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Abstract 

While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies 

assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential 

trade-off of the system with forest carbon stocks. Of particular importance to national GHG 

inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted 

for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future 

international climate change mitigation agreements. Through a case study of electricity produced 

using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the 

implications of forest carbon accounting approaches on net emissions attributable to pellets 

produced for domestic use or export. Particular emphasis is placed on the Forest Management 

Reference Level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto 

Protocol Commitment Period. While bioenergy production is found to reduce forest carbon 

sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur 

an accountable AFOLU-related emission, provided that total forest harvest remains at or below that 

defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated 

with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle 

emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, 

respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy 

effects of past management and natural disturbance, indicating near-term net forest carbon 

increase but longer-term reduction in forest carbon stocks. Export of wood pellets to EU markets 

does not greatly affect the total life cycle GHG emissions of wood pellets. However, pellet exporting 

countries risk creating a considerable GHG emissions burden, as they are responsible for AFOLU and 

bioenergy production emissions but do not receive credit for pellets displacing fossil fuel-related 
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GHG emissions. Countries producing bioenergy from forest biomass, whether for domestic use or for 

export, should carefully consider potential implications of alternate forest carbon accounting 

methods to ensure that potential bioenergy pathways can contribute to GHG emissions reduction 

targets.  

 

1. Introduction 

Electricity generation from forest biomass offers the potential to reduce greenhouse gas (GHG) 

emissions relative to fossil fuel generation, while also addressing sustainability concerns such as non-

renewable resource use, air pollutant emissions, and energy security. The flexibility of bioenergy as a 

potential alternative energy source for heat, transport, and electricity applications has led to its 

inclusion in national strategies for reducing GHG emissions and increasing renewable energy 

penetration (e.g., UK DECC, 2012). Risks associated with forest bioenergy production, in particular 

the impact on forest carbon sequestration and potential GHG emissions consequences, have been 

identified in several studies (e.g., Searchinger et al., 2009; McKechnie et al., 2011; Vanhala et al., 

2013). Of particular importance to national GHG inventories is how trade-offs between forest carbon 

stocks and bioenergy production are accounted for within current and future international climate 

change mitigation agreements.  

 

Under the United Nations Framework Convention on Climate Change, bioenergy systems straddle 

the Energy sector and the Agriculture, Forestry and Other Land Use (AFOLU) sector, with the latter 

accounting for terrestrial carbon stocks. To avoid double-counting, CO2 emissions from biomass 

combustion are excluded from GHG accounting within the energy sector. Implications of these 

emissions on atmospheric GHGs are assessed indirectly through terrestrial carbon stock accounting 

under the AFOLU sector. Conventional life cycle assessment methods similarly do not account for 

biomass-based CO2 emissions in the assessment of bioenergy systems. Life cycle studies commonly 

assume that these emissions are balanced by post-harvest biomass regrowth and thus do not 

contribute to atmospheric GHGs (e.g., Zhang et al., 2010). Research has highlighted the possible 

shortcomings of this accounting approach, as it risks omitting potentially significant carbon stock 

changes resulting from bioenergy production (e.g., Searchinger et al., 2008). Recent studies of 

bioenergy have developed integrated life cycle and forest carbon analysis methods to include forest 

carbon impacts within life cycle studies (e.g., McKechnie et al., 2011; Helin et al., 2013). Net GHG 

emissions, inclusive of life cycle activities and forest carbon impacts, are time dependent: forest 

carbon removals at harvest are compensated by forest regrowth, which occurs over a comparatively 

long timescale. Trade-offs between forest biomass-based bioenergy production and forest carbon 



stocks have been found to result in increased GHG emissions relative to fossil fuels lasting decades 

to more than 100 years (e.g., Kayo et al., 2011; McKechnie et al., 2011; Ter-Mikaelian et al., 2011).  

Lacking in prior applications of integrated life cycle/forest carbon analysis methods is a consideration 

of how trade-offs between bioenergy and forest carbon would be accounted for under climate 

change mitigation agreements and national emissions inventories. Accounting for forest carbon 

stocks within GHG emissions inventories is complex, due in part to the long-term consequences of 

previous management decisions and natural disturbances (Bottcher et al., 2008). Accounting rules 

have been proposed and prior studies have evaluated the implications of these rules on the assessed 

GHG emissions/sinks for managed forests (e.g., Bottcher et al., 2008; Ellison et al., 2011). Under the 

2nd Commitment Period of the Kyoto Protocol, most reporting nations have chosen to measure 

forest carbon stock changes by first identifying a Forest Management Reference Level (FMRL) to 

define a dynamic, forward looking baseline to which future forest carbon stocks are compared 

(UNFCCC 2013). While alternate accounting methods can greatly impact assessed AFOLU emissions 

(Bottcher et al., 2008), implications of accounting methods on the emissions attributable to forest 

bioenergy have yet to be investigated.  

 

The North American wood pellet industry has grown rapidly in response to demand in domestic and 

export markets (FBN, 2013), fuelled in part by initiatives in EU countries to implement biomass co-

firing and repowering of coal generating stations to meet renewable energy and GHG emissions 

reduction targets. Alongside potential pellet sources in the US Southeast (e.g., Dwivedi et al., 2014), 

wood pellet export from Ontario, Canada, to international markets is developing as a supply chain 

(Rentech, 2014). It is thus important to understand the potential implications of wood pellet 

production and trade for producer country’s national emissions inventories. The objective of this 

study is to investigate how forest carbon accounting approaches employed within the AFOLU sector 

might impact emissions attributable to forest bioenergy within national emissions inventories. We 

expand on existing life cycle and forest carbon analysis models to quantify AFOLU emissions 

resulting from forest bioenergy production under three alternative forest carbon accounting 

methods. This novel assessment approach is applied to a case study of wood pellet production from 

harvested forest stands in the Great Lakes-St. Lawrence Forest Region of Ontario, Canada. Life cycle 

GHG emissions are quantified for both domestic pellet consumption and export of pellets to a 

hypothetical EU consumer to compare implications for Canada’s emissions inventory.  

 

2. Forest Carbon Accounting Approaches 



Forest carbon accounting approaches are designed to quantify the impact of management (e.g., 

deforestation/afforestation; harvest/renewal) on atmospheric GHGs. Applied nationally, these 

approaches determine the net GHG emissions sink (or source) related to forests, a component of the 

AFOLU sector, for inclusion in national inventories. While forest carbon accounting approaches are 

not designed to assess the impact of a particular forest product, we adapt these methods, as 

described below, to better understand the implications of increased forest resource utilisation for 

bioenergy production. Forest carbon accounting approaches have been described in detail 

elsewhere (e.g., Bottcher et al., 2008). A simple and general representation of changes in forest 

carbon stocks that would be accountable within national inventories, as either an emissions source 

or sink, can be presented by: 

∆Cacc = ∆Cobs - ∆Cbase      (1) 

where ∆Cacc is the accountable change in forest carbon stocks over a set period of time, ∆Cobs  is the 

observed change in forest carbon taking into account actual forest management practices, and  

∆Cbase is the projected change in forest carbon stocks under a defined baseline, or business-as-usual 

management scenario.  

 

Forest carbon accounting approaches differ primarily by how they define the baseline forest 

condition and this aspect can have a significant impact on the quantification of AFOLU emissions 

(Bottcher et al., 2008). A similar issue has been identified in assessing emissions reductions from 

avoiding deforestation and forest degradation (REDD): calculated emissions credits are highly 

dependent on the selected baseline to which future forest carbon stocks are compared (Huettner et 

al., 2009; Griscom et al., 2009; Sloan and Pelletier, 2012).  

 

In this study, we consider three alternative forest carbon accounting baselines:  

1. Forest management reference level, a forward-looking and dynamic baseline that predicts future 

forest carbon stocks under ‘business-as-usual’ forest management assuming future and historical 

harvest rates to be equal;  

2. Gross-net, a static baseline that assumes no change in forest carbon stocks from the level at the 

start of a commitment period; and  

3. Incremental carbon impact, a second forward-looking and dynamic baseline that predicts future 

forest carbon stocks resulting from ongoing production of ‘conventional’ wood products (lumber, 

pulp, paper, etc.) but specifically excludes changes in forest carbon due to future harvest for 

bioenergy production, which is considered additional to the baseline. 

 



2.1. Forest Management Reference Level Baseline 

The forest management reference level (FMRL) baseline is a forward-looking dynamic baseline, 

defined by projected forest carbon stocks under ‘business-as-usual’ management practices. 

Accountable changes in forest carbon stocks are then calculated as the difference between observed 

forest carbon stocks and projected stocks under the FMRL baseline (Eq’n 1). Most reporting 

countries have employed a FMRL baseline in assessing forest carbon-related emissions and sinks 

under the 2nd Commitment Period of the Kyoto Protocol (UNFCCC 2013). Assessing forest carbon 

stock changes relative to a FMRL baseline has the advantage of factoring out the effects of forest age 

structure (a result of past management activities and disturbances), thereby isolating the effects of 

contemporary forest management practices on forest carbon stocks.  

 

The definition of the FMRL baseline is constrained under the Kyoto Protocol to exclude the effects of 

domestic policies initiated after 2009 and requiring countries to justify how their proposed FMRL 

baseline represents business-as-usual practices. However, countries have an incentive to project 

high forest harvest levels within the FMRL baseline, thereby maximising forest carbon sequestration 

credits (when projected harvest levels are not met) or avoiding accountable forest-carbon related 

emissions if harvest does increase to such levels in the future (Greenglass et al., 2010; Freiden et al., 

2012). To avoid potential manipulation, Greenglass et al. (2010) propose that the FMRL baselines be 

quantified based on average historical harvest rates. A number of countries, including Canada, have 

employed historical harvest data to establish FMRLs (UNFCCC, 2011).  

 

2.2 Gross-Net Baseline 

The Gross-Net baseline was used to account for forest carbon stock changes in the 1st Commitment 

Period of the Kyoto Protocol. This approach accounts for all changes in forest carbon stocks over a 

commitment period. The Gross-Net baseline is static, defined simply as the forest carbon stock at 

the beginning of the commitment period or at a specified reference year. Thus, as the reference 

baseline does not include any change in forest carbon stocks (from Equation 1, ∆Cbase = 0), 

accountable GHG emissions/sinks are quantified as the change in observed forest carbon stocks.  

 

By accounting for all changes in forest carbon over a commitment period, the Gross-Net approach 

provides a direct measure of the change in existing forest carbon stocks over time. However, 

changes in forest carbon stocks quantified in this manner are inclusive of legacy effects originating 

from management activities and natural processes occurring prior to the commitment period (for 



example see Ter-Mikaelian et al., 2013). The impacts of contemporary forest management can 

therefore not be isolated with the Gross-Net approach. 

 

2.3. Incremental Carbon Impact Baseline 

Numerous assessments of the trade-offs between forest carbon stocks and emerging bioenergy 

products (e.g., wood pellets, ethanol) have considered harvesting for bioenergy production to be 

‘additional’ to business-as-usual forest management (McKechnie et al., 2011; Zanchi et al., 2012; 

Walker et al., 2013). We term this baseline definition the ‘Incremental Carbon Impact’ baseline.  

Similar to the FMRL baseline, the Incremental Carbon Impact baseline defines a dynamic reference 

baseline based on business-as-usual practices. However, the reference baseline is defined as 

excluding activities related to increased use of forest biomass for bioenergy applications. Any 

additional harvest for bioenergy production is thus assumed to exceed the business-as-usual 

baseline, which prior studies have found to result in a reduction in forest carbon stocks. As such, the 

Incremental Carbon Impact approach accounts for foregone forest carbon sequestration that would 

have occurred in the absence of wood pellet production. The Incremental Carbon Impact approach is 

not considered by UNFCCC as an AFOLU accounting option, but is included here to enable 

comparison with prior studies. 

 

3. Case study of Wood Pellet Production 

We undertake a case study of wood pellet production in the Great Lakes-St. Lawrence Forest Region 

of Ontario, Canada for both domestic and export markets to demonstrate possible implications for 

Canada’s GHG emissions inventory. The case study quantifies two means by which wood pellet 

production and use can impact national GHG emissions inventories: 1) avoiding fossil fuel use and 

associated emissions; and 2) changing the amount of carbon stored in forest biomass and soils 

(dependent on forest carbon accounting approach).  

 

The scenarios considered are: 

1. Wood pellet, domestic use: wood pellet production and combustion in a retrofit coal 

generating station in Ontario, Canada, displacing: 

i. Reference coal: combustion of coal in an existing coal generating station in 

Ontario 

ii. Reference natural gas: combustion of natural gas in a new build combined 

cycle facility in Ontario 



2. Wood pellet, export: wood pellet production in Ontario and delivery to point of export 

at Quebec City  

 

For both the domestic and export cases, GHG emissions associated with activities related to forest 

management (harvest, regeneration), wood pellet manufacture, and domestic logistics would be 

accountable under Canada’s emissions inventory (Figure 1). The domestic use of wood pellets to 

avoid fossil fuel consumption would reduce GHG emissions reported in Canada’s energy sector. 

When pellets are produced for export, only forest management, wood pellet manufacture, and 

domestic transport and handling activities are relevant to Canada’s emissions inventory (Figure 1b).  

International transport of pellets, as with all international shipping activities, falls outside of national 

emissions inventories (Heitmann and Khalilian, 2011). GHG emissions associated with pellet 

transport and use within the consuming country, including emissions reductions associated with the 

displacement of fossil fuels, would be accounted for within the importing country’s inventory.   

 

3.1. Biomass sources 

Biomass is assumed to be sourced from harvested forest stands in the Great Lakes-St. Lawrence 

region. Competition between alternative uses for forest resources (e.g., conventional forestry 

products; carbon sequestration credits) is not considered in developing the hypothetical biomass 

availability scenario considered here. Biomass availability for pellet production is constrained so that 

the total harvest volume for conventional products (lumber, pulp and paper) and wood pellets does 

not exceed the average historical harvest rate between 1998 and 2007. Biomass availability for 

pellets is thus quantified as the difference between the longer perspective historical average harvest 

rate (1998 to 2007) and the lower recent harvest rate (2008-2010), providing an average annual 

biomass availability of 470,000 odt/yr. Recent harvesting is assumed to be undertaken for 

conventional wood products only; this demand is assumed to remain constant throughout the 100-

year study period. Increased demands for some conventional products (e.g., lumber) are possible; 

however, there is greater doubt surrounding the recovery of other forest product sectors (e.g., pulp 

and paper). Projections of future timber harvesting in the Great Lakes-St. Lawrence region for 

conventional forestry products manufacture are not available and are beyond the scope of the 

present study.  

 

Projected harvesting for conventional products and wood pellet manufacture are simulated using 

the Strategic Forest Management Model (SFMM) timber supply model as described by McKechnie et 

al. (2011). These projections are then employed to estimate biomass availability for pellets as 



described above. Biomass availability, presented on an oven-dry tonne (odt) basis, accounts species-

specific parameters (moisture content, density) and a “biomass expansion factor” to account for tree 

components that are suitable for pellet production but would not be included in measurements of 

merchantable volume harvested (McKechnie et al., 2011). The species composition of timber 

destined for wood pellet production varies for some management units over the 100-year period, 

resulting in some variation in biomass availability on an odt basis (See Supporting Information, Table 

S1). 

 

3.2. AFOLU emissions: Application of forest carbon baselines  

Forest carbon baselines are developed for each accounting approach detailed in Section 2 to assess 

the impact of wood pellet production on AFOLU-related emissions under potential future accounting 

approaches. Baselines are defined at the beginning of the 100-year study period based upon 

historical harvest data and projected future forest carbon stocks.  The 100-year study period is 

divided into 10-year sub-periods to provide a simple representation of future ‘commitment periods’ 

under the Kyoto Protocol or a successor agreement. Baselines are updated at the beginning of each 

new decadal ‘commitment period’ (e.g., baselines are recalculated in year 2020, 2030). As future 

GHG emissions agreements have not been settled, the definitions of accounting methods and 

associated forest carbon reference baselines are by nature hypothetical but are developed to 

illustrate emissions that may be accountable to wood pellet production within the AFOLU sector 

under a set of possible future accounting rules.  

 

The FMRL baseline is defined as the projected forest carbon stocks assuming the ongoing constant 

timber volume harvest at the average historical harvest rate observed between 1998 and 2007 in 

the Great Lakes St. Lawrence Forest. As the historical harvest rate is assumed to be maintained 

throughout the model period, recalculation of the historical average harvest rate at the beginning of 

each future decade returns the same reference harvest rate. The chosen baseline is similar to the 

FMRL in Canada’s 2011 UNFCCC submission, which defines the baseline as the average national 

harvest rate from 1990 to 2009 (UNFCCC, 2013a). The shorter reference period employed here 

corresponds to the scenario investigated previously in McKechnie et al. (2011) and thus enables 

easier comparison with prior results. Implications of formulating the FMRL baseline using different 

historic harvest data are discussed in Section 5. 

 

Using the same volume harvest rates and resulting forest carbon stocks as in the FMRL approach, we 

applied the Gross-Net approach to compare observed forest carbon stocks with a static reference, 



defined in the present study as the total forest carbon stock at the beginning of each decade. The 

Gross-Net reference baseline is updated for each 10-year sub-period of the study, based on 

projected forest carbon stocks at the start of each decade.  

 

The Incremental Carbon Impact baseline is defined based on continued forest management activities 

in the absence of any harvesting for wood pellet production, as in McKechnie et al. (2011). Harvest 

for wood pellet production is considered additional to the baseline. Any associated reductions in 

forest carbon stocks are attributed to wood pellets as an emissions source. 

 

3.3. Forest carbon analysis  

Forest carbon dynamics related to timber harvesting for wood pellet production are assessed using 

the FORCARB-ON model (Chen et al., 2010). FORCARB-ON is a forest carbon model developed to 

assess carbon stocks under different management scenarios and has been used previously in 

assessing forest carbon impacts of bioenergy systems (McKechnie et al., 2011; Ter-Mikaelian et al., 

2012; Colombo et al., 2012). FORCARB-ON is employed to quantify future forest carbon stocks 

associated with wood pellet and conventional forest product production and the reference baseline 

forest carbon stocks used in the alternative accounting approaches. AFOLU-related emissions are 

assessed for each accounting approach as described in Sections 2 and 3.2. 

 

Application of the forest carbon accounting approaches returns AFOLU emissions of forest 

management as a whole. We allocate a portion of these emissions to wood pellet manufacture to 

assess the specific implications of this emerging forest product. Due to the strict definition of 

biomass supply, no accountable change in forest carbon is generated when employing the FMRL 

method, thus allocation is a moot point. In the Gross-Net method, AFOLU emissions must be 

allocated between conventional products and wood pellets. We employ mass-based allocation, 

whereby AFOLU emissions are allocated to wood pellets based on the relative mass of total harvest 

that is input to wood pellet production. A mass basis is selected as a conservative approach to 

estimating AFOLU-related emissions; a financial basis, for example, would attribute a smaller 

fraction of forest carbon related emissions to bioenergy due to the lower market value of biomass 

relative to saw logs. Allocation is not required for the Incremental Carbon Impact method as this 

approach isolates the forest carbon implications of bioenergy production. 

 

3.4 Life cycle assessment of Wood Pellet and Reference Fossil Fuel Pathways 



Life cycle inventory models are developed to quantify GHG emissions associated with the wood 

pellet production and use pathways:  wood pellet manufacture, transport, electricity generation, and 

avoided emissions associated with using pellets in place of fossil fuels.  Activities for all pathways 

include resource extraction, fuel processing, combustion, and all transport stages. The functional 

unit of the life cycle component of this study is one kWh of electricity produced. Emissions of 

selected GHG emissions (CO2, CH4, N2O) are evaluated as CO2eq. on the basis of 100-year global 

warming potentials (IPCC, 2006). Biomass-based CO2 emissions are not accounted for in the life cycle 

component, but instead in the forest carbon analysis, following the integrated life cycle 

assessment/forest carbon analysis approach defined in McKechnie et al (2011).  

 

Life cycle models are developed from existing models and databases (e.g., Zhang et al., 2010; NRCan, 

2013). Energy use and GHG emissions related to forest operations (harvesting, renewal), wood pellet 

manufacture, transport to domestic point of use, and combustion for electricity generation were 

evaluated in Zhang et al. (2010). The present study updates the model to reflect more recent data on 

the Ontario electricity grid mix (IESO, 2013) and emissions factors for the production and use of 

fossil fuels (NRCan, 2012). Inputs and GHG emissions data associated with wood pellet manufacture 

and transport are presented in the Supporting Information (Table S2). 

 

Electricity generation efficiency using coal (35%) is assumed to decrease to 33% when using 100% 

wood pellets. Non-CO2 GHG emissions from biomass combustion are assessed based on database 

values (NRCan, 2013). Life cycle GHG emissions associated with the coal-fired generation reference 

pathway were evaluated previously (Zhang et al. 2010). Electricity generation via natural gas 

combined cycle is modelled using existing databases (NRCan, 2012), assuming a generation 

efficiency of 47%.  

 

When wood pellets are produced for export, only domestic activities are relevant to Canada’s 

national inventory (Section 3 and Figure 1). For the export case a truncated LCA is undertaken, 

limited to activities from forest to port (Figure 1b). Pellets destined for export are assumed to be 

shipped by rail (average distance 1,030 km from hypothetical Ontario mills) to the Port of Trois-

Rivieres, Quebec, which is already active in pellet export (Trebio, 2014), where they would be 

subsequently loaded for international shipment. The remainder of the activities (e.g., international 

shipping, pellet combustion - Figure 1b) are not accountable within Canada’s national inventory: 

international shipping is not accounted for under UNFCCC guidelines (Heitmann and Khalilian, 2011); 

pellet combustion and fossil fuel displacement is accounted for by the consuming country.  



 

4. Results 

4.1 AFOLU emissions 

Forest carbon stocks are presented in Figure 2 for the three forest carbon accounting approaches. 

Observed forest carbon (solid grey line) indicates the expected forest carbon stock when both 

conventional forest products and wood pellets are produced over the 100-year period as described 

in Section 3. Observed forest carbon stocks increase between 2010 and 2030, decline to 2070, and 

then increase again up to 2110. These general trends represent the long-term implications of past 

forest management and natural processes on forest carbon dynamics; increasingly over time, the 

effects of future harvest also impact forest carbon modelled in the current study. 

 

The FMRL baseline (Figure 2a) is co-incident with the observed forest carbon stock over time. This 

results from the strict definition of biomass availability in this study, which maintains total harvest 

(conventional products + bioenergy) at the historic harvest rate defined between 1998 and 2007, 

corresponding to the FMRL baseline. As such, there is no difference between observed and FMRL 

baseline carbon stocks at any point over the 100-year model period. In contrast, the Gross-Net 

baseline (Figure 2b) is defined as the starting forest carbon stock at the beginning of each decadal 

‘commitment period’. Observed forest carbon stocks are expected to match or exceed the Gross-Net 

baseline between 2010 and 2030, indicating a net forest carbon sink. In subsequent decades up to 

2070, observed carbon stocks are in deficit to the baseline, which indicates a forest carbon-related 

emissions source. From 2070 to the end of the model period, a net carbon sink is again achieved. 

Under the Incremental Carbon Impact method (Figure 2c), all harvesting for wood pellet production 

is ‘additional’ to the reference baseline. As a result, observed forest carbon stocks are in deficit to 

the reference baseline throughout the 100-year study period, indicating a AFOLU-related emissions 

source.  

 

4.2 Life cycle and total greenhouse gas emissions 

Life cycle GHG emissions from electricity generation using wood pellets and reference fossil fuels 

(coal, natural gas) domestically, exclusive of forest carbon impacts, are presented in Figure 3. These 

results are similar to prior studies (Zhang et al., 2010; McKechnie et al., 2011), with a small 

improvement in GHG emissions reductions due to lower upstream emissions from wood pellet 

manufacture in the present study. Relative to the coal reference pathway, domestic use of wood 

pellets reduces GHG emissions by 92%. Displacing electricity generated by the natural gas combined-



cycle pathway results in a smaller GHG emissions reduction (84%) for the domestic wood pellet 

pathway.  

 

Life cycle results are converted to a basis of tCO2eq./odtbiomass to assess the effectiveness of biomass 

use in reducing GHG emissions by these pathways and to enable results to be integrated with those 

from forest carbon analysis . Domestic use of wood pellets displacing coal avoids 1.49 

tCO2eq./odtbiomass while displacing natural gas avoids 0.64 tCO2eq./odtbiomass. 

 

Net GHG emissions accountable within Canada’s GHG inventory for wood pellet production and 

domestic use in electricity generation are shown in Figure 4a,b. Results are shown as cumulative net 

emissions, taking into account life cycle emissions and accountable AFOLU emissions. Under the 

FMRL method, forest stand harvest for wood pellet production does not result in a AFOLU emissions 

source attributable to wood pellets at any point during the 100 year study period. As such, only life 

cycle emissions associated with wood pellet production and use in place of fossil fuels impact net 

emissions. Forest carbon results for the FMRL method do not indicate an absence of forest carbon 

reductions from producing wood pellets. Rather, the reduction in forest carbon caused by harvest 

for pellets is simply not counted as an emission under the FMRL method due to the total harvest not 

exceeding of the baseline. Wood pellet production and domestic use results in net emissions 

reductions of 0.6 to 0.8 Mt CO2eq./yr (Figure 5a, displacing coal) and 0.3 MtCO2eq./yr (Figure 5b, 

displacing natural gas). Over 100 years of production, wood pellets cumulatively avoid 

approximately 70 MtCO2eq. and 30 MtCO2eq. when displacing coal and natural gas, respectively. To 

put these values in perspective, Canada’s national emissions for 2011 totalled 702 Mt CO2eq 

(UNFCCC, 2013). 

 

Employing the Gross-Net method results in the attribution of forest carbon-related sinks and 

emissions to wood pellet production at different points over the 100-year study period. These 

AFOLU emissions are driven predominately by long-term implications of past forest management 

practices and natural processes on forest carbon dynamics that are largely independent of the 

decision to produce wood pellets. AFOLU emissions attributed under the Gross-Net method 

counteract emissions reductions from pellet use displacing fossil fuels on the medium-term (2040 to 

2080), but at no point is a net GHG emissions increase observed. Cumulative avoided emissions by 

the end of the 100-year study period total 62 MtCO2eq. (displacing coal) and 23 MtCO2eq. 

(displacing natural gas). 

 



In contrast to the FMRL approach, by definition the Incremental Carbon Impact approach fully 

accounts for the trade-off between forest carbon stocks and additional harvest for wood pellet 

production. Forest carbon-related emissions quantified by the Incremental Carbon Impact method 

initially exceed avoided emissions from displacing fossil fuel use, resulting in an initial net increase of 

emissions lasting approximately 37 years (displacing coal) and 90 years (displacing natural gas). Over 

the 100-year study period, cumulative avoided emissions of 41 MtCO2eq. and 2 MtCO2eq. are 

achieved when displacing coal and natural gas, respectively.  

 

The net GHG emissions accountable within Canada’s GHG inventory for wood pellet export are 

shown in Figure 4c. Net GHG emissions results generally indicate a net emissions source (positive 

value) throughout the 100-year model timeframe for all three methods, due primarily to emissions 

savings from pellets displacing fossil fuels not being accountable within Canada’s GHG inventory. 

AFOLU-related emissions are dependent on the selected forest carbon accounting approach and 

follow results shown in Figure 2. Employing the FMRL method results in no AFOLU-related emissions 

being attributed to wood pellet production and thus domestic emissions are limited to life cycle 

GHGs from forest management, wood pellet manufacture, and domestic logistics. As with the 

domestic case, AFOLU emissions calculated using the Gross-Net approach are dominated by the 

long-term implications of past management and natural processes. The general trend of increasing 

forest carbon stocks to 2040 results in a net emission reduction over this period, after which net 

emissions increases are attributed to wood pellets. In contrast to the FMRL approach, the 

Incremental Carbon Impact approach accounts for foregone forest carbon sequestration that would 

have occurred in the absence of wood pellet production. This approach reveals substantial AFOLU-

related emissions resulting in a large net GHG emissions source of up to 33 Mt CO2eq. over the 100-

year study period. In context, Canada’s reported AFOLU emissions related to forestry indicated a net 

emissions source from forests totalling 287 Mt CO2eq over the 22 years between 1990 and 2011 

(UNFCCC, 2013).  

 

5. Discussion 

Although trade-offs between forest carbon stocks and bioenergy production have been assessed 

previously, such studies have not considered the potential implications of different forest carbon 

accounting approaches on emissions attributable to bioenergy within the AFOLU sector. This study 

indicates that the selection of forest carbon accounting method can greatly impact emissions 

attributed to bioenergy production and Canada’s emissions inventory, ranging from immediate and 

significant avoided emissions cumulating to a 100-year GHG reduction of 70 Mt CO2eq (FMRL 



approach) to an initial GHG increase lasting 37 years and significantly smaller 100-year GHG 

reduction of 41 MtCO2eq. when displacing coal in domestic use. Application of the FMRL method, 

the approach adopted by most Annex I countries for the 2nd Commitment Period of the Kyoto 

Protocol, indicates that wood pellets can be produced with nil AFOLU-related emissions (despite 

changes in forest carbon due to harvesting) so long as total harvest for conventional and bioenergy 

products is constrained at or below the FMRL baseline. In such a scenario, trade-offs between forest 

carbon and bioenergy are not accountable as an emissions source and wood pellets result in 

immediate emissions reductions when displacing fossil fuels. We emphasize that this result does not 

mean that bioenergy production from harvested forest stands could be undertaken without 

consequence to forest carbon stocks, but instead that this trade-off may not be counted as an 

emission due to the choice of forest carbon accounting method.  

 

Forest carbon trade-offs should not be ignored, even if they do not result in an accountable AFOLU 

emission. Non-accountable forest carbon consequences can be considered as an ‘opportunity cost’ 

to evaluate mutually-exclusive alternatives of forest stand harvest for bioenergy or foregoing this 

harvest. In the present study, greater GHG mitigation can initially be achieved through increasing 

forest carbon stocks; however, beyond 37 years (pellets displacing coal) and 90 years (pellets 

displacing natural gas), using wood pellets to avoid fossil fuel use provides greater emissions 

reductions. Whether the longer-term net GHG emissions reductions of forest bioenergy outweigh 

the foregone opportunity to sequester more forest carbon is a question of debate that should be 

considered alongside other factors influencing forest management decisions and associated policies 

(e.g., forest sector employment and ecological sustainability). Ideally, forest resource utilisation 

decisions and related policies should be informed by comprehensive cost-benefit analysis. However, 

reliance of key parameters on national and international regulations, and the possibility such policies 

can quickly change, introduces additional uncertainty to completing a robust cost-benefit analysis. In 

the current study we identify accounting method selection as a primary factor in quantifying GHG 

implications of bioenergy harvest. Other highly relevant parameters depend heavily on policies: for 

example, the value of carbon offsets via forest carbon sequestration (dependent on the design of 

emissions trading schemes); and the market value of bioenergy products (influenced by domestic 

and international policies incentivising and/or mandating increased penetration of renewable 

energy).  

 

Alongside GHG emissions, tools to assess the climate impacts of forest harvest should be developed 

to incorporate climate-relevant biophysical impacts of forest management (e.g., e.g. Betts, 2000; 



Jackson et al., 2008; Bright et al., 2011; Anderson-Teixeira et al., 2012; Rogers et al., 2013). In 

particular, biophysical impacts may serve to counteract forest carbon trade-offs associated with 

forest harvesting in northern latitudes. Adapting existing assessment approaches to represent forest 

management and translating stand-level results to regional and global perspectives in a format 

suitable for integration with existing emissions accounting frameworks would provide more 

complete understanding of the climate impacts of forest management and, by extension, forest 

bioenergy systems.   

 

Results for all AFOLU forest carbon accounting approaches are dependent on the definition of the 

reference baseline. In particular, the definition of ‘business-as-usual’ management could significantly 

impact the reference harvest level projected within the FMRL baseline. In the present study, the 

reference baseline is defined based on historical harvest between 1998 and 2007. During this time, 

annual harvest varied significantly, from 2.6 million m3/yr (2007) to 3.6 million m3/yr (2005). Defining 

the baseline over a different time period could affect reference annual harvest rates. Activities 

included within the reference baseline may also vary. At present, baseline definition is rather liberal, 

with countries required only to justify how their proposed baseline represented business-as-usual 

practices and exclude the effects of domestic policies initiated after 2009. This has resulted in some 

countries projecting increased harvest levels within their FMRL baselines, a practice which is 

controversial (e.g., Greenglass, 2010). Whereas some countries are experiencing increased demand 

for forest resources that may continue, inclusion of such activities runs contrary to emissions 

accounting undertaken outside of the AFOLU sector (e.g., electricity sector cannot alter a ‘reference 

emissions level’ because of increasing demand for electricity).  

 

As illustrated in this case study, the emissions burden placed on countries producing wood pellets is 

quite small when considering only energy and material inputs to domestic activities within the full 

life cycle. However, harvesting forest stands reduces stored carbon and can forego forest carbon 

sequestration; accounting for this implication in assessing wood pellet production from harvesting 

forest stands reveals significant emissions burdens. Depending on the accounting method employed 

for forest carbon this result highlights a potential risk to wood pellet producing countries in meeting 

emissions reduction targets when pellets are sourced by harvesting forest stands. In addition, the 

ability to eventually achieve carbon parity when wood pellets are sourced from standing trees 

depends on regenerating forests that will be productive for decades after harvesting; potential 

negative impacts of climate change on forests (Allen et al. 2010; Peng et al. 2011) means that such 

an assumption is not certain. In this event, the assumed benefits of bioenergy from harvested forest 



stands displacing fossil fuels would probably not be realized. For these reasons, policy makers aiming 

to develop domestic and export pellet markets should encourage this be done in ways  minimizing 

reductions in forest carbon stocks, while ensuring associated economic benefits can compensate for 

forgoing additional carbon sequestration in forests.   
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Figure 1. Comparison of life cycle activities included in national GHG emissions inventories of the 
Domestic Market and Export Market. A: manufacture of wood pellets for domestic use in electricity 
generation; B: manufacture of wood pellets for export markets and use in electricity generation. Ref. 
Prod.: Reference product  



  
 

 

 
 
 
Figure 2. Projected forest carbon stocks and reference baselines under alternate forest 
carbon accounting approaches. A: Forest Management Reference Level (FMRL), B:Gross-
Net, C: Incremental Carbon Impact. 
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Figure 3. Life cycle GHG emissions of domestic wood pellet use for electricity generation 
and comparison with reference fossil fuel generation pathways. Exclusive of AFOLU 
forest carbon-related emissions. 
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Figure 4. Net accountable GHG emissions within Canada’s GHG inventory, inclusive of domestic life 
cycle GHG emissions and AFOLU forest carbon-related GHG emissions. A: domestic use, wood pellets 
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displacing coal. B: domestic use, wood pellets displacing natural gas combined cycle. C: domestic 
production and export.  
 


