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Abstract—The fuzzy integral (FI) is an extremely flexible
aggregation operator. It is used in numerous applications, such
as image processing, multi-criteria decision making, skeletal age-
at-death estimation and multi-source (e.g., feature, algorithm,
sensor, confidence) fusion. To date, a few works have appeared on
the topic of generalizing Sugeno’s original real-valued integrand
and fuzzy measure (FM) for the case of higher-order uncertain
information (both integrand and measure). For the most part,
these extensions are motivated by, and are consistent with,
Zadeh’s extension principle (EP). Namely, existing extensions
focus on fuzzy number- (FN), i.e., convex and normal fuzzy set-
(FS), valued integrands. Herein, we put forth a new definition,
called the generalized FI (gFI), and efficient algorithm for
calculation for FS-valued integrands. In addition, we compare
the gFI, numerically and theoretically, with our non EP-based
FI extension called the non-direct FI (NDFI). Examples are
investigated in the areas of skeletal age-at-death estimation in
forensic anthropology and multi-source fusion. These applications
help demonstrate the need and benefit of the proposed work.
In particular, we show there is not one supreme technique.
Instead, multiple extensions are of benefit in different contexts
and applications.

Index Terms—fuzzy integral, non-convex fuzzy set, sub-normal
fuzzy set, discontinuous interval, skeletal age-at-death estimation,
sensor data fusion

I. INTRODUCTION

The fuzzy integral (FI) is a powerful nonlinear aggregation
operator [1]. It has been generalized and applied to a number
of areas such as image processing [2], multi-criteria decision
making [3], skeletal age-at-death estimation in forensic anthro-
pology [4–6], multi-source (e.g., feature, algorithm, sensor,
confidence) fusion [7, 8], used as a distance metric [9],
classification [10], and pattern recognition [11, 12]. The FI is
most often used to combine the (objective) support in some hy-
pothesis, e.g., algorithm outputs or confidences, from multiple
sources with the (subjective) worth of the different subsets of
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sources, where the worth is encoded in a fuzzy measure (FM).
Most applications rely on the real-valued integrand and FM.
However, in many situations data are not of simple numeric
form. Instead, higher-order uncertainty exists, e.g., intervals
or fuzzy/probability sets. In the theme of David Marr and
his Principle of Least Commitment [13], this article is an
attempt to not disregard or type reduce important uncertainty
information prematurely. Instead, the goal is to integrate with
respect to all available information in its original full form. A
system or individual can later decide to disregard such higher-
order information, post-aggregation, or it can be used to help
characterize and understand a decision and the confidence in
such a decision.

To date, a number of papers have appeared regarding the
extension of Sugeno’s real-valued FI. However, a serious
drawback is that these works focus on fuzzy number- (FN),
i.e., convex and normal fuzzy set- (FS), valued information.
Furthermore, most are motivated by, and are consistent with,
Zadeh’s extension principle (EP) [23] (which we will show
the weakness of in Section V). Table II is a compilation of
EP-based research on extending the FI.

While the primary focus of this article is exploring new
mathematical extensions of the FI, it is ultimately driven by
two needs (applications): fusion of uncertain evidence from
multiple sources and forensic anthropology. These applications
are of benefit as they help ground the different extensions
and demonstrate their relative advantages. In particular, this
article has four main contributions. First, we review different
important FI extensions. Second, we put forth a new unre-
stricted FS-valued FI definition and an efficient algorithm,
called the generalized FI (gFI), that subsumes most prior
work. Third, we compare EP-based definitions to our non-
EP FI generalization. Last, we explore various applications to
demonstrate the benefit of having different generalizations.

The remainder of the article is organized as follows. First,
we discuss the real-valued FI and classical higher-order FI
extensions. This is followed by a review of our previous work
on sub-normal, convex FS-valued integrands [6] and discontin-
uous interval and interval FS- (IFS) valued FIs [16]. Next, we
put forth a new definition, gFI, for the unrestricted case of FS-
valued integrands. These extensions are then compared to our
non-direct FI (NDFI) extension. Ultimately, these extensions
are explored in the context of two applications: skeletal age-
at-death estimation and multi-sensor fusion.
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TABLE I
ACRONYMS AND NOTATION

CFI Choquet fuzzy integral
EP Extension principle
FI Fuzzy integral

FM Fuzzy measure
FN Fuzzy number, i.e., a convex, normal fuzzy set
FS Fuzzy set

gFI Generalized fuzzy set-valued fuzzy integral
IFS Interval fuzzy set, e.g., A, where µA(x) ∈ {0, 1}
SFI Sugeno fuzzy integral
X Set of sources
xi ith source

h(xi), hi <-valued evidence offered by xi
I Set of intervals, {ū ⊆ < : ū = [u−, u+], u− ≤ u+}

h̄(xi), h̄i interval-valued evidence
¯̄h(xi), ¯̄hi Discontinuous interval-valued evidence
H(xi), Hi fuzzy set-valued evidence
Ĥ(xi), Ĥi fuzzy number-valued evidence
ˆ̂
H(xi), ˆ̂

Hi Sub-normal, convex fuzzy set-valued evidence
H̄(xi), H̄i Convex, normal interval-valued fuzzy set
¯̄H(xi), ¯̄Hi Non-convex, normal interval-valued fuzzy set

α [Hi], [Hi]α, αHi α-cut of Hi, i.e., {a ∈ < : [Hi](a) ≥ α}
g <-valued fuzzy measure, g : 2X → [0, 1]
gλ Sugeno λ-valued fuzzy measure

g(xi), gi <-valued worth of source i
π Permutation function∫

h ◦ g Fuzzy integral of h with respect to g

TABLE II
SELECTED WORKS ON GENERALIZATIONS OF THE FI AND FM. WORK PUT FORTH BY OUR GROUP IS INDICATED WITH A *.

Integrand

Numeric Interval Fuzzy SetContinuous Discontinuous

FM

Numeric [1, 2, 14, 15] [15] * [16]

Convex, normal: [7, 15, 17]
* Convex, non-normal: [4, 6]

* Non-convex, normal (for IFS): [16]
* Unrestricted FS case: this paper

* Type-II FNs: [18–20]

Interval Continuous [21] [21] [21]
Discontinuous

Fuzzy Set Convex, normal: [21] Convex, normal: [21] Convex, normal: [21, 22]

II. RELATED WORK: SUGENO AND CHOQUET FUZZY
INTEGRALS

The aggregation of information using the classical Sugeno
FI (SFI), i.e., real-valued integrand (h) and FM (g), and the
Choquet FI (CFI) has a rich history. Several applications and
core theory can be found in [2, 14]. First, consider a non-
empty finite set X = {x1, ..., xN}. Depending on the problem
domain, X can be a set of experts, evidence, sensors, features,
pattern recognition algorithms, etc. Both the SFI and the CFI
take (typically objective) partial support for some hypothesis
from the standpoint of each xi and fuse it with the (perhaps
subjective) worth (or reliability), encoded in a FM [1], of
each subset of X in a nonlinear fashion. In particular, the
FM is the important driving force behind the FI. The FI is a
flexible aggregation operator. The specific FM dictates how the
aggregation behaves. We can select (or learn) a particular g to
achieve different combination strategies. In the following sub-
sections we review different FI formulations and extensions.

A. Real-valued FM

Measure theory is a fundamental concept in mathematics. A
famous example is the Lebesgue measure and the integral with

respect to that measure. A key aspect of a FM is that it requires
the property of monotonicity with respect to set inclusion, a
weaker property than the additive property of a probability
measure. Initial definitions [1] focused on h : X → [0, 1] and
g : 2X → [0, 1]. However, these can, and have been, defined
more generally. For example, it is convenient to think of h and
g on the unit interval, [0, 1], for scenarios such as confidence
aggregation. However, we define the function h more generally
as h : X → <, where h can now be thought of directly as
inputs such as sensor readings and < is the set of all reals.1

Definition 1. (<-valued fuzzy measure) For a finite set X ,
a FM is a (set-valued) function g : 2X → [0, 1], such that

1. (Boundary Condition) g(φ) = 0;
2. (Monotonicity) If A,B ⊆ X , A ⊆ B, then g(A) ≤ g(B).

Note, if X is an infinite set, a third condition guaranteeing
continuity is required. However, this is a moot point for finite
X , as considered in this paper and most practical applications.
While it is not necessary in general, we often assume g(X) =

1We do note that this would likely affect the utilization of the SFI, as
the measure and integrand would likely reside at different scales, perhaps
negatively affecting the results of the max and min operations. However, this
does not impact the CFI in the same way, i.e., mathematically.
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1 (normality). The following are two well-known FMs.

Definition 2. (Sugeno λ-measure) For sets A,B ⊆ X , such
that A ∩B = φ,

gλ(A ∩B) = gλ(A) + gλ(B) + λgλ(A)gλ(B), (1)

for some λ > −1. This measure is built from a set of densities,
i.e., measure on just the singletons (where gi = g({xi})). In
particular, Sugeno showed that λ can be found by solving

λ+ 1 =

N∏
i=1

(
1 + λgi

)
, λ > −1, (2)

where it can be shown that there exists exactly one real
solution such that λ > −1. The Sugeno λ-measure is appealing
since we can automatically construct the lattice from just the
densities. This is important as there are 2N−2 parameters in a
FM (2N − 2−N if we have the densities). Note, when λ = 0
we obtain the common additive (probability) measure.

Definition 3. (S-Decomposable Measure) Let S be a t-
conorm. A FM g is called an S-decomposable measure if
g(φ) = 0, g(X) = 1, and for all A,B such that A ∩B = φ

g(A ∪B) = S(g(A), g(B)) (3)

One famous example is the possibility measure (a W ∗-
decomposable measure, where W ∗ is the Lukasiewicz t-
conorm). Other measures, e.g., our measures of agreement,
specificity and the combined (meta) measure for crowd sourc-
ing [24, 25], have been put forth to derive FMs from data. In
other settings, the FM is learned using genetic algorithms [26],
quadratic programming [15] or gradient descent [8]. Next, we
review two common and classical FIs.

B. Real-valued FI

Definition 4. (Sugeno FI) Given a finite set X , a FM g and
a function h : X → <, the SFI of h with respect to g is∫

S

h ◦ g = Sg(h) =

N∨
i=1

(
hπ(i) ∧ g(Aπ(i))

)
, (4)

where hπ(i) = h(xπ(i)) and π is a permutation on X , hπ(1) ≥
hπ(2) ≥ ... ≥ hπ(N), Aπ(i) = {xπ(1), ..., xπ(i)} [1, 15].

Definition 5. (Choquet FI) Given a finite set X , a FM g and
a function h : X → <, the CFI of h with respect to g is

∫
C

h ◦ g = Cg(h) =

N∑
i=1

hπ(i)

(
g(Aπ(i))− g(Aπ(i−1))

)
, (5)

where g(Aπ(0)) = 0. In addition, Sugeno [1] and Grabisch
[14] proved the following relevant properties of FIs.

Property 1. (Continuity of
∫

h ◦ g) The Sugeno and Cho-
quet FIs are continuous.

Property 2. (Boundedness of
∫

h ◦ g) The function
∫
h ◦ g

is bounded between

N∧
i=1

hi ≤
∫
h ◦ g ≤

N∨
i=1

hi. (6)

Property 3. (Idempotency of
∫

h ◦ g)
∫
h ◦ g is idempotent,

i.e.,
∫
h ◦ g with respect to h1 = h2 = . . . = hN = a is a.

Property 4. (Monotonicity of
∫

h ◦ g)
∫
h◦g is a monoton-

ically non-decreasing function, i.e.,

∀i, hi ≥ zi ⇒
∫
h ◦ g ≥

∫
z ◦ g.

C. Interval-valued FI

The classical FI (Sg and Cg) was extended by Grabisch
[15] for the case of continuous (i.e., closed) interval-valued
integrands. Let h̄(xi) ⊆ I be the continuous interval-valued
evidence from source xi, where I = {ū ⊆ < : ū =
[u−, u+], u− ≤ u+} is the set of all <-valued continuous
intervals.2 Grabisch’s work is based on the interval and fuzzy
arithmetic work of Dubois and Prade [27]. A significant
finding of theirs, with respect to FIs, is the following.

Theorem 1. [27] If a function ϕ is continuous and non-
decreasing, then, when defined on continuous intervals, it
produces the continuous interval ϕ(ū) = [ϕ(u−), ϕ(u+)].

Dubois and Prade extended their interval proofs and formed
an α-cut based definition for normal convex FSs, i.e., FNs
(adopting a decomposition theorem approach that is a direct
result of the EP). The interval approach is of particular benefit
as it provides a computationally efficient algorithmic basis for
performing fuzzy arithmetic and the FI. Grabisch leveraged
the properties of the FI and Dubois and Prade’s findings to
extend the FI.

Definition 6. (FI with I-valued integrand) Let h̄ : X →
I denote the I-valued partial support function and let h̄i =
[[h̄i]

−, [h̄i]
+] denote the ith interval (where [h̄i]

− and [h̄i]
+ are

the left and right interval endpoints respectively). The interval-
valued FI is [14]∫

h̄ ◦ g =

[∫
[h̄]− ◦ g,

∫
[h̄]+ ◦ g

]
. (7)

That is, the FI on a continuous interval is nothing more
than a closed interval with the FI applied to the interval
endpoints. Further,

∫
h̄ ◦ g has the following properties (which

are relevant to the current investigation).

Property 5. (Boundedness of
∫

h̄ ◦ g)
∫
h̄ ◦ g produces an

interval ā = [a−, a+] such that

N∧
i=1

[hi]
− ≤

(∫
[h̄]− ◦ g

)
= a− ≤

N∨
i=1

[hi]
−, (8)

and

2Again, in most practical circumstances, e.g., confidence level fusion, h̄ is
constrained to be continuous interval subsets of the unit-interval. However,
without loss of generality, we consider the case of <.
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N∧
i=1

[hi]
+ ≤

(∫
[h̄]+ ◦ g

)
= a+ ≤

N∨
i=1

[hi]
+. (9)

In addition, the I-valued FI also satisfies idempotency,
monotonicity and it is continuous.

D. Fuzzy number-valued FI

We begin this section with a quick review of the EP for the
case of FS-valued integrands. This is important as it guides
our proposed extensions and helps unify notation.

Definition 7. Let H : X → FS(<) be a FS-valued integrand.
The EP of the FI of H with respect to <-valued g is(∫

H ◦ g
)

(a) =
∨

z∈Sa

{
N∧
i=1

Hi(zi)

}
, (10)

Sa =

{
z : z ∈ <N ,

∫
z ◦ g = a

}
, (11)

where z = (z1, ..., zN ) is a vector of numbers. The set Sa is
all admissible N -tuples of values such that the <-valued FI of
z, given FM g, maps to value a.

While theoretically useful, this EP formulation does not lend
itself to convenient (namely efficient) calculation. It is also
difficult to intuit the behavior and inner workings of the EP
in an application setting. Before presenting a new FS-valued
FI definition and efficient algorithm for calculation we first
review the original extension of the FI for the case of fuzzy-
valued information.

Definition 8. (FI for FN-valued integrand) [15] Let Ĥ :
X → FN(<). Grabisch’s representation theorem FI definition
of Ĥ with respect to <-valued g is

(∫
Ĥ ◦ g

)
(a) =

⋃
α∈[0,1]

α

[
α

(∫
Ĥ ◦ g

)
(a)

]

=
⋃

α∈[0,1]

α

[(∫
αĤ ◦ g

)
(a)

]
, (12)

where αĤ = [[αĤ]−, [αĤ]+] are the closed intervals of the
level-cuts of the members of Ĥ at α. Alternatively, Eq. (12)
can be expressed as

(∫
Ĥ ◦ g

)
(a) = sup

{
α ∈ [0, 1] : a ∈

∫
αĤ ◦ g

}
. (13)

Specifically, Grabisch showed that Eqs. (12)(13) has the ad-
vantage that they can be efficiently calculated in terms of FIs
on intervals (i.e., the α-cuts),

α

[∫
Ĥ ◦ g

]
=

[(∫
[αH̄]− ◦ g

)
,

(∫
[αH̄]+ ◦ g

)]
. (14)

The proof for Eqs. (12)-(14) can be found in [15]. The proof
begins with Dubois and Prades analysis of the behavior of

functions on continuous intervals. It is followed by a decom-
position theorem approach to representing FNs. Dubois and
Prade’s analysis of α-cuts and interval arithmetic is invoked
next. Specifically, the function on the FN is nothing more than
the function applied to closed intervals acquired by α-cuts.
Grabisch’s contribution was the verification of the properties
of FIs such that Dubois and Prades fuzzy arithmetic findings
could be applied for the FI. Next, we turn to our extension for
sub-normal, convex FS-valued information.

E. Sub-Normal, Convex FS-Valued FI

Grabisch’s extension for FN-valued integrands is helpful
for many cases encountered in practice. However, there exist
a number of applications in which the evidence is instead
sub-normal but still convex. For example, this can be the
case in skeletal age-at-death estimation and multi-source (e.g.,
feature, algorithm, sensor, confidence) fusion. The problem
is, the current set of tools (extensions) are not directly ap-
plicable. Too often in the fuzzy set community we restrict
our analysis to simple sets (i.e., normal and convex) as they
are mathematically and computationally easy to work with.
Without a valid extension we are forced to use another tool
or make simplifications, e.g., the inputs are normalized so that
their heights equal 1. Herein, we explore a new definition for
the case of sub-normal and convex integrands. Furthermore,
we show that the algorithm for calculating the result of such
information aggregation is no more complex than the case
of convex and normal so there is no reason to simplify
or pre-process the information. First, we provide two real
world examples from our own research to illustrate where this
extension is of utility.

Example 1. Consider the application of multi-source, specif-
ically multi-aging-method fusion for skeletal age-at-death es-
timation in forensic anthropology [4–6]. The domain of the
input, h̄, is the age of an individual at the time of their death
(<+). Each aging method is defined with respect to a set of
age stages (intervals). A FS-valued integrand is built from h̄,
where the height of each FS is determined by the quality
of the skeletal remain used (e.g., skull). These FSs capture
the uncertainty in age-at-death estimation, arising from the
impossibility to provide an exact age estimate, in particular
in the face of complicating factors such as less than perfect
skeletal remains. The goal of aggregation is to combine the
evidence from the aging methods while taking into account
skeletal quality and the worth (reliability) of different sets of
aging methods.

Example 2. Consider the scenario of multi-camera, or multi-
look in a single camera, fusion. In this case, we want to fuse
information, e.g., signals, features, algorithms, or decisions,
from an electro-optical/infrared (EO/IR) camera and/or for-
ward looking ground penetrating radar (FLGPR) system. In
[28, 29], such a system is described for ground-based vehicle
explosive hazard detection. Imagery is co-registered with each
other and/or the world (universal transverse Mercator space).
One challenge is that pixels in one image or sensor do not
represent the same area on Earth. Objects further down track
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have fewer pixels on target, viz., each pixel represents a larger
physical area. In addition, factors like a camera’s field of
view, lens, position on the vehicle, focal plane array, etc.,
all contribute to this problem. An important question is, how
do we accurately link (and possibly aggregate) the different
signals, features, algorithms and/or decisions? This problem is
ultimately one of positional and evidence uncertainty. Keller
et al. [7] provided such a sensor-based example that yielded
and subsequently operated on FSs. Specifically, positional
uncertainty provided the width and shape of the set, while
height is based on our uncertainty in the target. However they
had to normalize and reduce the original sub-normal and non-
convex information into a FN for processing.

In order to address applications like those discussed, we put
forth the following FI extension initially introduced in [6].

Definition 9. (Sub-normal, convex FS-valued integrand)
Let ˆ̂

H be a convex, sub-normal integrand and g be a <-valued
FM. The sub-normal FI (SuFI) is

(∫
ˆ̂
H ◦ g

)
(a) =

⋃
α∈[0,β]

α

[(∫
α ˆ̂
H ◦ g

)
(a)

]
, (15)

β =

N∧
i=1

Height
(

ˆ̂
Hi

)
, (16)

where the height of FS A is

Height(A) = sup
a∈<

(µA(a)) . (17)

As shown in [6], Height(
∫ ˆ̂
H ◦ g ) is bounded (according

to the EP) by the minimum height set (β), thus[∫
ˆ̂
H ◦ g

]
α>β

= φ. (18)

Furthermore, Eq. (15) has the benefit that it can also be
efficiently calculated via FI interval operations,

α

[∫
ˆ̂
H ◦ g

]
=

[(∫
[α

ˆ̂
H]− ◦ g

)
,

(∫
[α

ˆ̂
H]+ ◦ g

)]
, (19)

∀α ∈ [0, β]. The efficient algorithm for calculating the SuFI
is presented in Algorithm 1.

Remark 1. Note, in the case of all normal FSs, Ĥ , Eq. (15)
is Grabisch’s definition for FNs (as β = 1).

Remark 2. As discussed in [6], we assert that SuFI is an
extremely limiting generalization. Specifically, the limitation
resides with the EP. To see this, consider another related multi-
sensor fusion situation in which three different sources, e.g.,
GPR, IR, and visual spectrum, are being aggregated using
the FI. Imagine that one of the sources, say GPR, turns
out to be very unreliable. Now, consider that the GPR is
assigned a very small density, e.g., 0.1, relative to 1 and
0.8 for the IR and visual spectrum sources. In addition, let
a generalized triangular membership function be defined as
[a, b, c, d], where a ≤ b ≤ c are the left, center and right points

that define the shape and d is the height of the membership
function. Furthermore, let IR and visual spectrum have a high
confidence in the FS input of near 1 (e.g., [0.9, 1, 1.1, 1]) and
let GPR have a relatively low confidence in the FS input near
0 (e.g., [−0.1, 0, 0.1, 0.2]). Regardless of the choice of FM
(min, max, average, etc.), a negative impact is observed as a
result of GPR having a low confidence (height). Intuitively,
we would expect that because the GPR has very little relative
worth, i.e., a density value of 0.1, that the GPR decision would
influence the decision result very little. However, the height
of the resultant set is bounded by β, which is 0.2 in this
scenario. The point is, SuFI provides a way to calculate a
result; however, this result is not intuitively pleasing in some
circumstances. For the provided sensor fusion example, we
should intuitively more-or-less ignore the GPR input based on
the SuFI algorithm result.

III. DISCONTINUOUS INTERVAL AND IFS-VALUED FI

The problem with SuFI is that it only addresses sub-
normality, but not non-convexity. To this end, we put forth
an extension of the FI for the case of discontinuous intervals
[16]. First, we review the concept of an interval-valued FS
(IFS). The extension to the case of discontinuous intervals is
simplified if we represent h̄ as a convex, normal IFS, which
is more formally defined below.

Definition 10. (Mapping of h̄ to IFS H̄) Let h̄i be an interval.
An IFS H̄i is a convex and normal FS such that

H̄i(z) =

{
1, ∀z ∈ h̄i,

0, else.

Remark 3. For all intents and purposes, H̄i and h̄i are
equivalent representations of the interval h̄i. H̄i is simply a
FS version of h̄i that we will use in conjunction with the EP.

We can now apply the EP to express the FI with an H̄-
valued integrand. Because H̄i(z) ∈ {0, 1}, the EP reduces to

(∫
H̄ ◦ g

)
(a) =

1, ∃z ∈ Sa :
∧N
i=1 H̄i(zi) = 1,

0, else.
(20)

This equation can be further reduced (into support form) by
using the interval notation H̄i = [[αH̄i]

−, [αH̄i]
+],

(∫
H̄ ◦ g

)
(a) =

{
1, ∃z ∈ Sa : [0+H̄i]

− ≤ zi ≤ [0+H̄i]
+

0, else,
(21)

where 0+ denotes a strong alpha-cut at 0.

Remark 4. Equation (21) is a direct result of the EP and the
mapping of h̄ to H̄ . This equation shows that the FI with an
H̄-valued integrand is nothing more than an “inclusion check”
at each a for the existence of any admissible z that satisfies∫

z ◦ g = a, with [0+H̄i]
− ≤ zi ≤ [0+H̄i]

+, i = {1, . . . , N}.

Proposition 2. For continuous intervals, the FI at (21) leads
directly to the interval FI proposed by Grabisch at Eq. (7).
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Algorithm 1 Computation of the SuFI algorithm
1: Input the <-valued FM g . e.g., use the Sugeno λ-FM, learn g from data, manually specify g, etc.
2: Input partial support function ˆ̂

H . sub-normal FN
3: Calculate β =

∧N
i=1Height(

ˆ̂
Hi)) . minimum height of partial support FSs

4: for each α ∈ (0, β] do . note, this step is discretized in practice
5: [

∫ ˆ̂
H ◦ g]α = [

∫
[α

ˆ̂
H]− ◦ g,

∫
[α

ˆ̂
H]+ ◦ g] . the <-based (integrand and measure) FI

6: end for

Proof: We know
∫

z◦g is monotonic and non-decreasing.
Hence, because

(∫
H̄ ◦ g

)
(a) = 1 iff there exists a z ∈ Sa

such that [0+H̄i]
− ≤ zi ≤ [0+H̄i]

+, ∀i, then for any
admissible z,

a− =

∫
[0+H̄]− ◦ g ≤

∫
z ◦ g ≤

∫
[0+H̄]+ ◦ g = a+.

Hence,
(∫
H̄ ◦ g

)
(a) = 1 only on the interval [a−, a+],

which implies Eq. (7).

A. FI for discontinuous intervals

Definition 11. (Discontinuous interval) [16] Let a ¯̄hi be the
discontinuous interval-valued evidence offered by source xi,
defined as

¯̄hi =

Mi⋃
j=1

[h̄i]j , (22)

where each interval is disjoint and Mi is the number of
continuous (sub-)intervals [h̄i]j , which make up the overall
discontinuous interval ¯̄hi.

This simple representation of a discontinuous interval will
be important to our definition of the FI for discontinuous
interval integrands (and ultimately, FS-valued integrands). To
extend h̄ to ¯̄h and H̄ to ¯̄H , we first use the following lemma.

Lemma 3. (Extension of h̄ to ¯̄h and H̄ to ¯̄H) For each [h̄i]j ,
let

Zji = {z ∈ < : z ∈ [h̄i]j}, (23)

is all points, z ∈ <, in the jth sub-interval, [h̄i]j . Furthermore,
let

Zi =

Mi⋃
j=1

Zji, (24)

that is, all z ∈ < that are in ¯̄hi, where ¯̄hi is defined at Eq.
(22). Therefore, Zi makes up the support of ¯̄Hi. That is,

¯̄Hi(z) =

{
1, z ∈ Zi,

0, else.
(25)

Because we have written the discontinuous intervals ¯̄h as
FSs ¯̄H , it is easy to now apply the EP to define a FI for
discontinuous intervals.

Definition 12. (FI for ¯̄h-valued integrand) The FI for ¯̄h is

(∫
¯̄H ◦ g

)
(a) =

{
1, ∃z ∈ Sa : zi ∈ Zi ,∀i,

0, else.
(26)

Thus,

∫
¯̄h ◦ g =

{
a ∈ < :

(∫
¯̄H ◦ g

)
(a) = 1

}
. (27)

Remark 5. Our above definition of the FI for discontinuous
intervals at Eq. (27) is derived directly from the EP; hence,
it is theoretically valid. However, Eq. (27) does not provide a
computationally attractive solution as do the FIs at Eq. (7) and
Eq. (15), and at our EP-derived interval FI at Eq. (21). But,
as will be shown below, we can express Eq. (27) as the union
of the FIs of numbers, much in the way that Eq. (7) and Eq.
(15) also do.

Theorem 4. The FI of discontinuous interval-valued integrand
¯̄h with respect to the <-valued FM g can be computed as

∫
¯̄h ◦ g =

M⋃
k=1

∫
[h̄]k ◦ g =

M⋃
k=1

[∫
[h̄]−k ◦ g,

∫
[h̄]+k ◦ g

]
,

(28)
where [h̄]k is the kth N -tuple of the power set of all
sub-intervals in ¯̄h and M =

∏N
i=1Mi; e.g., [h̄]1 =

{[h̄1]1, . . . , [h̄N ]1} and [h̄]M = {[h̄1]M1
, . . . , [h̄N ]MN

}.

Proof: Let Zi be the sets defined in Lemma 3. The set of
possible z ∈ Sa : zi ∈ Zi, ∀i, in Eq. (26) can be expressed as

Za =

{
z ∈ <N : zi ∈ Zi,

∫
z ◦ g = a

}

=

z ∈ <N : zi ∈
Mi⋃
j=1

Zji,

∫
z ◦ g = a

 . (29)

By distributing the union, we can reformulate Za as

Za =

M⋃
k=1

{
z ∈ <N : zi ∈ Zk,

∫
z ◦ g = a

}
. (30)

where Zk is the kth tuple of the power set of Zis, viz., Z1 =
{Z11, . . . , Z1N} and ZM = {ZM11, . . . , ZMNN}. Let Zak be
the kth term in the union in Eq. (30), where Za =

⋃M
k=1 Zak,

then Eq. (26) can be written as(∫
¯̄H ◦ g

)
(a) =

{
1, ∃z ∈

⋃M
k=1 Zak,

0, else.
(31)
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Therefore, (∫
[H̄]k ◦ g

)
(a) =

{
1, ∃z ∈ Zak,

0, else,
(32)

where this is the standard FS-integrand FI of the kth tuple
of subset components of ¯̄H , i.e., ¯̄H =

⋃M
k=1[H̄]k, where the

support of [H̄]k is Zk. Combining Eq. (31) and Eq. (32) gives(∫
¯̄H ◦ g

)
(a) =

M⋃
k=1

(∫
[H̄]k ◦ g

)
(a), (33)

which combined with the result of Proposition 2 proves the
theorem.

Remark 6. The advantage of our formulation of the FI for
discontinuous intervals at Eq. (28) is that it is simply the
union of all the combinations of continuous I-valued results.
Moreover, since (

∫
[h̄]k ◦ g) = [

∫
[h̄]−k ◦ g,

∫
[h̄]+k ◦ g], each

continuous I-interval FI is (a) characterized by the FI on the
interval endpoints and (b) continuous on the interval (albeit,
on the continuous I-interval sub-parts of ¯̄h). This allows for
the efficient calculation of ¯̄h ◦ g in terms of just the union of
the resulting continuous closed intervals, which only require
the <-valued FI to be calculated on the interval endpoints.
This concept holds for the corresponding case of

∫ ¯̄H ◦ g.

Remark 7. Our definition of the discontinuous-interval FI
reduces to the existing form of the FI for continuous I-valued
intervals and FNs as the union-based decomposition results in
a set Z of size one, viz. M = 1.

IV. NON-CONVEX, SUB-NORMAL FS-VALUED FI

The previous sections provide a foundation upon which we
can understand and establish a definition and corresponding
computationally efficient algorithm to calculate the sub-normal
and non-convex FS-valued integrand FI (gFI). First, we review
a few relevant properties of FSs and α-cuts on FSs.

Remark 8. Let A be a FS defined on domain <. By definition,
• αA may be a discontinuous interval as a FS can be non-

convex
• The level sets of A are monotonically non-increasing.

Remark 9. An EP-based formulation of
(∫
H ◦ g

)
implies

•
(∫
H ◦ g

)
is a FS

• α
(∫
H ◦ g

)
= φ if α > β, α

(∫
H ◦ g

)
6= φ otherwise.

Lemma 5. For ∆ ≥ 0 and α+ ∆ ≤ 1,(∫
α+∆H ◦ g

)
⊆
(∫

αH ◦ g
)
. (34)

That is, the FI defined on α-cuts is monotonically decreasing
(set-wise) with respect to ∆.

Proof: In order to prove Eq. (34), let

¯̄z1
i =

M1
i⋃

j1=1

[
z̄1
i

]
j1
, (35)

¯̄z2
i =

M2
i⋃

j2=1

[
z̄2
i

]
j2
, (36)

be the discontinous interval-valued partial support functions
at (α + ∆) and α respectively. By definition (of a FS),
each continuous interval at (α + ∆),

[
z̄1
i

]
j1

, is a subset of
a corresponding interval at α,

[
z̄2
i

]
j2

. In the following, we use
k1 and k2 to denote two combinations of continuous-valued
sub-intervals such that each interval at (α+ ∆) is a subset of
its corresponding interval at α. Thanks to the I-valued work
of Dubois, Prade and Grabisch, we know(∫ [

z̄2
]−
k2
◦ g
)
≤
(∫ [

z̄1
]−
k1
◦ g
)

≤
(∫ [

z̄1
]+
k1
◦ g
)
≤
(∫ [

z̄2
]+
k2
◦ g
)
, (37)

as [
z̄2
i

]−
k2
≤
[
z̄1
i

]−
k1
≤
[
z̄1
i

]+
k1
≤
[
z̄2
i

]+
k2
.

Therefore,

M1⋃
k1=1

(∫ [
z̄1
]
k1
◦ g
)
⊆
M2⋃
k2=1

(∫ [
z̄2
]
k2
◦ g
)
, (38)

which completes this lemma.
The final property that we must show is that the level cuts

of
(∫
H ◦ g

)
are equal to our FI for discontinious intervals.

Specifically, the proof is based on the EP, as that is what we
consider as “truth” herein.

Proposition 6. The following sets are equal,

α

(∫
H ◦ g

)
=

Mα⋃
k=1

(∫
[αH]k ◦ g

)
. (39)

Proof: This proof is trivial (given the definitions put forth
thus far). According to the EP, the LHS of Eq. (39) is all
admissible z ∈ Sa (for ∀a ∈ <) such that

∧N
i=1Hi(zi) ≥

α. Similarly, we showed (Theorem 4) that our discontinious
interval-valued FI is all z ∈ Sa such that each Hi(zi) ≥ α.

Definition 13. (FI for FS-valued integrand) The representa-
tion theorem and EP-based definition of the FI of FS-valued
integrand H and <-valued g is

(∫
H ◦ g

)
(a) =

⋃
α∈[0,β]

α

[(∫
αH ◦ g

)
(a)

]
, (40)

or alternatively

(∫
H ◦ g

)
(a) = sup

{
α ∈ [0, β] : a ∈

∫
αH ◦ g

}
. (41)

Furthermore, based on Lemma 5, Proposition 6, and The-
orem 4, the FI can be (efficiently) calculated in terms of
discontinuous interval FIs at α using Eq. (28). That is, the
extension of the FI for the general case of FS-valued inputs
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is simply an α-cut decomposition and union of all possible
continuous (closed interval) I-valued integral, and ultimately
<-valued, calculations. Algorithm 2 is a formal description of
a computationally efficient method for calculating the gFI.

Algorithm 2 takes as input the <-valued FM g and partial
support function H . The gFI does not place additional con-
straints on the FM (beyond boundedness and monotonicity).
We can learn g from data, an expert can specify it, etc.
Next, the minimum height of the different H({xi}) sets is
calculated. In practice, the integral is computed (approximated)
on a computer by discretizing the range ([0, 1], specifically
[0, β] for the gFI). The quality, in terms of approximation
error, of the result depends on at least two factors. The
first factor is the number of samples used. Too high of a
sampling rate will result in excessive computational com-
plexity versus the increase in precision achieved. Conversely,
too few samples results in poor result resolution and greater
approximation error. To the best of our knowledge, there has
not been any investigation into characterizing the resulting
approximation error in terms of the sampling rate for the
FI. In practice, users typically select the sampling rate based
on the profile of a specific computing device or application.
Second, approximation error depends largely on the shape of
the fuzzy sets. If all the inputs are triangular or trapezoidal
membership functions versus Gaussian or some other non-
piecewise linear function, the approximation is simpler and
will likely require fewer samples. As steps 5−7 in Algorithm
2 show, the gFI breaks down into a series of interval-valued FI
calculations on the different alpha cuts. Specifically, step 5 is
the first continuous interval integral calculation and step 7 is
the repeated calculation, and union across those calculations,
of the resulting continuous interval integrals for a specific α.

V. NON EXTENSION PRINCIPLE-BASED FI

As already stated, the SuFI is a harsh way to aggregate
multiple sub-normal, convex FS-valued inputs. Namely, it is
extreme with respect to the resultant height restriction, β,
which is ultimately due to Zadeh’s EP. Furthermore, gFI
suffers from the same problem as it is also a valid extension
of the EP. In [4, 5], we show an alternative non-direct (i.e.,
non-EP based) method, called NDFI, to generate FS-valued
results from sub-normal, convex FS-valued inputs based on
the <-valued SFI. In Alg. 3, we put forth an extended version
of NDFI for FS-valued inputs. In this respect, NDFI can be
compared to the EP-based gFI.

Whereas the gFI decomposes the FI into a sequence of
interval-based FI calculations across the membership domain,
the NDFI decomposes the FI into a sequence of <-valued
FI calculations across the input domain. In addition, the gFI
is an EP-based generalization of the FI for fuzzy inputs,
whereas the NDFI is an aggregation “in-place” of FSs using
the FI. It is trivial to verify that the sets generated by the
NDFI are valid FSs as they passes the vertical line test. In
addition, the NDFI typically produces sub-normal and non-
convex results, whereas Grabisch’s prior extension yields FN
results and the gFI yields FSs. In addition, the gFI produces
results between the minimum and maximum. The NDFI also

generates FSs between the minimum and maximum, however
only in regions (in the input domain) between the minimum
and maximum that is covered by at least one input. The
difference between the NDFI and the gFI is apparent with
respect to

(∫
H ◦ g

)
(a). At a, the gFI calculation is governed

by the EP, whereas the NDFI is(∫
H ◦ g

)
(a) =

∫
za ◦ g, (42)

where za = (H1(a), ...,HN (a)). The EP formulation uses all
<-based FIs whose result is a and a t-norm of the membership
degrees of the FS inputs at those locations. The NDFI is
a <-based FI at a. The NDFI and gFI fuse information in
very different ways. The NDFI integrates vertically while gFI
integrates horizontally. In the next sub-sections we present the
NDFI for age-at-death estimation and different examples are
given for NDFI versus gFI.

A. Age-at-death estimation using NDFI

The following sub-section shows why the NDFI was created
and it helps demonstrate its utility. Age-at-death estimation of
an individual skeleton is important to forensic and biological
anthropologists for identification and demographic analysis. It
has been shown that current individual aging methods are often
unreliable because of skeletal variation and taphonomic factors
[4]. Previously, we introduced the NDFI as an way to estimate
adult skeletal age-at-death [4]. In particular, focus was placed
on the production of numeric [4], graphical [4, 5] and linguistic
descriptions of age-at-death [5]. The NDFI algorithm takes
as input multiple age-range intervals representing age-at-death
estimations from different methods. It also takes into account
the accuracies of these methods as well as the condition of the
bones being examined. Advantages of NDFI, relative to related
work in forensic anthropology, are that it does not require
a skeletal population for training and it produces additional
information (numeric, graphical and linguistic) that can assist
an investigator.

Our age-at-death NDFI approach takes I-valued inputs, e.g.,
“method 1 says the skeleton is between the ages of 20 to
35 at the time of death”. We also have information, namely
correlation coefficients, representing the reliability of each
aging method. Last, we have a [0, 1] value indicating the
quality of each bone found. Each aging method is based on,
and ultimately bounded by, the quality of the remains. The
membership function for method i with respect to its interval-
valued input and corresponding bone quality value, qi, is

µAi(x) =

{
qi, if v−i ≤ x ≤ v

+
i

0, otherwise,
(43)

where µAi is the membership function and [v−i , v
+
i ] are the

extreme interval endpoints in the age interval for aging method
i (e.g., the interval [10, 15] years). At the moment, the FSs
have only 0 and qi membership values. The NDFI algorithm
is formally described in Alg. 4. Figure 1 is a result of the
NDFI algorithm for skeleton 208 from the Terry Anatomical
Collection [4, 5].
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Algorithm 2 Algorithm to calculate the generalized FI (gFI)
1: Input the <-valued FM g . e.g., use the Sugeno λ-FM, learn g from data or manually specify g, etc.
2: Input FS-valued partial support function H . i.e., Hi for i = {1, ..., N}
3: Calculate β =

∧N
i=1Height(Hi) . minimum height of partial support FSs

4: for each α ∈ (0, β] do . note, this step is discretized in practice
5: [

∫
H ◦ g]α =

(∫
[αH]1 ◦ g

)
. first gFI calculation, I-based integrand and <-based FM FI

6: for k = 2 to Mα do . all discontinuous interval combinations at α
7: [

∫
H ◦ g]α = [

∫
H ◦ g]α

⋃(∫
[αH]k ◦ g

)
. the I-based integrand and <-based FM FI

8: end for
9: end for

Algorithm 3 Algorithm to calculate the non-direct FI (NDFI)
1: Input the <-valued FM g . e.g., use the Sugeno λ-FM, learn g from data, manually specify g, etc.
2: Input the FS-valued partial support function H . i.e., Hi for i = {1, ..., N}
3: Discretize the output domain, D = {d1, ..., d|D|} . e.g., D = {0, 0.01, ..., 1}
4: Initialize the (FS) result to R[dk] = 0
5: for each dk ∈ D do . for each output domain location
6: for each i ∈ {1, ..., N} do . for each input
7: Let zi = H(dk) . i.e., z is the vector of memberships at dk
8: R[dk] =

∫
z ◦ g . calculated using the <-valued (integrand and measure) FI of z with g

9: end for
10: end for

Algorithm 4 NDFI algorithm for skeletal age-at-death estimation for forensic anthropology [4, 5]
1: Input fuzzy measure g . e.g., use the Sugeno λ-FM, learn g from data, manually specify g, etc.
2: Input bone quality weathering values, {q1, ..., qN} . Where qi ∈ [0, 1]
3: Input age-at-death intervals for each aging method, {v̄1, ..., v̄N} . Where v̄i is an age interval, e.g., v̄i = [5, 20] years
4: Discretized the output domain, D = {d1, ..., d|D|} . e.g., D = {1, 2, ..., 110}
5: Initialize the (FS-valued) result to R[dk] = 0
6: for each dk ∈ D do . i.e., each discrete age
7: for i = 1 to N do . Calculate the partial support function at dk
8: if dk ≥ v−i and dk ≤ v+

i then . Where − and + are the left and right endpoints, e.g., [v−i , v
+
i ]

9: zi = qi . Age method i indicates possible age-at-death, use bone quality qi
10: else
11: zi = 0 . Age method i indicates not a possible age-at-death, so no support in the hypothesis
12: end if
13: end for
14: R[dk] =

∫
z ◦ g . Fuzzy membership at dk is the <-valued (integrand and measure) FI of z with g

15: end for

Fig. 1. Example age-at-death skeletal estimation fusion result (skeleton 208
from the Terry Anatomical Collection) for the NDFI algorithm [4, 5]. The
true age-at-death is 30 years. The sex is female. Four different aging methods
were used. Information about the FM, anthropological details and a wider
range of rich examples can be found in [4, 5].

In summary, the NDFI is based on the idea of multiple
hypothesis testing. A single hypothesis is: ‘the skeleton was
at age k at death (a specific age, not range).’ The (classical)
SFI is repeatedly applied, once for each possible age using the
respective accuracy, range and quality information. Every age,
in discrete one year increments from 1 to 110 is tested. The
age indicators are based on whether or not the age tested is in
their respective interval. The h values are a function (t-norm)
of the quality, a [0, 1] value, and the age-quality membership
function. Again, the result of this procedure is a collection of
(age tested, FI result) pairs, which is a FS defined over the age
domain. In this respect, we were able to address sub-normal
FSs. Refer to [4, 5] for more details regarding the application
of NDFI to skeletal age-at-death estimation.

VI. APPLICATION: EXPLORATION OF GFI AND NDFI

In this section, we begin with a demonstration of the
behavior of the gFI for FS-valued integrands and different
FMs. Next, we compare and contrast the inner-workings of
the gFI and NDFI in the context of a multi-sensor data fusion
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TABLE III
FS-VALUED PARTIAL SUPPORT FUNCTION H1 . EACH H1

i IS THE UNION OF
MULTIPLE TRAPEZOIDAL MEMBERSHIP FUNCTIONS. A TRAPEZOID IS

SPECIFIED BY FOUR ORDERED VALUES, a ≤ b ≤ c ≤ d, AND A HEIGHT.
H1
i,j DENOTES THE jth TRAPEZOIDAL MEMBERSHIP FUNCTION FOR THE

ith SOURCE. FIGURE (2) IS AN ILLUSTRATION OF THESE FSS.

Height a b c d

H1
1,1 1 3

30
5
30

7
30

10
30

H1
1,2 0.8 5

30
11
30

11
30

12
30

H1
1,3 0.7 12

30
16
30

16
30

17
30

H1
1,4 0.9 16

30
17
30

17
30

25
30

H1
2,1 1 1

30
2
30

3
30

12
30

H1
3,1 0.8 20

30
22
30

22
30

24
30

scenario. Last, we explore the utility of the gFI and NDFI for
skeletal age-at-death in anthropology.

A. gFI for different fuzzy measures

In this sub-section we demonstrate the calculation of the
gFI for a few different common FMs. Specifically, as shown
in [2], the CFI acts like a number of known aggregation
operators based on the selection of FM. For example, when
sets of equal size (cardinality) in the FM have equal measure
value, the CFI produces an ordered weighted average (OWA),
which encompasses all linear combinations of order statistics
including minimum, maximum, average, etc. The following
three examples demonstrate common OWAs and the result of
the gFI. The reason for showing these examples is to illustrate
the impact of the gFI, both in terms of sub-normality but also
non-convexity. Graphically, they help us gain some insight
into the inner workings of the gFI. Each sub-section makes
use of the following FS-valued partial support function, H1

(reported in Table III and shown in Fig. 2(a). This sub-normal
and non-convex partial support function is generated by taking
the union of different trapezoidal membership functions. This
is a simple and tractable way to produce a FS that can be
easily reproduced by the reader.

1) Example 1 (Max FM): Let g1 be a FM that is of value 1
at all points in the lattice. Therefore,

(
g1(xπ(1))− 0

)
for π(1)

in the CFI and all other FM differences are 0. Thus, the CFI
simply selects the largest h value, hπ(1). Figure (2b) shows
the use of g1 with respect to H1.

2) Example 2 (Min FM): Let g2 be a FM that is of value
0 at all points in the lattice except for 1 at g2(X). Therefore,
the FM difference weightings in the CFI are all 0 except for
1 at i = N . Thus, the CI selects the smallest h value, hπ(N).
Figure (2b) shows the use of g2 with respect to H1.

3) Example 3 (Mean FM): Let g3 be a FM that is of value
k
N at layer k in the lattice. Thus, at layer 1, i.e., the densities,
each measure has value 1

N . At layer 2, the value is 2
N and so

on (yielding value 1 at g3(X)). Therefore, each FM difference
weighting in the CI is of value 1

N , yielding the expected value.
Figure (2b) shows the use of g1 with respect to H1.

These three examples tell the following story. First, one can
clearly see that the height of each gFI result is equal to that of
the sub-normal FS H1

3 . One can also see that the convexity of
the result depends entirely on the shape of the input FSs and
the FM. The min result is a trapezoid and the max result is very
similar to a triangle. However, it is clear that the average FM
result is non-convex. Moreover, one can see that the convexity
of the result at a given α is also very much dictated by both the
input and the specific FM. Again, these examples are provided
as graphical illustrations of the gFI to more clearly illustrate
the inner workings of the gFI definition and approximation
algorithm.

B. Comparison of gFI and NDFI

Upon beginning this investigation, the underlying questions
were: “What is the direct method of extending the FI for
FS-valued integrands?”, and “Does it produce a better or
the same result as NDFI?”. The short answer is no, the
gFI does not produce the same result as NDFI. In fact, the
two approaches aggregate information in very different ways.
It is unfortunately not simple to declare one approach as
definitively better than the other. Each approach has its own
respective advantages and disadvantages and the appropriate
choice depend in part on the application and what one is trying
to accomplish. These pros and cons are illustrated through
the following numeric examples and a high-level comparative
summary is provided at the end in Table V.

1) Example 1 (Ĥ): Consider the example in Fig. 3. This
scenario contains two inputs X = {x1, x2} with partial
support function Ĥ2. The two FS inputs are characterized by
the triangular membership functions µĤ2

1
= [0, 0.2, 0.4] and

µĤ2
2

= [0.6, 0.8, 1]. The reliability of these sources is given
by the FM, g4(x1) = 0.5, g4(x2) = 0.5, g4(X) = 1.

The gFI, specifically the gSFI, produces a result which,
although technically a FS, is the singleton 0.5, with a mem-
bership of 1. If the FM is changed to g5(x1) = 1, g5(x2) =
1, g5(X) = 1, the gFI produces the triangular FS [0.6, 0.8, 1]
with height of 1. Note, this is exactly equal to µH2

.
NDFI produces very different results, shown in Fig. 4. View

(a) shows the NDFI algorithm result for FM g4. The result is
two triangles, [0, 0.2, 0.4] and [0.6, 0.8, 1], both with heights of
0.5. For g5, shown in view (b), the result is the same; however,
each triangle has a height of 1. A possible downside of NDFI
is that for this very straight-forward example, the result is a
non-convex (and for g4, sub-normal) FS.

This example could be considered as the combination (e.g.,
average and maximum) of two FNs, with linguistic represen-
tations of ‘about 0.2’ and ‘about 0.8.’ Intuitively, we expect
the output to look like the inputs: in this case, a triangular FS
with the linguistic interpretation of something like ‘about 0.5’
or ‘about 0.8’ (depending on the FM). The NDFI algorithm,
again depending on the selection of FM, produces a result that
is differently shaped from each of the inputs. In contrast, gFI
produces outputs that look very much like the inputs, namely
triangular FSs, which would be easily interpreted. However, a
limitation of gFI is that if any of the inputs are sub-normal
FSs then the output will have a maximum membership of
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(a) (b)

Fig. 2. (a) Partial support function H1 and (b) gFI result. In (a), green is H1
1 , blue is H1

2 and red is H1
3 . In (b), green is min, blue is max and red is average.

The gFI used is the generalized Choquet fuzzy integral (gCFI).

Fig. 3. Illustration of a FS integrand and interval endpoints used to compute
gFI at α = 0.5. The results for two FMs are provided: red is g4(x1) =
0.5, g4(x2) = 0.5, g4(X) = 1; and green is g5(x1) = 1, g5(x2) =
1, g5(X) = 1. The two FSs are characterized by the triangular membership
functions µĤ2

1
= [0, 0.2, 0.4] and µĤ2

2
= [0.6, 0.8, 1].

the minimum-height sub-normal FS, even if the respective
reliability (g) of that sub-normal input is 0-valued (which
intuitively means that we should ignore that input as it has
no worth in the solution to the FI). Hence, both have their
respective drawbacks.

In contrast, for age-at-death estimation in anthropology, we
desire a restricted result. That is, anthropologists indicate that
we should be careful not to produce ages outside of intervals
indicated by the individual aging methods. For example, if one
method reports [10, 20] and another method reports [60, 100]
(which, for most practical cases is unlikely), we do not want
to produce an age interval such as [40, 50]. In addition to
fusing the inputs, we would like to have a way to discover
that there is disagreement among the sources and we would
like to find the age(s) in which we can be most confident. That
is, we would like to take into account the agreement between
sources, the method’s confidences and our confidences in the
sources. If one input has a low height, we do not want the
FI result to be ultimately limited by this amount. In [4], our
objective was to find a way to fuse the various information (FS
inputs, bone quality values and numeric values representing

(a)

(b)

Fig. 4. Illustration of a FS integrand and interval endpoints used to compute
NDFI at α = 0.5. Case (a) is for FM g4(x1) = 0.5, g4(x2) = 0.5, g4(X) =
1, while case (b) is for FM g5(x1) = 1, g5(x2) = 1, g5(X) = 1. The results
for these FMs is shown in red. The two FSs are characterized by the triangular
membership functions µĤ2

1
= [0, 0.2, 0.4] and µĤ2

2
= [0.6, 0.8, 1].

the ’worth’ of the information sources) and then analyze
the result. The result was the introduction of NDFI. In [4],
we calculated a single age-at-death number (e.g., died at
age 20). We identified FS features and created fuzzy class
definitions to assist with interpreting the FS results [5]. We
also measured the confidence and specificity of the resultant
FSs. The four anthropological FS categories are shown in Fig.
5. These categories represent: specific age (aging methods
come together and agree on a single age-at-death), age range
(agreement between the sources but no single definitive age),
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(a) (b)

(c) (d)

Fig. 5. Interpretation of resultant FS in age-at-death estimation using NDFI
[4, 5]. Categories identified by anthropologists include: (a) specific age (aging
method have come together and agree on a single age-at-death), (b) age
interval (there is agreement between the sources but no single definitive age),
(c) disagreement (there is disagreement between the methods, thus multiple
plateaus) and (d) inconclusive (so much disagreement or general lack of
confidence that it is difficult to conclude anything).

disagreement (there is disagreement between the methods, thus
multiple plateaus) and inconclusive (so much disagreement or
lack of confidence that it is difficult to conclude anything).

2) Example 2 ( ˆ̂
H): Consider the example in Fig. 6(a).

This scenario contains two inputs X = {x1, x2} with partial
support function ˆ̂

H3. The two FS inputs are characterized by
the triangular membership functions µ ˆ̂

H3
1

= [0, 0.2, 0.4] and
µ ˆ̂
H3

2

= [0.6, 0.8, 1], and the FM is g6(x1) = 1, g6(x2) =

0, g(X) = 1 (i.e., no worth is assigned to the second
information source). However, in this example let the height
of µ ˆ̂

H3
2

be 0.01 (sub-normal FS).

The gFI algorithm results in the trapezoidal membership
function [0, 0.002, 0.398, 0.4] with height 0.01. Note, this
result is different in shape from the input. That is, the inputs
are triangular while the result is a trapezoid. While the second
source is completely untrustworthy (g6(x2) = 0), it has
substantially impacted the result. The resultant height is so
low that intuitively we should ignore the result. However, for
this second experiment NDFI produces a more pleasing result.
That is, a single triangle of height 1 at [0, 0.2, 0.4] and quasi
no support (height 0.01) in [0.6, 0.8, 1] (shown in Fig. 6(b)).

3) Example 3: Age-at-Death Estimation: Next, we consider
a case from our prior skeletal age-at-death estimation work [4].
This example, presented in Table V, consists of eight aging
methods. Each skeletal remain (bone) is associated with a
skeletal quality value of less than one, i.e., a Height(Hi) ≤ 1.
By looking at the agreement between these aging methods
from an anthropological standpoint, we would expect a result
close to the true age-at-death (which is 38). Specifically, we
expect a narrow interval (not a single age-at-death because
the inputs are all interval-valued with width greater than
1) that includes the age 38. The input FSs have heights
(their confidence) equal to their respective quality of bone.
Additionally, the fusion procedure (gFI or NDFI) is expected

(a)

(b)

Fig. 6. Results for the FM g6(x1) = 1, g6(x2) = 0, g6(X) = 1. Case (a) is
for gFI and (b) is for NDFI. The two FS are characterized by the triangular
membership functions µ ˆ̂

H3
1

= [0, 0.2, 0.4] and µ ˆ̂
H3

2

= [0.6, 0.8, 1], with

Height(
ˆ̂
H3

1 ) = 1 and Height( ˆ̂
H3

2 ) = 0.01.

to fuse this information with respect to the reliability of the
aging methods. In this work, as well as in our previous work,
the Sugeno λ-FM is used to build the entire FM from the
densities. Figure 7 shows the results of gFI and NDFI. Note,
with respect to the gFI, the inputs are first scaled from [0, 110]
to [0, 1] (division by 110), the gFI algorithm is run, and the
results are then scaled back to [0, 110] (multiplication by 110).

The following observations are made with respect to gFI
and NDFI. First, the inputs are trapezoids and the output
of gFI is a trapezoid. Specifically, the output is subnormal
and convex and its shape is that of the inputs (a trapezoid).
In comparison, the output of NDFI is sub-normal and non-
convex and its shape does not resemble that of the individual
inputs. Second, the interval [37, 39] has the most agreement
among the inputs. That is, each age method reports these ages.
However, we do not desire an overly simple procedure that just
counts the number of times that an age is agreed upon by the
aging methods followed by a selection of an interval that has a
maximum score. It is very likely that multiple intervals could
exist. Additionally, we would like to take the reliability of
each aging method into consideration. This is the motivation
for taking a generalized SFI approach. That said, gFI returns a
single (and very wide or non-specific at that) interval, [37, 76].
While the gFI algorithm output does include the true age-at-
death, it includes to many other ages as well. In comparison,
the NDFI algorithm result indicates a single maximum plateau
of [35, 39], which for Example 3 is a single interval associated
with the highest membership degree (see [4] and [5] for a
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TABLE IV
INPUT FOR EXAMPLE 3 FROM OUR PRIOR AGE-AT-DEATH WORK [4]

Aging Method Quality Age Range gi

Pubic Symphysis 0.6 35-39 .57
Auricular Surface 0.8 35-39 .72
Ectocranial Sutures - vault 0.2 24-75 .59
Ectocranial Sutures - lateral 0.5 23-63 .59
Sternal Rib Ends 0.5 33-42 .75
Endocranial Sutures 0.4 35-39 .51
Proximal Humerus 0.3 37-86 .44
Proximal Femur 0.7 25-76 .56

formal definition of maximum plateau). However, in some
cases, such as those discussed in [4, 5], multiple plateaus can
exist. To summarize Example 3, both NDFI and gFI include
the true age of death in their result, however NDFI indicates
smaller number of possible ages. The gFI result is a wide (that
is, non-specific) interval that is of little-to-no use for age-at-
death estimation. It reports that the true age-at-death is one of
40 years. However, the NDFI algorithm result is more specific,
i.e., the true age-at-death is one of 5 possible ages (according
to the maximum plateau).

As discussed in our prior work [4, 5], NDFI provides
a wealth of additional information. In [5] we put forth a
technique to linguistically describe a gFI FS. From that work,
the following can be concluded (which is not available in the
SuFI algorithm output). First, the shape of the resultant FS
informs us about the nature of the agreement. For Example
3, the result is of type interval (one of many possible ages),
however it is not very wide and could potentially be considered
as type specific (a single age-at-death). Additionally, in [5] we
defined a linguistic variable to interpret the confidence of the
output decision. For example 3, NDFI reports that the fused
result is of moderate confidence (the maximum plateau has
a height of 0.72), while SuFI (of height 0.2) is of very low
confidence (and most likely should be ignored).

C. High-level Comparison of the gFI and the NDFI

Table V is a summary of the major differences between the
gFI and the NDFI. Specifically, Table V tells the following
story. The gFI is a direct (i.e., Extension Principle based)
generalization of the FI for FS-valued integrands. However,
the NDFI is also an extension, be it indirect, of the FI for FS-
valued inputs. The gFI and the NDFI are very different in each
of the reported categories: height, range, approach and shape
of the resultant FS. The “correct” or indeed more appropriate
FI extension appears to depend on the application. The NDFI
appears to be of utility when the goal is to aggregate the input
FSs “in place” with respect to the FI. As described earlier,
this is reflected by the fact that the NDFI is the repeated
application of the FI for multiple hypotheses. Specifically,
there is one hypothesis for each discretized domain location.
Furthermore, the NDFI is restricted to the region (range)
corresponding to the union of the input FS supports. In this
respect, the NDFI cannot draw conclusions in regions where
no input support exists. Conversely, the gFI is appropriate
when one wants to compute a function with respect to a FS-
valued integrand. The output can be anywhere between the

(a)

(b)

(c)

Fig. 7. Results found for the inputs, bone quality values, and Sugeno λ-FM
for the densities reported in Table V. In (a), the input FSs are shown. In (b),
the NDFI algorithm result is shown. The x-axis is the range [0, 110]. In (c),
the gFI algorithm result is shown for 11 α-cuts. In (b) and (c), a vertical
dashed line is drawn at the true age-at-death (38).

minimum and maximum. However, gFI is not perfect. Zadeh’s
definition of the Extension Principle restricts the gFI result in
some applications (such as the discussed case of multi-sensor
fusion).

To illustrate, consider the case of skeletal age-at-death
(example in Figure 7). We saw that when the input FSs are sub-
normal it is possible that the gFI yields a more-or-less unusable
result. Not only is the result restricted to a maximum value of
0.2, but the approximated result is a flat membership function
stretching from 30 to 70 years. This result is of little-to-no use
in skeletal age-at-death estimation. However, the NDFI result
clearly indicates an age range subset. Namely, an age range
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in which there is the greatest agreement across the different
input FSs (taking into account the quality, or reliability, of the
different inputs/sources).

VII. CONCLUSION

Herein, a number of FIs for different types of integrand
information was reviewed. In addition, a definition and ef-
ficient algorithm for the generalized FI (gFI) for FS-valued
integrands (non-convex and sub-normal) was put forth. This
extension was compared to a non-direct FI extension, called
the NDFI, theoretically as well as empirically for the cases
of multi-source (sensor) data fusion and skeletal age-at-death
estimation in forensic anthropology. It was demonstrated that
both the gFI and the NDFI have their individual benefits and
they are indeed different extensions. The overall benefit of
this article is the comparison of the definition, calculation and
application of different FI extensions.
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TABLE V
COMPARISON TABLE FOR THE GFI AND THE NDFI.

Property gFI NDFI
Height Height of lowest FS (i.e., minimum of Height(H1), ...,

Height(HN ))
Depends on the FM. Anywhere between 0 and maxi-
mum FS height

Range
∫
H ◦ g can be anywhere between the minimum and

maximum of input FSs (i.e., the integrand)
Range extremes are similar to the gFI (minimum to
maximum). However, the support of the NDFI FS result
is restricted to the union of the support of the input FSs

Approach to
(
∫
H ◦ g)(a)

Extension Principle. Thus, it is the extension of a
function for FS-valued integrands

FI calculated at a. Thus, aggregation is being performed
across the FSs

Shape of the FS∫
H ◦ g

Can be (and likely is) different from that of the inputs,
e.g., for triangular shaped sub-normal FS inputs we
can obtain a trapezoidal shaped output. In general, sub-
normal (if any input is sub-normal) and convex

In general, will be sub-normal and non-convex
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