantly higher than experiment, and this is not
corrected by accounting for anharmonicity. This overestimation of experimental observed frequencies is also evident in the
calculated frequencies of the G band in nanotubes. This suggests that the REBO potential is not optimal for these larger systems
and it is shown that adjustment of the parameters within the potential leads to closer agreement with experiment, particularly if
higher and lower frequency modes are considered separately.

1 Introduction

The prediction of the infrared (IR) and Raman spectroscopy of
carbon clusters and closed carbon cages is a problem of fun-
damental interest and a challenge for computational methods.
Carbon clusters are often studied in relation to the chemistry
of carbon stars,1,2 and IR measurements have had a prominent
role in the detection of C60 fullerene and the possible detection
C70 in a young planetary nebula.3 Furthermore, IR and Ra-
man spectroscopy are used to characterise the structure of nan-
otubes,4,5 and IR spectroscopy has been used to study charge
dynamics in graphene.6 The capability to compute the vibra-
tional frequencies and associated spectra of these systems ac-
curately can potentially aid the interpretation and identifica-
tion of fullerene species in experimental measurements and
allow the relationship between the molecular structure and the
observed features to be explored. From a quantum chemical
perspective within the Born-Oppenheimer approximation, the
calculation of vibrational frequencies and the associated vi-
brational modes requires solutions of the nuclear Schrödinger
equation

[T̂nuc +V (R)]Ynuc(R) = EnYnuc(R) (1)

Adopting the harmonic approximation wherein V (R) is as-
sumed to be quadratic greatly simplifies this problem, and
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the vibrational frequencies and normal modes are obtained
through diagonalization of the mass-weighted Hessian matrix.
For small to medium sized molecules, Kohn-Sham density
functional theory7 (DFT) is most commonly used to evalu-
ated the necessary derivatives. Within this approach the cal-
culated frequencies are usually too high, and often a uniform
scaling factor is applied.8 There are a number of well estab-
lished methods for going beyond the harmonic approximation,
such as second-order vibrational perturbation theory (VPT2)
and vibrational configuration interaction (VCI). In general,
these calculations are based upon a quartic force field, and
the accuracy of VPT2 with various DFT exchange-correlation
functionals has been assessed and show that hybrid function-
als achieve an accuracy of about 30 cm�1.9 The limitation of
these methods compared to a harmonic analysis is their com-
putational cost. For VPT2 calculations, the majority of the
computational effort is in the evaluation of the necessary third
and fourth derivatives by numerical methods. The number of
energy and gradient calculations required increases rapidly as
the size of the system increases. This increase in computa-
tional cost is compounded by the cost of the individual energy
and gradient evaluations, which also increase as the system
gets larger.

Consequently, DFT based anharmonic calculations of IR
spectroscopy are limited to very small systems, and even har-
monic frequency calculations for large fullerenes become pro-
hibitively expensive, and a number of schemes to reduce the
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cost of harmonic and anharmonic frequency calculations have
been proposed.10–12 One example are methods that exploit
factors such as the localized nature of the vibrational modes
which can be applied to certain systems to reduce the cost of
the calculations.13,14 This constitutes an approximation in the
solution of the nuclear part of the problem, while using DFT to
solve the electronic part of the problem and provide the force
field. An alternative approach, which is the focus of this work
is to simplify the description of the force field through the use
of empirical potentials. The evaluation of energies and gra-
dients with empirical potentials can be computationally trivial
compared to DFT calculations, and their use can make the cal-
culation of IR spectra for large systems, that would be too ex-
pensive with DFT forces fields, computationally tractable. Of
course, for such methods to be of value then this decrease in
computational cost cannot result in an unacceptable reduction
in accuracy.

Empirical potentials describing the carbon-carbon interac-
tion are some of the most highly developed and widely used
in chemistry and materials science. Currently, the most widely
used potential for carbon is probably the reactive empirical
bond order (REBO) potential. 15 This potential is a develop-
ment of the original Brenner potential16 which was based on
the Tersoff potential17 and is designed to account for changes
in atomic hybridisation and allow for the breaking and form-
ing of covalent bonds. The REBO potential is a relatively short
ranged potential and the TLHT potential of Takai et al. 18 is an
example of a longer range potential and further potentials for
carbon have been developed by Murrell and co-workers.19,20

The focus of this work is an assessment of the accuracy of
such empirical potentials in the prediction of the vibrational
frequencies of carbon clusters and fullerenes. This is moti-
vated by goal of exploiting accurate empirical potentials for
the calculation of IR and Raman spectra of large fullerene and
nanotube systems in a computationally tractable manner. Fur-
thermore, potentials such as the REBO potential are widely
used in molecular dynamics simulations of carbon based ma-
terials. It is an open question whether a potential that is devel-
oped and tested based upon relatively small molecules will be
transferable and describe systems such as fullerenes and nan-
otubes accurately. The calculation of vibrational frequencies
probes the curvature of the potential energy surface around a
minimum. Consequently, if a potential does not accurately
reproduce vibrational frequencies, then the curvature of the
potential at the minima is not correct, which raises doubt over
any quantitative analysis of, for example, molecular dynamics
trajectories using the potential.

The study of the spectroscopy of small carbon clusters has
been an area of research of considerable activity and exten-
sive reviews of the subject can be found in the literature.21,22

Carbon clusters (Cn) comprising less than 10 carbon atoms
have low energy linear structures, with a 1S+

g ground state

for odd n and 3S�
g ground state for even n. 22 Although high

level calculations suggest that the lowest energy structures are
cyclic for some n < 10.23 Larger clusters (n > 10), are be-
lieved to have cyclic structures owing to a reduction in ring
strain. Halicioglu reported harmonic vibrational frequencies
from both the Brenner and TLHT potentials for linear Cn
(n=2-5) clusters.24 The results showed the TLHT potential
to provide the closest agreement with experiment, although
the predicted stretching frequencies were considerably higher
than the experimental values (by up to 500 cm�1). The re-
ported frequencies for the Brenner potential were even worse,
and tended to be too low by several hundred wavenumbers.
The harmonic vibrational frequencies of carbon clusters and
C60 computed with the empirical potential of Murrell and co-
workers have also been reported.20 The stretching modes for
small linear carbon clusters were high compared with experi-
ment and a scaling factor of 0.615 was used for these modes.
For C60 the low frequency (less than 1000 cm�1) were under-
estimated and the higher frequency (greater than 1000 cm�1)
modes were overestimated and it was necessary to scale the
modes. Small carbon clusters of this size are accessible to
direct calculation of the harmonic frequencies with quantum
chemical methods, including DFT,25 coupled cluster theory23

and multi reference based approaches.26 These studies have
shown that overall results from DFT are reasonably accurate
compared to those from coupled cluster theory,25,26 although
some discrepancies have been identified where the minimum
energy coupled cluster theory structure is a saddle point ac-
cording to DFT.26 Furthermore, it is probably necessary to
account for both dynamical and non-dynamical correlation to
accurately treat these systems.26

The IR and Raman spectra for some fullerenes have been
reported.27–30 The most studied fullerene is C60, and the IR
spectrum of C60 has four infrared active modes (T1u) and ten
Raman active modes (two Ag and eight Hg). The four active
IR modes give bands at 526, 577, 1180 and 1433 cm�1, with a
ratio of intensities of 1, 0.48, 0.45, and 0.378, respectively,27

and there has been a considerable effort to assign all of the
vibrational modes.31 The Raman spectrum has bands at 267,
431, 495, 711, 775, 1101, 1251, 1427, 1470 and 1576 cm�1,
with the most intense peaks at 267, 495 and 1470 cm�1.28 The
strong covalent bonds between carbon atoms lead vibrations
with predominantly tangential displacements to have higher
frequencies, while the lower frequency part of the spectrum
consists mainly of radial modes.32 IR spectra have been re-
ported for other fullerenes, including C70,27 C76

29 and C84,30

and the lower symmetry of these fullerenes leads to more
bands being evident in the IR and Raman spectra. Raman
spectroscopy is also used to probe the structure of carbon nan-
otubes and graphene.33 The G band is a multiple peak fea-
ture at 1540-1595 cm�1 and is an important component of the
Raman spectroscopy of these systems34–36 Group theory pre-
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dicts the Raman-active G band in achiral nanotubes consists of
A1g, E1g and E2g modes.35 Furthermore, in carbon nanotubes
there is a radial breathing mode at 100 - 400 cm�1, where the
frequency of this mode is dependent on the diameter of the
nanotubes.37,38

There have been many theoretical studies of the vibrational
frequencies of C60 and C70 using a wide range of different
methodologies including force field,39,40 semi-empirical and
DFT.31,41–46 The work of Hands et al. 40 is illustrative of force
field based studies, and assessed several existing force fields
and developed a new force field wherein the 13 force constants
contained within the force field were fitted to the experimental
values for the Raman active vibrational modes. This type of
model will naturally reproduce the data to which it was fitted
but was also able to account for the full spectrum. However,
there is significant difference between this type of force field
and the empirical potentials considered in this work. The po-
tentials considered here are general carbon-carbon potentials
and have not been fitted based using data for C60 or to specif-
ically describe vibrational frequencies. Fabian39 also used a
force constant based model with parameters fitted to exper-
imental IR and Raman data to simulate the IR spectrum of
C60. This work developed an approach to evaluate the inten-
sities of the IR bands based upon the bond charge model.47

A good description of the IR spectrum was achieved and it
was suggested that anharmonicity provides a possible mech-
anism for activating weak modes resolved in IR spectra of
C60 thin films and single crystals. Calculation of harmonic
frequencies of C60 and C70 with DFT is computationally ex-
pensive, particularly if good quality basis sets are used. Sev-
eral groups have applied standard DFT based approaches to
compute harmonic frequencies of C60 and C70.41–43 The aim
of this work is predominantly to assign all of the vibrational
modes, although quite recently these assignments have been
updated based upon inelastic neutron scattering data and pe-
riodic DFT calculations.46 In this work the authors note that
while calculations normally pertain to an isolated molecule,
almost all of the available data are for the solid and therefore a
periodic description is necessary. Recently,45 a self-consistent
charge density-functional tight-binding method was applied to
study the vibrational frequencies of some fullerenes using a
harmonic treatment of the vibrations and a root mean squared
deviation of about 30 cm�1 with respect to BLYP/cc-pVTZ
calculations was reported. Comparison with the experimen-
tal frequencies for the IR and Raman active modes of C60
shows that the calculated frequencies tend to be too low by
up to about 80 cm�1 in the worst case. Overwhelmingly, the-
oretical studies of the vibrational spectroscopy of these sys-
tems have been based upon harmonic frequencies, and there
has been relatively few attempts to incorporate anharmonic-
ity into the calculations.39,48,49 A potential energy surface has
been developed to describe the anharmonic vibrational mo-

tions of C60 and used to calculate anharmonically corrected
fundamentals frequencies within a vibrational self-consistent
field approach.49 The anharmonic frequencies were found to
be within about 10 cm�1 of the harmonic frequencies, and
this small degree of anharmonicity was associated with the
stiff carbon-carbon bonds in C60. In this paper, the harmonic
and anharmonic calculations of the IR spectroscopy of small
carbon clusters and fullerenes calculated with empirical po-
tentials are presented, with the accuracy of the calculations
assessed through comparison with DFT based calculations,
where these are computationally feasible, and experiment.

2 Computational Details

DFT harmonic and anharmonic frequencies were computed
following full geometry optimisation using the Q-Chem
software package.50 The B3LYP51 and B97-1 exchange-
correlation functional52 were used in conjunction withe the
6-311G* basis set53 unless stated otherwise. Vibrational fre-
quencies for several empirical potentials for carbon have been
investigated. The first is the Murrell-Mottram54 potential for
carbon parameterised by Eggen et al. 20 The potential (denoted
MM here) has the following two-body and three-body terms
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with ri j the distance between atoms i and j. The potential
was fitted to the phonon frequencies and elastic constants of
diamond and the values for the parameters (D,re,a2,a3 and
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c0 � c10) can be found elsewhere.20 The TLHT potential18

also has two and three-body terms, with the two-body part
given by

V (2)
i j = exp(q1 �q2ri j)�q3

✓
1
2
�

tan�1[q4(ri j �q5)]

p

◆1/2

(10)

The three-body part of the potential is represented by the angle
dependent term

V (3)
i j = Z[p+(cosqi +h)(cosq j +h)(cosqk +h)]

⇥ exp[�b2(r2
i j + r2

ik + r2
jk)] (11)

where qi, q j and qk are the angles of the triangle formed by
the three atoms i, j and k, and q1 �q5,Z,h, p and b are param-
eters. In the original Brenner potential16 (denoted Brenner),
the energy is expressed as
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where fc(ri j) is a cutoff function and VR and VA and bi j are
defined as
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The second generation REBO potential15 is significantly more
complex than the Brenner potential and is designed to describe
changes in atomic hybridization. VR and VA are modified to
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gi jk is a bond-bending spline function and the PRC
i j term is rel-

evant for radicals and is zero for closed shell systems. bDH
i j is

a dihedral bending function that depends on the local conju-
gation and involves the third nearest neighbour atoms.

bDH
i j =

Ti j

2 Â
k,l 6=i, j

f c
ik f c

jl(1� cos2[Qi jkl ]) (22)

where Qi jkl is the dihedral angle of four atoms and Ti j de-
scribes the rotation about the bonds and depends whether the
atoms are conjugated. There are many parameters incorpo-
rated in the REBO potential which are described in more detail
elsewhere.15

Vibrational frequencies were computed for the REBO,15

THLT18 and Murrell19 potentials using our own code. Struc-
tures were optimised according to the empirical potentials
with the conjugate gradient technique. In this software ana-
lytical first derivatives are available for the REBO potential,
otherwise the derivatives were evaluated numerically with a
step size of 0.005 Å in cartesian coordinates for the first and
second derivatives and 0.1 bohr along the normal modes for
the third and fourth derivatives used in the evaluation of the
anharmonic correction. These values of step size are typically
used within quantum chemistry codes.50 For the fullerene
molecules, we found it necessary to use a larger step size
of 0.5 bohr for the numerical third and fourth derivatives.
The smaller step size did not give a sufficiently large change
in energy and the resulting anharmonic shifts were not reli-
able. While this sensitivity of the anharmonic shifts for the
fullerenes is undesirable, implementing analytical higher or-
der derivatives for a potential as complex as the REBO poten-
tial is not practical, and we only discuss the anharmonic shifts
for the fullerenes at a qualitative rather than quantitative level.
Anharmonic corrections for the vibrational frequencies were
computed according to VPT2 using the formula55
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k ]

where the h’s represent derivatives of the energy with respect
to the normal modes, wi is the harmonic vibrational frequency
of normal mode qi and there are m normal modes.

While evaluating the vibrational frequencies for the empiri-
cal potentials is relatively straightforward, determining the as-
sociated intensities is more problematic. In this work we have
used two approaches to estimate the infrared intensities. In the
first, atomic partial charges for the structure optimised accord-
ing to the empirical potential were determined in a separate
DFT calculation and the relative intensities of the modes were
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Table 1 Computed harmonic frequencies for linear carbon clusters. Bending modes are shown in italics and modes with a large intensity (>
50 km/mol as given by the DFT calculations) are shown in bold. aExperimental values from reference22 and references therein

Molecule Method Vibrational Frequencies / cm�1

C3 Brenner 11, 790, 1370
MM 89, 1919, 3321
TLHT 271, 1353, 2438
REBO 383, 1232, 2135
DFT - B3LYP 102, 1237, 2148
DFT - B97-1 77, 1228, 2134
Exp.a 63, 1225, 2040

C4 Brenner 5, 13, 600, 1118, 1449
MM 57, 127, 1416, 2719, 3408
TLHT 166, 362, 1053, 1956, 2689
REBO 211, 463, 900, 1743, 2185
DFT - B3LYP 169, 346, 938, 1592, 2124
DFT - B97-1 159, 336, 931, 1584, 2116
Exp. 160, 339, -, 1549, 2032

C5 MM 38, 90, 145, 1128, 2208, 3046, 3448
TLHT 110, 260, 407, 857, 1627, 2298, 2813
REBO 131, 330, 497, 712, 1408, 1950, 2207
DFT - B3LYP 118, 229, 564, 795, 1490, 2039, 2260
DFT - B97-1 114, 222, 552, 790, 1480, 2027, 2253
Exp. 118, 218, -, -, 1447, -, 2169

C6 MM 27, 67, 112, 154, 939, 1849, 2647, 3205, 3470
TLHT 77, 192, 322, 430, 720, 1388, 1990, 2506, 2880
REBO 89, 235, 399, 514, 591, 1174, 1688, 2050, 2219
DFT - B3LYP 101, 205, 368, 486, 668, 1227, 1731, 2030, 2180
DFT - B97-1 97, 197, 359, 467, 665, 1219, 1721, 2024, 2179
Exp. 90, 246, -, -, 637, 1197, 1694, 1960, 2061

C7 MM 19, 51, 89, 128, 160, 804, 1590, 2312, 2901, 3294, 3484
TLHT 57, 146, 255, 362, 443, 620, 1208, 1749, 2234, 2639, 2919
REBO 65, 173, 312, 441, 505, 523, 1006, 1470, 1850, 2106, 2227
DFT - B3LYP 75, 166, 262, 527, 586, 676, 1112, 1602, 1981, 2214, 2246
DFT - B97-1 73, 161, 255, 514, 583, 630, 1105, 1597, 1971, 2209, 2245
Exp. 496, 548, 1893, 2128

C8 MM 14, 40, 71, 106, 138, 163, 703, 1394, 2044, 2613, 3058, 3350, 3494
TLHT 44, 115, 206, 302, 389, 452, 543, 1067, 2007, 2405, 2728, 2728, 2944
REBO 49, 133, 246, 366, 442, 467, 530, 880, 1296, 1663, 1951, 2141, 2233
DFT - B3LYP 62, 147, 237, 367, 501, 514, 524, 973, 1397, 1762, 2025, 2131, 2158
DFT - B97-1 61, 143, 231, 360, 488, 509, 511, 968, 1390, 1754, 2019, 2133, 2154
Exp. 1710, 2072
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estimated through displacement of the partial charges with re-
spect to the normal modes. Some of the molecules studied in
this work are highly symmetric and the atomic partial charges
are zero. In this case, dipole derivatives computed in a sepa-
rate B97-1/STO-3G calculation were combined with the com-
puted normal modes as given by the Hessian of the empirical
potential to give the intensity. However, this approach is lim-
ited in that it introduces a significant computational expense
in determining the dipole derivatives. Other approaches in-
volving the introduction of bond charges have been used to
evaluate intensities for C60 and C70

39,47 and provide a basis
for computing intensities without introducing additional ex-
pense. Anharmonic corrections for the intensities were not
considered.

3 Results and Discussion

3.1 Linear Cn Molecules

Table 1 shows the harmonic frequencies for linear Cn clus-
ters computed with the second generation REBO potential,
TLHT potential, MM potential and the Brenner potential for
n=3 and 4. Also shown are frequencies computed using DFT
with the B97-1 and B3LYP exchange-correlation functionals
and 6-311G* basis set. For odd n these clusters have a 1S+

g

ground state and for even n a 3S�
g ground state. The varia-

tion of the predicted frequencies between these two function-
als is small and the frequencies generally lie within 20 cm�1

of each other, and both lie within about 40 cm�1 of the re-
ported CCSD(T) frequencies.23 The values from B97-1 are
marginally closer to the available experimental data and we fo-
cus on this functional in the following discussion. Before con-
sidering the calculated frequencies we will briefly discuss the
optimised structures. The minimum energy structures given
by the empirical potentials are more uniform than those from
DFT, with all of the bond lengths equal except for the two
carbon-carbon bonds at the ends of cluster. For the REBO po-
tential the bond lengths between the central carbons is 1.348
Å and 1.300 Å for the terminal bonds, with corresponding
values of 1.226 Å and 1.210 Å for the TLHT potential. The
predicted bond lengths for the MM potential are significantly
larger, this is a consequence of the re parameter that is set to
1.507 Å. In contrast to the REBO and THLT potentials the
bond lengths are predicted to be longer in the centre of the
cluster, with values of 1.529 Å for the central bonds and 1.517
Å for the terminal bonds. The DFT calculations are consis-
tent with the REBO and TLHT potentials and also predicts
the carbon-carbon bond lengths of the central carbons to be
shorter than for the two end carbons. However, for the longer
carbon chains the bond lengths of the central carbons are not
uniform. Furthermore, the bond lengths of the end carbons are
shorter for the odd n clusters (1S+

g states) than the even n clus-

ters (3S�
g states) of similar size, and for both states decreases

as the length of the clusters increases. For the C6 cluster the
bond length between the central carbons is 1.276 Å and the
1.305 Å for the end carbons, which are closest to the values
predicted by the REBO potential. We have also explored the
Tersoff and Brenner potentials. The Tersoff potential does not
predict linear structures for the small carbon clusters, while
the Brenner potential predicted linear structures for C3 and C4
with very low frequencies for the bending modes (see Table 1)
and non-linear structures for the larger clusters. These poten-
tials have a closely related bending potential (eqn. 17), and the
results suggest that this does not describe these small clusters
well. These findings are consistent with an earlier study,24 and
we do not consider these potentials further.

For C3, the REBO potential predicts frequencies for the
stretching modes that are very close to the values from DFT.
The frequency for the bending mode is significantly higher
than DFT, and comparison with experiment shows the value
from DFT to be more accurate. The REBO calculated fre-
quency for the symmetric stretching mode (sg) lies within
10 cm�1 of the experimental value, while the predicted fre-
quency for the antisymmetric stretching mode (su) is consid-
erably higher than experiment. The calculated frequencies for
the stretching modes are significantly higher with the TLHT
potential while the bending mode frequency is slightly lower
than the REBO value, but remains higher than experiment.
The frequencies for the MM potential are even higher, 3321
cm�1 for the su mode, although the frequency of the bend-
ing mode is close to the experimental value. This is consis-
tent with the finding of a previous study where these frequen-
cies were scaled by 0.615 to achieve agreement with experi-
ment.20 The higher stretching modes frequencies as given by
the TLHT potential is consistent with its shorter bond length,
although it is counterintuitive for that the MM potential has
the longest bond length and the highest frequencies.

For the larger clusters, the bending frequencies for the
REBO potential are in closer agreement with DFT and the
large error for the bending mode observed for C3 appears
to be an exception. The stretching mode frequencies from
the REBO potential are reasonably similar to the DFT val-
ues, however, the TLHT potential predicts frequencies that are
too high, in some cases by over 700 cm�1 and the stretching
frequencies for the MM potential remain considerably higher
than experiment. For C8 the order of the two highest frequency
modes are interchanged by both empirical potentials relative
to the DFT calculations. For the smaller clusters, our cal-
culated frequencies for the TLHT potential are in agreement
with earlier work.24 The results also demonstrate a consider-
able improvement between the original and second generation
REBO potentials with the original potential not predicting the
correct structures for these clusters while the newer version is
reasonably accurate.
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Table 2 Computed DFT (B97-1/6-311G*) and REBO anharmonic shifts for the linear carbon clusters frequencies. S: only stretching modes
included, S+B: stretching and bending modes included

Mol. Method Dn1 Dn2 Dn3 Dn4 Dn5 Dn6 Dn7 Dn8 Dn9 Dn10 Dn11 Dn12 Dn13
C3 DFT S+B +41 +20 -65

DFT S 0 +18 -35
REBO S+B -11 -19 -69
REBO S 0 -26 -58

C4 DFT S+B +35 +78 +14 -37 -55
DFT S 0 0 -10 -25 -32
REBO S+B -1 +39 -17 -53 -71
REBO S 0 0 -18 -41 -58

C5 DFT S+B -44 -15 +20 -7 -37 -43 -46
DFT S 0 0 0 -7 -11 -18 -19
REBO S+B +11 +8 -2 +6 -27 -42 -54
REBO S 0 0 0 -13 -18 -31 -36

C6 DFT S 0 0 0 0 -6 -8 -20 -16 -21
REBO S+B +21 +13 +7 -2 -9 -21 -45 -49 -63
REBO S 0 0 0 0 -10 -13 -35 -31 -46

C7 DFT S 0 0 0 0 0 0 +6 +4 +8 -8 +25
REBO S+B +27 +20 +13 +6 -14 -1 -17 -28 -41 -49 -46
REBO S 0 0 0 0 0 -8 0 -9 -25 -32 -27

C8 DFT S 0 0 0 0 0 0 -34 -20 -22 +24 -27 -31 -24
REBO S+B +31 +16 +11 -19 +5 -1 +4 -13 -23 -36 -37 -46 -53
REBO S 0 0 0 0 -7 0 0 -7 -16 -22 -22 -26 -34

Some of the discrepancy between the computed frequen-
cies and experiment can be associated with the harmonic ap-
proximation. Table 2 shows the computed anharmonic cor-
rections to the normal mode frequencies as given by VPT2
for DFT and the REBO potential. Two values for the anhar-
monic shift are shown. The first includes all vibrational modes
within the evaluation of the anharmonic shift, while the sec-
ond excludes the bending modes from the VPT2 calculation.
Near degeneracy effects can often result in VPT2 giving er-
roneous predictions of anharmonic shifts. This can often be
corrected by removing low frequency modes from the calcu-
lation resulting in more accurate anharmonic corrections for
the higher frequency modes, although by removing vibrational
modes from the calculation the anharmonic shift will tend to
be underestimated. The DFT calculations predict a large shift
to lower frequency (-65 cm�1) for the su mode and a posi-
tive shift of (+20 cm�1) for the sg mode. These anharmonic
shifts are consistent with earlier coupled cluster calculations
that reported anharmonic shifts of -51 cm�1 and +18 cm�1

for the su and sg modes, respectively.56 Anharmonic shifts at
the coupled cluster level have also been reported for C5 where
values of -7, -17, -26, and -31 cm�1 were evaluated for the
four stretching modes with the bending modes excluded from
the anharmonic frequency calculation.57 Again, these results
are consistent with our corresponding DFT calculation. For
C3 the REBO potential gives anharmonic shifts of -19 cm�1

and -69 cm�1 for the sg and su modes. For the su mode

this is close to the value from DFT, but the shift in the sg
mode has a different sign to DFT. However, combining these
anharmonic corrections with the computed harmonic frequen-
cies gives values of 1213 cm�1 and 2066 cm�1 for the sg and
su modes, which are close to the experimental values of 1225
cm�1 and 2040 cm�1. Although, the inclusion of anharmonic-
ity does not account for the deviation from experiment of the
REBO potential for the bending mode.

For the larger clusters (n > 5) DFT anharmonic correc-
tions are only reported with the bending modes excluded since
the inclusion of the bending modes results in clearly unreli-
able frequencies which is likely to be a consequence of near-
degeneracy effects. For the REBO potential this is less of a
problem and anharmonic shifts are given with and without the
bending modes included. The calculations for the larger linear
clusters do reveal some general trends in the computed an-
harmonic shifts. Anharmonicity tends increase the frequency
of the bending modes while the stretching modes have neg-
ative shifts in the region of 20 - 60 cm�1, with larger shifts
for the higher frequency modes. The calculations also show
that neglecting the bending modes in the evaluation of the an-
harmonic correction does result in an underestimation of the
anharmonic shift compared to the full anharmonic calculation.
The agreement between the calculated REBO frequencies and
experiment is illustrated in Figure 1. For the bending modes
the mean absolute deviation (MAD) between experiment and
the calculated harmonic frequencies is 79 cm�1, and this in-
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Fig. 1 Correlation between the calculated REBO and experimental
vibrational frequencies for the linear carbon clusters. The top panel
shows the bending modes and the lower panel stretching modes.
Calculated harmonic frequencies are shown in red and anharmonic
frequencies are shown in blue

creases to 84 cm�1 with the inclusion of the VPT2 anharmonic
correction. This represents a significantly poorer agreement
with experiment than DFT for which the MAD for the bend-
ing modes is 20 cm�1. For the stretching modes, the REBO
potential is more accurate with a MAD for the harmonic fre-
quencies of 76 cm�1 which decreases to 58 cm�1 with the in-
clusion of anharmonic effects. This compares to a MAD of 63
cm�1 for the harmonic DFT frequencies, although this MAD
decreases to 21 cm�1 following scaling of the frequencies by a
standard value of 0.96. For these clusters, the displacement of
atomic charges along the normal modes allows for the modes
with non-zero intensity of be identified.

3.2 C16, C60, C70 and Nanotubes

The calculated frequencies for the linear carbon clusters show
the REBO potential to be the significantly more accurate than
the other empirical potentials considered. While the computed
REBO frequencies are significantly less accurate than DFT for
the bending modes, its accuracy for the stretching modes is
comparable to unscaled harmonic DFT frequencies and over-
all the decrease in accuracy is modest in view of the vastly re-
duced computational cost. Consequently, the use of the REBO
potential has the potential to allow relatively accurate calcula-
tions of the vibrational frequencies of much larger carbon sys-
tems and we focus on the use of this potential. In order to test
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Fig. 2 Computed IR spectra for cyclic C16. (a) harmonic
B97-1/cc-pVDZ, (b) harmonic REBO and (c) anharmonic REBO

this we first consider the larger (mono)cyclic cluster C16.
The optimised structures of cyclic C16 as given by the

REBO potential is a highly symmetrical planar structure with
all of the bond lengths equal to 1.356 Å. The computed har-
monic and anharmonic frequencies are illustrated in Figure
2 and tabulated in Table 3. In this Figure, superimposed on
the computed spectra are asterisks denoting the computed fre-
quencies with zero intensities. Also shown are the harmonic
frequencies computed at the B97-1/cc-pVDZ level. In gen-
eral, the lower frequency modes (< 450 cm�1) correspond to
vibrations involving motions out of the molecular plane and
the higher frequency modes involve motions within the plane
of the molecule. For both REBO and DFT spectra, there is
only one (doubly-degenerate) vibrational mode that has non-
zero intensity. This is computed to have an overall intensity
of 34.1 km mol�1 from DFT and is predicted to be slightly
weaker using the combination of the REBO normal modes and
B97-1/STO-3G dipole derivatives at 19.4 km mol�1. This dif-
ference may be attributed to using a smaller basis set in the cal-
culation of the dipole derivatives. The effect of anharmonicity
in the cyclic clusters is similar to the linear clusters. Most of
the bending modes are shifted to higher frequency by about
5-15 cm�1, while the stretching modes are shifted to lower
frequency by typically 30 cm�1. Comparison with the DFT
calculations can provide some estimate of the accuracy of the
REBO frequencies. For the mode with non-zero intensity, the
REBO potential gives harmonic and anharmonic frequencies
of 595 cm�1 and 589 cm�1 which is in reasonable agreement
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Table 3 Computed harmonic and anharmonic DFT and REBO frequencies for cyclic carbon clusters, all modes are doubly degenerate except
those denoted with an asterisk

Molecule Method Computed Frequencies / cm�1

C16 B97-1/cc-pVDZ 149, 217, 305, 337, 420, 421*, 428, 433*, 447, 452, 454, 471, 558,
(harmonic) 589, 606, 917, 953*, 1133, 1229, 1496, 1634*, 1674, 1693

C16 REBO 52, 68, 140, 156, 246, 260, 352, 363, 433*, 444, 451, 505, 510,
(harmonic) 526*, 531*, 595, 912, 1248, 1557, 1819, 2016, 2139, 2181*

C16 REBO 61, 83, 150, 169, 254, 270, 359, 371, 417*, 449, 457, 509, 514,
(anharmonic) 530*, 534*, 589, 900, 1232, 1535, 1791, 1981, 2105, 2147*

with the DFT value of 606 cm�1. However, for the modes with
no intensity there is a overestimation of the higher frequency
modes and also some underestimation of the lower frequency
modes.

Table 4 Computed REBO harmonic frequencies in cm�1 for the IR
and Raman active modes of C60 with different parameterisations of
the REBO potential (see text for details). Experimental data. 27 aroot
mean square deviation from experiment.

Mode Exp. REBO REBOLD REBOopt REBOopt2

T1u 526 443 542 430 498
577 533 516 512 564
1180 1104 1101 1059 1198
1422 1633 1612 1575 1462

Ag 495 457 449 440 489
1470 1666 1633 1575 1493

Hg 267 198 227 194 199
431 444 478 431 475
711 692 696 667 738
775 738 787 715 804
1101 1050 1059 1059 1127
1251 1333 1322 1264 1181
1427 1583 1589 1540 1454
1576 1636 1667 1559 1470

RMSa - 99 91 79 45

The calculated and experimental frequencies of the IR and
Raman active modes of C60 are shown in Table 4. These
modes have been assigned based on a visual comparison of
the animated normal modes using IQMOL (http://iqmol.org/)
with those from a DFT calculation where the IR and Raman
active modes can be determined directly through calculated
intensities. Overall, the lower frequency modes tend to be
underestimated and the high frequency modes are signifi-
cantly overestimated, which is consistent with the findings for
C16. Furthermore, the relative order of the vibrational modes
is not consistent with experiment. For example, the lowest
T1u mode is predicted to have a lower frequency that the
lowest Ag mode. A positive shift in the low frequency modes
arising from anharmonicity would be expected based upon the

calculations on the smaller clusters. REBO VPT2 calculations
are consistent with this with shifts in the range +10 cm�1

to +30 cm�1 for the lower frequency modes. For the higher
frequency modes (>1000 cm�1), VPT2 anharmonic shifts
are predicted in the range -10 to -20 cm�1 with some higher
frequency shifts of -30 cm�1 for some modes, for example
the Ag mode at 1666 cm�1 in C60. The magnitude of these
shifts are larger than the values of about -10 cm�1 suggested
previously,49 but are too small to fully account for the
deviations from experiment suggesting that the improvements
in the potential can be made. Nanotubes are related systems
and the G band in nanotubes has been well characterised by
Raman spectroscopy and lies at 1540-1595 cm�1. Within
a non-periodic framework nanotubes can be modelled by
finite open or capped nanotubes.58,59 For finite uncapped
zigzag nanotubes of length 30.6 Å and varying diameters
including (9,0), (10,0), (11,0), (12,0) and (13,0) nanotubes
(illustrated in Figure 3) the vibrational modes comprising
the G band are computed to lie in the range 1730-1780
cm�1. This is approximately 200 cm�1 too high and is inline
with the findings for C60. The calculated intensities of the
IR active modes evaluated by combining dipole derivatives
from a B97-1/STO-3G calculation with the REBO normal
modes gives relative intensities of 1:0.01:0.86:0.5 compared
to the experimental values of 1:0.48:0.45:0.4 which shows the
intensity of the second T1u mode to be vastly underestimated.
However, the source of this discrepancy can be associated
with the DFT calculation which also underestimates the
intensity of this band.

Alternative parameterisations of the REBO potential have
been reported in the literature. In particular, Lindsay and
Broido modified the potentials to improve its description of
structural data and to the in-plane phonon-dispersion data
for graphite, and the resulting potential also gave better lat-
tice thermal conductivity values in single-walled carbon nan-
otubes.60 In this work the re-parameterisation was limited
to T0 (equation 22) and the coefficients of the bond bend-
ing spline function. Also shown in Table 4 are the com-
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Fig. 3 Model of the (13,0) nanotube with a component of the G
band vibration indicated

puted frequencies from this version of the potential, denoted
REBOLD. The performance of this parameterisation relative
to the original REBO potential is mixed. Overall, there is
an improvement in the predicted frequencies as shown by a
reduction in the root-mean square (RMS) deviation from ex-
periment. However, the predicted frequencies of the high fre-
quency modes remain significantly overestimated and also the
order of the two lowest IR active T1u modes are incorrectly
interchanged.

We have also modified the potential to optimise the values
of the predicted vibrational frequencies for these modes with-
out a significant perturbation of the underlying potential. The
two parameters in the potential that have been varied are the
exponent a in the repulsive part of the potential (equation 18)
and the bond angle term is modified to

bs�p
i j =

 
1+z

N

Â
k 6=i, j

f c
ikgi jk

!�1/2

(24)

where a scaling factor z is introduced. Variation of the two
parameters a and z leads to optimum values of a = 4.74 Å�1

(compared to the original value of a = 4.7465390606595 Å�1)
and z = 1.10, which gives an RMS error of 79 cm�1 com-
pared with experiment. The new parameters do reduce the
deviation from experiment for the higher frequency modes but
within the form of the potential it was not possible to achieve
this without adversely affecting the low frequency modes and
the resulting parameters represent a compromise in accuracy
between the low and high frequency modes. The potential
has been further optimised wherein the low frequency modes
(<1200 cm�1) and high frequency modes are treated sepa-
rately. In these optimisations the Ti j term in the dihedral bend-
ing function (equation 22) is scaled by a factor h in addition
to the variation of a and z . For the low frequency modes val-
ues of a = 4.76 Å�1, z = 0.80 and h = 1.8 are optimal and
for the high frequency modes the respective values are 4.74
Å�1, 1.60 and 1.5. For these parameters there is a significant
decrease in the RMS error to 45 cm�1 and an improvement in
the predicted ordering of the vibrational modes. This error is
significantly lower than that obtained through a linear scaling
of the REBO frequencies, where an optimum scaling factor

of 0.95 gives an RMS error of 85 cm�1. The optimisation of
the potentials was performed on the computed harmonic fre-
quencies and subsequent inclusion of anharmonicity leads to
a mixed picture and no overall improvement in the agreement
with experiment.
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Fig. 4 Experimental (upper panel) and simulated (lower panel) IR
spectra of C70. Experimental data adapted from reference27

Figure 4 shows the experimental and simulated REBOopt2

IR spectra for C70. In the simulated spectrum the IR bands
have been broadened by representing with gaussian functions
with full width at half maximum of 7 cm�1. The simulated
spectrum predicts bands in reasonable agreement with the ex-
periment. The intensity of the weaker bands is overestimated
by the calculation but the most intense band is reproduced with
a calculated frequency of 1459 cm�1 compared with the ex-
perimental band at 1427 cm�1.

Table 5 Computed harmonic vibrational frequencies in cm�1 for the
G band and radial breathing mode (RBM) in model nanotubes

Nanotube G Band RBM
(9,0) 1667 332
(10,0) 1657 301
(11,0) 1633 274
(12,0) 1624 251
(13,0) 1615 233

The computed harmonic frequencies for the highest fre-
quency component of the G band and the radial breathing
mode (RBM) for a range of zigzag nanotubes calculated with
the REBOopt2 parameterisation are shown in Table 5. The pre-
dicted values for G band are much closer to the experimentally

10 | 1–12



observed range of 1540-1595 cm�1 compared with the origi-
nal REBO potential. Similarly, the predicted frequencies for
the RBM are within the 100 - 400 cm�1 range that is seen
experimentally. Furthermore, strong dependence of the RBM
frequency on the diameter of the nanotube is reproduced by
the calculations.

4 Conclusions

The calculation of the vibrational frequencies and associated
spectroscopy of large carbon systems lies at the limits of the
size of system that can be studied with standard quantum
chemical approaches. This work has explored the use of em-
pirical potentials in the calculation of harmonic and anhar-
monic frequencies of carbon clusters and fullerenes. For the
linear carbons clusters C3 to C8, the most accurate frequencies
are predicted by the REBO potential, with a MAD from ex-
periment of 79 cm�1 for the bending modes and 76 cm�1 for
the stretching modes. Incorporating anharmonicity via VPT2
does not improve the predicted frequencies of the bending
modes but does reduce the MAD for the stretching modes to
58 cm�1. For C60 and the G band in nanotubes the predicted
frequencies for the higher frequency modes are consistently
much too high, and for C60 there is a large RMS deviation be-
tween the calculated and experimental vibrational frequencies
for the IR and Raman active modes. Modification of the poten-
tial to reproduce the experimental vibrational frequencies does
result in a reduction in the error in the calculated frequencies
but it is found that to achieve satisfactory agreement with ex-
periment it is necessary to consider the low frequency (<1200
cm�1) and high frequency modes separately. This gives an
RMS error of 45 cm�1 for the IR and Raman active modes of
C60 and leads to a reasonable agreement with experiment for
the IR spectrum of C70 and the G band and RBM of nanotubes.
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