Derivatives of meromorphic functions of finite order

J.K. Langley

June 20, 2013

Abstract

A result is proved concerning meromorphic functions f of finite order in the plane such that all but finitely many zeros of $f^{\prime \prime}$ are zeros of f^{\prime}. A.M.S. MSC 2000: 30D35.

1 Introduction

The starting point of this paper is the following theorem from [8].

Theorem 1.1 ([8]) Assume that the function f is meromorphic of finite lower order in the plane and that $f^{(k)}$ has finitely many zeros, for some $k \geq 2$. Assume further that there exists a positive real number M such that if ζ is a pole of f of multiplicity m_{ζ} then

$$
\begin{equation*}
m_{\zeta} \leq M+|\zeta|^{M} \tag{1}
\end{equation*}
$$

Then f has finitely many poles.

Condition (1) is evidently satisfied if f has finite order. Theorem 1.1 fails for $k=1$, as shown by simple examples, and for $k \geq 2$ and infinite lower order, in which case an example is constructed in [7] with infinitely many poles, all simple, such that $f^{(k)}$ has no zeros at all. The result was inspired by the conjecture made by A.A. Gol'dberg, to the effect that for $k \geq 2$ and a meromorphic function f in the plane, regardless of growth, the frequency of distinct poles of f is controlled by the frequency of zeros of $f^{(k)}$, up to an error term which is small compared to the Nevanlinna characteristic. Yamanoi has now proved this conjecture in a landmark paper [12]; however, because of the error terms involved, his result does not imply Theorem 1.1 directly.

This paper is concerned with a generalisation of Theorem 1.1 in a different direction. The assumption there that $f^{(k)}$ has finitely many zeros is a strong one, so that it is natural to ask whether it may be replaced by something less restrictive. A reasonable candidate is the condition that all but finitely many zeros of $f^{(k)}$ have the same image under $f^{(k-1)}$, which may then be assumed to be 0 , but the following example shows that this does not by itself imply that f has finitely many poles. Set

$$
\begin{equation*}
f(z)=z-\tan z, \quad f^{\prime}(z)=1-\sec ^{2} z=-\tan ^{2} z, \quad f^{\prime \prime}(z)=-2 \tan z \sec ^{2} z \tag{2}
\end{equation*}
$$

Here all zeros of $f^{\prime \prime}$ are zeros of f^{\prime} and fixpoints of f, all zeros and poles of f^{\prime} have the same multiplicity, and 1 is an asymptotic value of f^{\prime}. More generally it may be observed that, for any even positive integer n, the antiderivative of $\tan ^{n} z$ is meromorphic in \mathbb{C}. The example (2) shows that the following theorem, which evidently implies Theorem 1.1, is essentially sharp.

Theorem 1.2 Let $k \geq 2$ be an integer and let f be a meromorphic function of finite lower order in the plane with the following properties:
(i) the zeros of $f^{(k-1)}$ have bounded multiplicities;
(ii) all but finitely many zeros of $f^{(k)}$ are zeros of $f^{(k-1)}$;
(iii) there exists $M \in(0,+\infty)$ such that if ζ is a pole of f of multiplicity m_{ζ} then (11) holds;
(iv) for each $\varepsilon>0$, all but finitely many zeros z of $f^{(k)}$ satisfy either $\left|f^{(k-2)}(z)\right| \leq \varepsilon|z|$ or $\varepsilon\left|f^{(k-2)}(z)\right| \geq|z|$.
Then $f^{(k)}$ has a representation $f^{(k)}=R e^{P}$ with R a rational function and P a polynomial. In particular, f has finite order and finitely many poles, and $f^{(k)}$ has finitely many zeros.

It suffices to prove Theorem 1.2 for $k=2$ and, as already noted, condition (iii) holds when f has finite order. If f is a meromorphic function of finite lower order in the plane satisfying condition (ii) of Theorem 1.2, with $k=2$, then f^{\prime} has finitely many critical values and so finitely many asymptotic values, by a result of Bergweiler and Eremenko [2] and its extension by Hinchliffe [6] to functions of finite lower order (see Section (3). Therefore Theorem 1.2 follows from the next result, which fails for infinite lower order, because of the same example from [7] mentioned after Theorem 1.1.

Theorem 1.3 Let f be a meromorphic function of finite lower order in the plane satisfying conditions (i), (ii) and (iii) of Theorem [1.2, with $k=2$. Assume that there exist positive real numbers κ and R_{0} such that if z is a zero of $f^{\prime \prime}$ with $|z| \geq R_{0}$ then $|f(z)-\alpha z| \geq \kappa|z|$ for all finite non-zero asymptotic values α of f^{\prime}. Then $f^{\prime \prime}=R e^{P}$ with R a rational function and P a polynomial.

2 Lemmas needed for Theorem 1.3

Throughout this paper $B\left(z_{0}, r\right)$ will denote the disc $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$ and $S\left(z_{0}, r\right)$ will be the circle $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$. The following results are both well known.

Lemma 2.1 ([11], p.116) Let D be a simply connected domain not containing the origin, and let z_{0} lie in D. Let r satisfy $0<4 r<\left|z_{0}\right|$ or $4\left|z_{0}\right|<r<\infty$. Let $\theta(t)$ denote the angular measure of $D \cap S(0, t)$, and let D_{r} be the component of $D \backslash S(0, r)$ which contains z_{0}. Then the harmonic measure of $S(0, r)$ with respect to the domain D_{r}, evaluated at z_{0}, satisfies

$$
\begin{equation*}
\omega\left(z_{0}, S(0, r), D_{r}\right) \leq C \exp \left(-\pi \int_{I} \frac{d t}{t \theta(t)}\right) \tag{3}
\end{equation*}
$$

with C an absolute constant, $I=\left[2\left|z_{0}\right|, r / 2\right]$ if $4\left|z_{0}\right|<r$, and $I=\left[2 r,\left|z_{0}\right| / 2\right]$ if $4 r<\left|z_{0}\right|$.
Lemma 2.2 ([5], p.366) Let Q be a positive integer and let w_{1}, \ldots, w_{Q} be complex numbers. For each $\Lambda>0$ the estimate

$$
\begin{equation*}
\prod_{j=1}^{Q}\left|z-w_{j}\right| \geq \Lambda^{Q} \tag{4}
\end{equation*}
$$

holds for all z outside a union of discs having sum of radii at most 6Λ.

3 Critical points and asymptotic values

Suppose that the function h is transcendental and meromorphic in the plane, and that $h(z)$ tends to $a \in \mathbb{C}$ as z tends to infinity along a path γ. Then a is an asymptotic value of h, and the inverse function h^{-1} has a transcendental singularity over a [2, 10]. For each $t>0$, let $C(t)$ be that component of $C^{\prime}(t)=\{z \in \mathbb{C}:|h(z)-a|<t\}$ which contains an unbounded subpath
of γ. The singularity of h^{-1} over a corresponding to γ is called direct [2] if $C(t)$, for some $t>0$, contains no zeros of $h(z)-a$. Singularities over ∞ are classified analogously.

Recall next some standard facts from [10, p.287]. Suppose that G is a transcendental meromorphic function with no asymptotic or critical values in $1<|w|<\infty$. Then every component C_{0} of the set $\{z \in \mathbb{C}:|G(z)|>1\}$ is simply connected, and there are two possibilities. Either (i) C_{0} contains one pole z_{0} of G of multiplicity k, in which case $G^{-1 / k}$ maps C_{0} univalently onto $B(0,1)$, or (ii) C_{0} contains no pole of G, but instead a path tending to infinity on which G tends to infinity. In case (ii) the function $w=\log G(z)$ maps C_{0} univalently onto the right half plane.

Lemma 3.1 ([8]) There exists a positive absolute constant C with the following property. Suppose that G is a transcendental meromorphic function in the plane and that G^{\prime} has no asymptotic or critical values w with $0<|w|<d_{1}<\infty$. Let D be a component of the set $\left\{z \in \mathbb{C}:\left|G^{\prime}(z)\right|<d_{1}\right\}$ on which G^{\prime} has no zeros, but such that D contains a path tending to infinity on which $G^{\prime}(z)$ tends to 0 . If z_{1} is in D and $\log \left|d_{1} / G^{\prime}\left(z_{1}\right)\right| \geq 1$ then

$$
\left|G\left(z_{1}\right)\right| \leq S+\frac{C\left|z_{1} G^{\prime}\left(z_{1}\right)\right|}{\log \left|d_{1} / G^{\prime}\left(z_{1}\right)\right|}
$$

in which the positive constant S depends on G and D but not on z_{1}.

Suppose next that the function F is meromorphic of finite lower order in the plane, and that all but finitely many zeros of F^{\prime} are zeros of F. Then F has finitely many critical values. By Hinchliffe's extension [6] to the finite lower order case of a theorem of Bergweiler and Eremenko [2], the function F has finitely many asymptotic values. Furthermore, all asymptotic values of F give rise to direct transcendental singularities of the inverse function F^{-1} and, by the Denjoy-Carleman-Ahlfors theorem [2, 5, 10], there are finitely many such singularities. The following facts are related to the argument from [7, Section 4]. Let J be a polygonal Jordan curve in $\mathbb{C} \backslash\{0\}$ such that every finite non-zero critical or asymptotic value of F lies on J, but is not a vertex of J, and such that the complement of J in $\mathbb{C} \cup\{\infty\}$ consists of two simply connected domains B_{1} and B_{2}, with $0 \in B_{1}$ and $\infty \in B_{2}$. Fix conformal mappings

$$
\begin{equation*}
h_{m}: B_{m} \rightarrow B(0,1), \quad m=1,2, \quad h_{1}(0)=0, \quad h_{2}(\infty)=0 . \tag{5}
\end{equation*}
$$

The mapping h_{1} may then be extended to be quasiconformal on the plane, fixing infinity, and there exist a meromorphic function G and a quasiconformal mapping ψ such that $h_{1} \circ F=G \circ \psi$ on \mathbb{C}. It follows that for $j=1,2$ all components of $F^{-1}\left(B_{j}\right)$ are simply connected and all but finitely many are unbounded, since all but finitely many zeros z of G^{\prime} have $G(z)=0$.

4 Proof of Theorem 1.3: first part

Let the function f be as in the hypotheses. If $f^{\prime \prime} / f^{\prime}$ is a rational function then f^{\prime} is a rational function multiplied by the exponential of a polynomial, and so is $f^{\prime \prime}$. Assume henceforth that $f^{\prime \prime} / f^{\prime}$ is transcendental: then obviously so is f. Apply the reasoning and notation of Section 3, with $F=f^{\prime}$. The following is an immediate consequence of Lemma 3.1.

Lemma 4.1 Arbitrarily small positive real numbers ε_{1} and ε_{2} may be chosen with the following properties. There exist finitely many unbounded simply connected domains U_{n}, each of which is a component of the set $\left\{z \in \mathbb{C}:\left|f^{\prime}(z)-b_{n}\right|<\varepsilon_{1}\right\}$, such that U_{n} contains a path tending to infinity on which $f^{\prime}(z)$ tends to the finite asymptotic value b_{n}. Here $f^{\prime}(z) \neq b_{n}$ on U_{n} and $\left|f(z)-b_{n} z\right|<\varepsilon_{2}|z|$ for all large z in U_{n}. If Γ is a path tending to infinity on which f^{\prime} tends to a finite asymptotic value α, then there exists n such that $\alpha=b_{n}$ and $\Gamma \backslash U_{n}$ is bounded. The b_{n} need not be distinct, and some of them may be 0 .

Lemma 4.2 There exists a positive real number $s_{1}<\varepsilon_{1}$ with the following property. Let b_{p} be a finite non-zero asymptotic value of f^{\prime}. Then the conformal map $h_{1}: B_{1} \rightarrow B(0,1)$ extends to be analytic and univalent on $B_{1} \cup B\left(b_{p}, s_{1}\right)$.

Proof. This follows from the Schwarz reflection principle and the fact that each non-zero b_{p} lies on the polygonal Jordan curve $J=\partial B_{1}$ but is not a vertex of J.

Definitions 4.1 Fix positive real numbers ρ, σ and τ with $\tau<s_{1}<\varepsilon_{1}$ and σ / τ and ρ / σ small. Fix $W_{0} \in \mathbb{C}$ such that $f^{\prime}\left(W_{0}\right)$ is large.

Lemma 4.3 With the notation of Definitions 4.1 there exist positive real numbers M_{1}, M_{2}, M_{3} having the following properties. Let z_{0} be large with $\left|f^{\prime}\left(z_{0}\right)\right|<\tau$ and assume that z_{0} lies in a component C of $\left(f^{\prime}\right)^{-1}\left(B_{1}\right)$ satisfying one of the following two conditions:
(A) there is at least one zero of $f^{\prime \prime}$ in C;
(B) the function f^{\prime} is univalent on C, and $C \cap U_{p}$ and $C \cap U_{q}$ are both non-empty, where U_{p} and U_{q} are as in Lemma 4.1 with $0 \neq b_{p} \neq b_{q} \neq 0$.
Then $\left|z_{0} f^{\prime \prime}\left(z_{0}\right)\right| \leq M_{1}$ and there exists a disc $B\left(z_{0}^{*}, M_{2}\left|z_{0}^{*}\right|\right) \subseteq B\left(z_{0}, \frac{1}{2}\left|z_{0}\right|\right) \cap C$ on which

$$
\begin{equation*}
\left|\frac{f^{\prime \prime \prime}(\zeta)}{f^{\prime \prime}(\zeta)}\right| \leq \frac{M_{3}}{|\zeta|} \tag{6}
\end{equation*}
$$

Proof. Observe that conditions (A) and (B) are mutually exclusive. Denote positive constants by c_{j} and small positive constants by δ_{j}; these will be independent of z_{0} and C. In case (A) there is exactly one point in C at which $f^{\prime \prime}$ vanishes, and it must be a zero of f^{\prime}. In both cases $f^{\prime}(C)=B_{1}$ (see Section 3), and C contains precisely one zero z_{1} of f^{\prime}, of multiplicity $m \leq c_{1}$, by hypothesis (i) of the theorem, with $m=1$ in Case (B). There exist only finitely many components C_{1} of $\left(f^{\prime}\right)^{-1}\left(B_{1}\right)$ which are bounded or have a zero of $f^{\prime \prime}$ on their boundary, and if one of these contains a zero of f^{\prime} then the set $\left\{z \in C_{1}:\left|f^{\prime}(z)\right| \leq \tau\right\}$ is compact. Therefore since z_{0} is large the component C is unbounded and simply connected and its boundary ∂C contains no zeros of $f^{\prime \prime}$. Now set $v_{0}=\left(h_{1} \circ f^{\prime}\right)^{1 / m}$, with h_{1} as in (5). Then v_{0} maps C univalently onto $B(0,1)$, and $u_{0}=v_{0}\left(z_{0}\right)$ satisfies $\left|u_{0}\right| \leq \delta_{1}$, since $m \leq c_{1}$ and τ is small.

Let Γ be a component of ∂C. Then Γ is a simple curve tending to infinity in both directions and, as z tends to infinity in either direction along Γ, the image $f^{\prime}(z)$ must tend to a finite non-zero asymptotic value of f^{\prime}; this is because v_{0} is univalent on C. Hence there exists z_{1} lying close to Γ, such that $z_{1} \in C \cap U_{n}$, for some U_{n} as in Lemma 4.1, with $b_{n} \neq 0$ and $\left|f^{\prime}\left(z_{1}\right)-b_{n}\right|<\varepsilon_{1}$. By construction, b_{n} lies on the polygonal Jordan curve J but is not a vertex of J. Thus analytic continuation of $\left(f^{\prime}\right)^{-1}$ along a path in the semi-disc $B\left(b_{n}, \varepsilon_{1}\right) \cap B_{1}$ then gives a point $z_{2} \in C \cap U_{n}$ with $\left|f^{\prime}\left(z_{2}\right)-b_{n}\right|<\varepsilon_{1}$, as well as $\left|h_{1}\left(f^{\prime}\left(z_{2}\right)\right)\right| \leq 1-\delta_{2}$, which implies in turn that $\left|v_{0}\left(z_{2}\right)\right| \leq 1-\delta_{3}$.

Let $G_{0}: B(0,1) \rightarrow C$ be the inverse function of v_{0}, and suppose that $G_{0}^{\prime}\left(u_{0}\right)=o\left(\left|z_{0}\right|\right)$. Then Koebe's distortion theorem implies that $G_{0}^{\prime}(u)=o\left(\left|z_{0}\right|\right)$ for $|u| \leq 1-\delta_{3}$. In Case (A) this gives a path γ in C, of length $o\left(\left|z_{0}\right|\right)$, joining $z_{3}=G_{0}(0)$ to z_{2} via z_{0}, and with $\left|f^{\prime}(z)\right| \leq c_{2}$
on γ. Since z_{0} is large so are z_{2} and z_{3}. Thus Lemma 4.1 and integration of f^{\prime} yield

$$
\begin{equation*}
f\left(z_{3}\right)=f\left(z_{2}\right)+o\left(\left|z_{0}\right|\right), \quad\left|f\left(z_{3}\right)-b_{n} z_{3}\right| \leq \varepsilon_{2}\left|z_{2}\right|+o\left(\left|z_{0}\right|\right) \leq\left(\varepsilon_{2}+o(1)\right)\left|z_{3}\right| . \tag{7}
\end{equation*}
$$

But by the assumption of Case (A), $f^{\prime \prime}$ has a zero in C, which must be at z_{3}, so that, by the hypotheses of the theorem, $\left|f\left(z_{3}\right)-b_{n} z_{3}\right| \geq \kappa\left|z_{3}\right|$. This contradicts (7), since ε_{2} is small. Next, in Case (B) the above analysis may be applied twice, to give a path γ in C of length $o\left(\left|z_{0}\right|\right)$, on which $\left|f^{\prime}(z)\right| \leq c_{2}$, such that γ joins points $w_{p} \in C \cap U_{p}$ and $w_{q} \in C \cap U_{q}$ via z_{0}, where b_{p} and b_{q} are distinct and non-zero, and $\left|f^{\prime}\left(w_{j}\right)-b_{j}\right|<\varepsilon_{1}$ for $j=p, q$. Therefore the w_{j} satisfy $w_{j} \sim z_{0}$ and $\left|f\left(w_{j}\right)-b_{j} w_{j}\right| \leq \varepsilon_{2}\left|w_{j}\right| \leq 2 \varepsilon_{2}\left|z_{0}\right|$ for $j=p, q$. Since ε_{2} is small and integration of f^{\prime} along γ leads to $f\left(w_{p}\right)-f\left(w_{q}\right)=o\left(\left|z_{0}\right|\right)$, this case also delivers a contradiction.

It follows in both cases that $\left|G_{0}^{\prime}\left(u_{0}\right)\right| \geq c_{3}\left|z_{0}\right|$, which implies at once that $\left|z_{0} v_{0}^{\prime}\left(z_{0}\right)\right| \leq c_{4}$. Writing $f^{\prime}(z)=h_{1}^{-1}\left(v_{0}(z)^{m}\right)$ and using the fact that $\left|f^{\prime}\left(z_{0}\right)\right|<\tau$ and $m \leq c_{1}$ gives $\left|z_{0} f^{\prime \prime}\left(z_{0}\right)\right| \leq$ c_{5}. To prove the last assertion requires a disc on which f^{\prime} is univalent. To this end, observe that $\left|G_{0}^{\prime}\left(u_{0}\right)\right| \leq c_{6}\left|z_{0}\right|$, since z_{0} is large but C does not contain the point W_{0} chosen in Definitions 4.1. Now choose u_{0}^{*} with $\left|u_{0}^{*}-u_{0}\right| \leq \delta_{4}$ and $\left|u_{0}^{*}\right| \geq \delta_{4}$, and choose δ_{5} so small that the function u^{m} is univalent on $B\left(u_{0}^{*}, \delta_{5}\right)$. Then Koebe's distortion theorem implies that the image X_{0} of $B\left(u_{0}^{*}, \delta_{5}\right)$ under G_{0} lies in $B\left(z_{0}, \frac{1}{2}\left|z_{0}\right|\right) \cap C$ and contains a disc $B\left(z_{0}^{*}, 2 M_{2}\left|z_{0}^{*}\right|\right)$, where $z_{0}^{*}=G_{0}\left(u_{0}^{*}\right)$ and $M_{2}=\delta_{6}$: this requires only that δ_{4} and δ_{5} / δ_{4} be small enough, independent of z_{0}. The function $v_{0}(z)^{m}$ is univalent on X_{0} and therefore so is f^{\prime}. Now take ζ in $B\left(z_{0}^{*}, M_{2}\left|z_{0}^{*}\right|\right)$ and set

$$
g(z)=\frac{f^{\prime}\left(\zeta+M_{2}\left|z_{0}^{*}\right| z\right)-f^{\prime}(\zeta)}{M_{2}\left|z_{0}^{*}\right| f^{\prime \prime}(\zeta)}=z+\sum_{\mu=2}^{\infty} A_{\mu} z^{\mu}
$$

for $|z|<1$, so that the estimate (6) follows from Bieberbach's bound $\left|A_{2}\right| \leq 2$.
It will be seen that hypothesis (i) of Theorem 1.3 plays a key role in the above proof of Lemma 4.3. principally by preventing z_{0} from lying too close to the boundary of C.

Lemma 4.4 With the notation of Lemma 4.1 and Definitions 4.1, let z_{1} be large and satisfy

$$
\begin{equation*}
z_{1} \in U_{p}, \quad b_{p} \neq 0, \quad \sigma<\left|f^{\prime}\left(z_{1}\right)-b_{p}\right|<\tau<s_{1}, \quad f^{\prime}\left(z_{1}\right) \in J=\partial B_{1}, \tag{8}
\end{equation*}
$$

and let C be the component of $\left(f^{\prime}\right)^{-1}\left(B_{1}\right)$ with $z_{1} \in \partial C$. Assume that one of the following two mutually exclusive conditions holds:
(a) the function f^{\prime} is not univalent on C;
(b) the function f^{\prime} is univalent on C, and $C \cap U_{q}$ is non-empty, for some q with $0 \neq b_{q} \neq b_{p}$.

Then there exists an open set H_{1}, with

$$
\begin{equation*}
H_{1} \subseteq B\left(z_{1}, \frac{1}{2}\left|z_{1}\right|\right) \cap C \quad \text { and } \quad \partial H_{1} \cap \partial C=\left\{z_{1}\right\} \tag{9}
\end{equation*}
$$

such that f^{\prime} maps H_{1} onto an open disc $K_{1} \subseteq B_{1}$, of diameter less than ρ, which is tangent to $J=\partial B_{1}$ at $f^{\prime}\left(z_{1}\right)$. Furthermore, H_{1} contains an open disc L_{1} of radius $M_{4}\left|z_{1}\right|$ on which (6) holds; here both M_{3} and M_{4} are independent of z_{1} and C.

Proof. The component C is unique because z_{1} is large and $f^{\prime \prime}$ has finitely many zeros which are not zeros of f^{\prime}. As in Lemma 4.3 denote small positive constants by δ_{j}, and positive constants by c_{j}; these will again be independent of z_{1} and C. Let γ_{0} be the straight line segment

$$
u=t u_{1}, \quad \delta_{1} \leq t \leq 1, \quad u_{1}=h_{1}\left(f^{\prime}\left(z_{1}\right)\right) \in S(0,1)
$$

where δ_{1} is chosen sufficiently small that $\left|h_{1}(w)\right| \leq \delta_{1}$ implies that $|w| \leq \delta_{2}<\tau<\varepsilon_{1}$. Using (8) and the conformal extension of h_{1} to $B_{1} \cup B\left(b_{p}, s_{1}\right)$ given by Lemma 4.2, define domains $F_{1} \subseteq B_{1} \cup\left\{\zeta \in \mathbb{C}: \rho<\left|\zeta-b_{p}\right|<s_{1}\right\}$ and E_{1} by

$$
E_{1}=\left\{u \in \mathbb{C}: \operatorname{dist}\left\{u, \gamma_{0}\right\}<\delta_{3}\right\}=h_{1}\left(F_{1}\right),
$$

in which δ_{3} is small compared to δ_{1}, which ensures that $0 \notin E_{1}$. Then F_{1} contains no singular values of the inverse function $\left(f^{\prime}\right)^{-1}$, and z_{1} lies in a component D of $\left(f^{\prime}\right)^{-1}\left(F_{1}\right)$ such that $h_{1} \circ f^{\prime}$ maps D conformally onto E_{1}. Let $G_{1}: E_{1} \rightarrow D$ be the inverse function of $h_{1} \circ f^{\prime}$, and choose $z_{2} \in D$ with $u_{2}=h_{1}\left(f^{\prime}\left(z_{2}\right)\right)=\delta_{1} u_{1}$ and hence $\left|f^{\prime}\left(z_{2}\right)\right| \leq \delta_{2}<\tau$. Observe that z_{2} lies in C. Repeated application of the Koebe distortion theorem yields $c_{1}\left|G_{1}^{\prime}\left(u_{1}\right)\right| \leq\left|G_{1}^{\prime}(u)\right| \leq c_{2}\left|G_{1}^{\prime}\left(u_{1}\right)\right|$ on the line segment γ_{0}, and the image $\sigma_{1}=G_{1}\left(\gamma_{0}\right)$ is a path of length at most $c_{3}\left|G_{1}^{\prime}\left(u_{1}\right)\right|$ from z_{1} to z_{2} in D.

Suppose first that $G_{1}^{\prime}\left(u_{1}\right)=o\left(\left|z_{1}\right|\right)$. Then $z_{2} \sim z_{1}$ and $G_{1}^{\prime}\left(u_{2}\right)=o\left(\left|z_{1}\right|\right)$, from which it follows that $z_{2} f^{\prime \prime}\left(z_{2}\right)$ is large. Hence C satisfies neither condition (A) nor condition (B) of Lemma 4.3, and so cannot satisfy (b), because (b) implies (B) since $C \cap U_{p} \neq \emptyset$ and $b_{p} \neq 0$. Hence f^{\prime} is not univalent on C but C contains no zero of $f^{\prime \prime}$. Thus C must contain a path Γ tending to infinity on which $f^{\prime}(z)$ tends to 0 , and C meets one of the components U_{n} with
$b_{n}=0$. Moreover, $\log \left(h_{1} \circ f^{\prime}\right)$ maps C univalently onto the left half plane (see Section 3). Therefore, since $\left|h_{1}\left(f^{\prime}\left(z_{2}\right)\right)\right| \leq \delta_{1}$, there exists a path Γ^{\prime} in C joining z_{2} to some $z_{3} \in \Gamma$ on which $\left|h_{1}\left(f^{\prime}(z)\right)\right| \leq \delta_{1}$ and $\left|f^{\prime}(z)\right|<\varepsilon_{1}$, and hence $z_{2} \in U_{n}$. Since z_{1} is large, and $z_{2} \sim z_{1}$, Lemma 4.1 gives $\left|f\left(z_{2}\right)\right| \leq \varepsilon_{2}\left|z_{2}\right|$ and $\left|f\left(z_{1}\right)-b_{p} z_{1}\right| \leq \varepsilon_{2}\left|z_{1}\right|$, in which $b_{p} \neq 0$. On the other hand $\left|f^{\prime}(z)\right| \leq c_{4}$ on σ_{1}, and so integration yields $f\left(z_{1}\right)=f\left(z_{2}\right)+o\left(\left|z_{1}\right|\right)$ and a contradiction.

It must therefore be the case that $\left|G_{1}^{\prime}\left(u_{1}\right)\right| \geq c_{5}\left|z_{1}\right|$. However, the point W_{0} chosen in Definitions 4.1 is not in D and so $\left|G_{1}^{\prime}\left(u_{1}\right)\right| \leq c_{6}\left|z_{1}\right|$. Now let $G_{2}=G_{1} \circ h_{1}: F_{1} \rightarrow D$ be the inverse function of f^{\prime}, and set $v_{1}=f^{\prime}\left(z_{1}\right)=h_{1}^{-1}\left(u_{1}\right) \in J$. Then (8) yields $c_{7}\left|z_{1}\right| \leq\left|G_{2}^{\prime}\left(v_{1}\right)\right| \leq$ $c_{8}\left|z_{1}\right|$, as well as $B\left(v_{1}, 2 \delta_{4}\right) \subseteq F_{1}$ for some $\delta_{4}<\rho$, and Koebe's distortion theorem gives $c_{9}\left|z_{1}\right| \leq\left|G_{2}^{\prime}(v)\right| \leq c_{10}\left|z_{1}\right|$ on $B\left(v_{1}, \delta_{4}\right)$. Hence $G_{2}\left(B\left(v_{1}, \delta_{5}\right)\right) \subseteq B\left(z_{1}, \frac{1}{2}\left|z_{1}\right|\right)$, provided $\delta_{5} \leq \delta_{4}$ is chosen small enough. Let $K_{1} \subseteq B\left(v_{1}, \delta_{5}\right) \cap B_{1}$ be an open disc of radius $\delta_{6} \leq \frac{1}{4} \delta_{5}$, which is tangent to J at v_{1}. Then $H_{1}=G_{2}\left(K_{1}\right)$ satisfies (9), and H_{1} contains a disc $B\left(z_{1}^{*}, 2 M_{4}\left|z_{1}\right|\right)$, with $M_{4}=\delta_{7}$. It may now be assumed that M_{3} is large enough that (6) holds on $L_{1}=B\left(z_{1}^{*}, M_{4}\left|z_{1}\right|\right)$, since Bieberbach's theorem may be applied as in the proof of Lemma 4.3.

5 The frequency of poles of f and zeros of $f^{\prime \prime}$

Lemma 5.1 Let w_{1}, \ldots, w_{Q} be pairwise distinct poles of f with $\left|w_{j}\right|$ large. For $1 \leq j \leq Q$ let D_{j} be the component of $\left(f^{\prime}\right)^{-1}\left(B_{2}\right)$ in which w_{j} lies. Then for each j there exists $p_{j} \in \mathbb{Z}$ such that ∂D_{j} contains a Jordan arc λ_{j} which is mapped univalently by f^{\prime} onto a line segment μ_{j} of length at least σ, and these may be chosen so that

$$
\begin{equation*}
\lambda_{j} \subseteq U_{p_{j}}, \quad \mu_{j} \subseteq\left\{\zeta \in J=\partial B_{2}: \sigma<\left|\zeta-b_{p_{j}}\right|<\tau\right\}, \quad b_{p_{j}} \neq 0 \tag{10}
\end{equation*}
$$

where $U_{p_{j}}$ and $b_{p_{j}}$ are as in Lemma 4.1, while σ and τ are as in Definitions 4.1.
Moreover, if points z_{j} are chosen such that $z_{j} \in \lambda_{j}$ for $1 \leq j \leq Q$, then each $\left|z_{j}\right|$ is large and for each j there exists an open disc $L_{j} \subseteq B\left(z_{j}, \frac{1}{2}\left|z_{j}\right|\right)$ of radius $M_{4}\left|z_{j}\right|$, on which (6) holds, where M_{4} is as in Lemma 4.4. The L_{j} are pairwise disjoint.

Proof. By the discussion in Section 3, each D_{j} is unbounded and simply connected and the boundary ∂D_{j} contains no zeros of $f^{\prime \prime}$. Each component of ∂D_{j} is a simple path tending to infinity in both directions, and there exists a component Γ_{j} of ∂D_{j} which separates w_{j} from the
point W_{0} chosen in Definitions 4.1. Since D_{j} contains a pole of f it follows that f^{\prime} is finite-valent on D_{j}. Thus as z tends to infinity in either direction along Γ_{j} the image $f^{\prime}(z)$ must tend to a non-zero finite asymptotic value of f^{\prime}. In particular, Γ_{j} meets some U_{p} as in Lemma 4.1 with $b_{p} \neq 0$, and following Γ_{j} while staying in U_{p} gives λ_{j} and μ_{j} as in (10). Furthermore, each w_{j} is large and, for any $M_{5}>0$, the disc $B\left(0, M_{5}\right)$ meets only finitely many components of $\left(f^{\prime}\right)^{-1}\left(B_{2}\right)$, each of which contains at most one pole of f. Hence if $z_{j} \in \lambda_{j}$ then z_{j} is large.

To prove the existence of the L_{j}, choose for each j a component E_{j} of $\left(f^{\prime}\right)^{-1}\left(B_{1}\right)$ with $\Gamma_{j} \subseteq \partial E_{j}$. Since Γ_{j} separates the pole w_{j} of f from W_{0} it follows that Γ_{j} is not the whole boundary ∂E_{j}. In particular, if f^{\prime} is univalent on E_{j} then Γ_{j} must meet components U_{p} and U_{q} with b_{p} and b_{q} distinct and non-zero. Thus each of these components E_{j} of $\left(f^{\prime}\right)^{-1}\left(B_{1}\right)$ satisfies one of the conditions (a), (b) of Lemma [4.4, which may now be applied with z_{1} replaced by each z_{j}. This gives open sets $H_{j} \subseteq B\left(z_{j}, \frac{1}{2}\left|z_{j}\right|\right) \cap E_{j}$, each containing an open disc L_{j} of radius $M_{4}\left|z_{j}\right|$ on which (6) holds. Moreover, f^{\prime} maps H_{j} onto a disc $K_{j} \subseteq B_{1}$ which is tangent to J at $f^{\prime}\left(z_{j}\right)$ and has diameter less than ρ.

To show that the L_{j} are disjoint, suppose that $1 \leq j<j^{\prime} \leq Q$ and that $H_{j} \cap H_{j^{\prime}} \neq \emptyset$, from which it follows of course that $K_{j} \cap K_{j^{\prime}} \neq \emptyset$. Since ρ is small compared to σ and $z_{j} \in \lambda_{j}$, the open disc $U=B\left(f^{\prime}\left(z_{j}\right), 3 \rho\right)$ contains no singular value of $\left(f^{\prime}\right)^{-1}$, by (10). But K_{j} and $K_{j^{\prime}}$ have diameter less than ρ, and so their closures lie in U. Thus H_{j} and $H_{j^{\prime}}$ both lie in the same component of $\left(f^{\prime}\right)^{-1}(U)$, as do z_{j} and $z_{j^{\prime}}$, which forces $\Gamma_{j}=\Gamma_{j^{\prime}}$ and gives a contradiction.

Lemma 5.2 Let $L(r) \rightarrow \infty$ with $L(r) \leq \frac{1}{8} \log r$ as $r \rightarrow \infty$, and for $k>0$ and large r define the annulus $A(k)$ by $A(k)=\left\{z \in \mathbb{C}: r e^{-k L(r)} \leq|z| \leq r e^{k L(r)}\right\}$. Then the number N_{1} of distinct poles of f and zeros of $f^{\prime \prime}$ in $A(1)$ satisfies

$$
\begin{equation*}
N_{1}=O(\phi(r)) \quad \text { as } r \rightarrow \infty, \text { where } \quad \phi(r)=L(r)+\frac{\log r}{L(r)} \tag{11}
\end{equation*}
$$

Proof. Assume that r is large and that $A(1)$ contains $Q=2 N$ distinct poles $w_{1}, \ldots, w_{2 N}$ of f, with $\phi(r)=o(N)$. For $j=1, \ldots, Q$ let D_{j} be the component of $\left(f^{\prime}\right)^{-1}\left(B_{2}\right)$ in which w_{j} lies, let q_{j} be the multiplicity of the pole of f^{\prime} at w_{j}. Each D_{j} is unbounded and simply connected and may be assumed not to contain the origin. Let $v_{j}=\left(h_{2} \circ f^{\prime}\right)^{1 / q_{j}}$, so that v_{j} maps D_{j} conformally onto $B(0,1)$, with $v_{j}\left(w_{j}\right)=0$.

For $0<t<\infty$ let $\theta_{j}(t)$ be the angular measure of $D_{j} \cap S(0, t)$. Let c denote positive constants, not necessarily the same at each occurrence, but not depending on $r, L(r)$ or N. For $m \in \mathbb{N}$ the Cauchy-Schwarz inequality gives $m^{2} \leq 2 \pi \sum_{j=1}^{m} 1 / \theta_{j}(t)$ so that, as in [7], at least N of the D_{j} have

$$
\begin{equation*}
\int_{2 r e^{L(r)}}^{(1 / 2) r e^{2 L(r)}} \frac{d t}{t \theta_{j}(t)}>c N L(r), \quad \int_{2 r e^{-2 L(r)}}^{(1 / 2) r e^{-L(r)}} \frac{d t}{t \theta_{j}(t)}>c N L(r) \tag{12}
\end{equation*}
$$

It may be assumed after re-labelling if necessary that (12) holds for D_{1}, \ldots, D_{N}. Since w_{j} lies in $A(1)$, it follows from Lemma 2.1 that

$$
\omega\left(w_{j}, \sigma_{j}, D_{j}\right) \leq c \exp \left(-\pi \int_{2 r e^{L(r)}}^{(1 / 2) r e^{2 L(r)}} \frac{d t}{t \theta_{j}(t)}\right)+c \exp \left(-\pi \int_{2 r e^{-2 L(r)}}^{(1 / 2) r e^{-L(r)}} \frac{d t}{t \theta_{j}(t)}\right)
$$

Combining this with (11), (12) and condition (iii) of the theorem shows that $\omega\left(w_{j}, \sigma_{j}, D_{j}\right)=$ $o\left(1 / q_{j}\right)$ for $j=1, \ldots, N$, where $\sigma_{j}=\partial D_{j} \backslash A(2)$. But Lemma 5.1 gives an arc $\lambda_{j} \subseteq \partial D_{j}$, mapped by f^{\prime} onto a line segment $\mu_{j} \subseteq J$ as in (10), of length at least σ. Since $b_{p_{j}}$ in (10) is not a vertex of J, while τ is small, an application of the Schwarz reflection principle to h_{2} shows that $h_{2} \circ f^{\prime}$ maps λ_{j} to an arc of $S(0,1)$ of length at least c, and $v_{j}\left(\lambda_{j}\right)$ has angular measure at least c / q_{j}. The conformal invariance of harmonic measure under v_{j} implies that λ_{j} cannot be contained in σ_{j}, and so there exists $z_{j} \in \lambda_{j} \cap A(2)$. The corresponding N pairwise disjoint discs L_{j} given by Lemma 5.1 lie in the annulus $A(3)$, and hence

$$
c N \leq \sum_{j=1}^{N} \int_{L_{j}}|z|^{-2} d x d y \leq \int_{A(3)}|z|^{-2} d x d y \leq c L(r) \leq c \phi(r)=o(N)
$$

This is a contradiction and the asserted upper bound for the number of distinct poles in $A(1)$ is proved. The same upper bound for the number of distinct zeros ζ_{j} of $f^{\prime \prime}$ in $A(1)$ follows at once from Lemma 4.3, because such zeros give rise to pairwise disjoint discs $B\left(\zeta_{j}^{*}, M_{2}\left|\zeta_{j}^{*}\right|\right) \subseteq A(2)$.

Since all but finitely many zeros of $f^{\prime \prime}$ are zeros of f^{\prime}, which have bounded multiplicities by assumption, choosing $L(r)=\frac{1}{8} \log r$ in Lemma 5.2 gives

$$
\bar{n}\left(r^{9 / 8}, f\right)-\bar{n}\left(r^{7 / 8}, f\right)+n\left(r^{9 / 8}, 1 / f^{\prime \prime}\right)-n\left(r^{7 / 8}, 1 / f^{\prime \prime}\right)=O(\log r)
$$

and so

$$
\begin{equation*}
\bar{N}(r, f)+N\left(r, 1 / f^{\prime \prime}\right)=O(\log r)^{2} \quad \text { as } \quad r \rightarrow \infty \tag{13}
\end{equation*}
$$

Lemma 5.3 The lower order of $f^{\prime \prime} / f^{\prime}$ is at least $\frac{1}{2}$.

Proof. If this is not the case then the function $f^{\prime} / f^{\prime \prime}$ has finitely many poles and is transcendental of lower order less than $\frac{1}{2}$. The $\cos \pi \lambda$ theorem [1] now gives $r_{j} \rightarrow+\infty$ such that $f^{\prime \prime}(z) / f^{\prime}(z)=$ $O\left(r_{j}^{-2}\right)$ on $S\left(0, r_{j}\right)$. Moreover, the main result of [9] gives a path γ tending to infinity with

$$
\int_{\gamma}\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right||d z|<\infty
$$

This implies that, as z tends to infinity in the union of γ and the $S\left(0, r_{j}\right)$, the image $f^{\prime}(z)$ tends to some b_{n} as in Lemma 4.1, contradicting the fact that the U_{n} are simply connected.

Lemma 5.4 The function $f^{\prime \prime}$ has the form $f^{\prime \prime}=\Pi_{1} / \Pi_{2}$, where Π_{1} and Π_{2} are entire such that Π_{2} has finite order and $\Pi_{1} \not \equiv 0$ has order 0 . Moreover, the lower order of Π_{2} is at least $1 / 2$.

Proof. Using (1) and (13) shows that $N\left(r, f^{\prime \prime}\right)$ has finite order and $N\left(r, 1 / f^{\prime \prime}\right)$ has order 0 . Since $f^{\prime \prime}$ has finite lower order, this gives the asserted representation for $f^{\prime \prime}$. On the other hand, Lemma 5.3 implies that f^{\prime} has lower order at least $1 / 2$ and so has $f^{\prime \prime}$, and hence so has Π_{2}.

Lemma 5.5 Let $h(z)=z f^{\prime \prime \prime}(z) / f^{\prime \prime}(z)$. For all $s \geq 1$ lying outside a set E_{0} of finite logarithmic measure, there exists ζ_{s} with $\left|\zeta_{s}\right|=s$ and $\left|h\left(\zeta_{s}\right)\right|>s^{1 / 3}$.

Proof. Take Π_{1} and Π_{2} as in Lemma 5.4. Applying the Wiman-Valiron theory [4, Theorem 12] and standard estimates for logarithmic derivatives [3] makes it possible to write, for $\left|\zeta_{s}\right|=s$ with $\left|\Pi_{2}\left(\zeta_{s}\right)\right|=M\left(s, \Pi_{2}\right)$ and s outside a set of finite logarithmic measure,

$$
\frac{f^{\prime \prime \prime}}{f^{\prime \prime}}=\frac{\Pi_{1}^{\prime}}{\Pi_{1}}-\frac{\Pi_{2}^{\prime}}{\Pi_{2}}, \quad\left|\frac{\Pi_{2}^{\prime}\left(\zeta_{s}\right)}{\Pi_{2}\left(\zeta_{s}\right)}\right| \sim \frac{\nu(s)}{s}, \quad\left|\frac{\Pi_{1}^{\prime}\left(\zeta_{s}\right)}{\Pi_{1}\left(\zeta_{s}\right)}\right| \leq s^{-3 / 4}
$$

Here $\nu(s)$ is the central index of Π_{2} and has lower order at least $1 / 2$.

6 Completion of the proof of Theorem 1.3

Lemma 5.4 shows that f has finite order $\rho(f)$. Thus it remains only to prove that f has finitely many poles and $f^{\prime \prime}$ has finitely many zeros, so assume that this is not the case. Lemmas 4.3 and
5.1 give a positive real number d_{1} and $w \in \mathbb{C}$ with $|w|=r$ arbitrarily large, such that (6) holds on the disc $B\left(w, d_{1} r\right)$. Let ε and K be positive, with ε small, and let

$$
U_{K}=\left\{z \in \mathbb{C}: \frac{1}{K}<|z|<K, \quad|z-1|>d_{1}\right\}
$$

Here K is chosen so large that the harmonic measure with respect to U_{K} satisfies

$$
\begin{equation*}
\omega\left(z, S(0,1 / K) \cup S(0, K), U_{K}\right)<\varepsilon \quad \text { for } \quad z \in U_{K}, \quad \frac{1}{2}<|z|<2 \tag{14}
\end{equation*}
$$

Denote by d_{j} positive constants which are independent of r, ε, K and S. Standard estimates from [3] give a real number $S=S_{r}$ such that

$$
\begin{equation*}
K<S<2 K \quad \text { and } \quad|h(z)| \leq|z|^{d_{2}} \quad \text { for } \quad|z|=\frac{r}{S} \quad \text { and } \quad|z|=r S \tag{15}
\end{equation*}
$$

in which $h(z)=z f^{\prime \prime \prime}(z) / f^{\prime \prime}(z)$ as in Lemma [5.5] and $d_{2}=\rho(f)+1$. Let w_{1}, \ldots, w_{Q} be the poles of h in $r / S \leq|z| \leq r S$. Applying Lemma 5.2 with $L(r)=(\log r)^{1 / 2}$ shows that $Q \leq d_{3}(\log r)^{1 / 2}$.

On the annulus A given by $r / S \leq|z| \leq r S$ set

$$
\begin{equation*}
u(z)=\log |h(z)|-\log M_{3}+\sum_{1 \leq j \leq Q} \log \frac{\left|z-w_{j}\right|}{4 K r} \leq \log |h(z)|-\log M_{3} \tag{16}
\end{equation*}
$$

where M_{3} is as in (6) and may be assumed to be at least 1 , and the sum is empty if there are no poles w_{j}. Then u is subharmonic on A, with $u(z) \leq 0$ on the closure of $B\left(w, d_{1} r\right)$ by (6), and

$$
\begin{equation*}
u(z) \leq \log |h(z)| \leq d_{2} \log |z| \leq d_{2} \log (2 K r) \quad \text { for } \quad z \in S(0, r / S) \cup S(0, r S) \tag{17}
\end{equation*}
$$

by (15). Hence (14) and the monotonicity of harmonic measure yield

$$
\begin{equation*}
u(z) \leq \varepsilon d_{2} \log (2 K r) \quad \text { for } \quad \frac{r}{2}<|z|<2 r . \tag{18}
\end{equation*}
$$

Now Lemma 2.2 shows that (4) holds, with $\Lambda=r / 24$, for all z outside a union P_{r} of discs having sum of radii at most $r / 4$. Choose $s \in(r / 2,2 r) \backslash E_{0}$, with E_{0} as in Lemma 5.5, such that the circle $S(0, s)$ does not meet P_{r}. Thus Lemma 5.5 and (18) give rise to $\zeta_{s} \in S(0, s)$ such that

$$
\begin{aligned}
\frac{1}{3} \log s \leq \log \left|h\left(\zeta_{s}\right)\right| & \leq \varepsilon d_{2} \log (2 K r)+\log M_{3}+\sum_{1 \leq j \leq Q} \log \frac{4 K r}{\left|\zeta_{s}-w_{j}\right|} \\
& \leq \varepsilon d_{2} \log (2 K r)+\log M_{3}+Q \log (96 K) \\
& \leq \varepsilon(\rho(f)+1) \log (4 K s)+\log M_{3}+d_{3}(\log 2 s)^{1 / 2} \log (96 K)
\end{aligned}
$$

Since ε may be chosen arbitrarily small, while s is large, this gives a contradiction and the proof of Theorem 1.3 is complete. .

Remark. Hypothesis (iii) on the multiplicities of poles may not be really essential for Theorem 1.3 but it does play a key role in the above proof. If it is assumed merely that f has finite lower order, then techniques such as Pólya peaks should give annuli on which the analysis of Lemma 5.2 can be applied, but it seems difficult to ensure that these contain enough distinct poles of f that the discs on which (6) holds are not so remote that the method of Section 6 fails.

References

[1] P.D. Barry, On a theorem of Kjellberg, Quart. J. Math. Oxford (2) 15 (1964), 179-191.
[2] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355-373.
[3] G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), 88-104.
[4] W.K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), 317-358.
[5] W.K. Hayman, Subharmonic functions Vol. 2 (Academic Press, London, 1989).
[6] J.D. Hinchliffe, The Bergweiler-Eremenko theorem for finite lower order, Result. Math. 43 (2003), 121-128.
[7] J.K. Langley, The second derivative of a meromorphic function of finite order, Bulletin London Math. Soc. 35 (2003), 97-108.
[8] J.K. Langley, Logarithmic singularities and the zeros of the second derivative, Comput. Methods Funct. Theory 9 (2009), No. 2, 565-578.
[9] J. Lewis, J. Rossi and A. Weitsman, On the growth of subharmonic functions along paths, Ark. Mat. 22 (1983), 104-114.
[10] R. Nevanlinna, Eindeutige analytische Funktionen, 2. Auflage (Springer, Berlin, 1953).
[11] M. Tsuji, Potential theory in modern function theory (Maruzen, Tokyo, 1959).
[12] K. Yamanoi, Zeros of higher derivatives of meromorphic functions in the complex plane, to appear, Proc. London Math. Soc.

School of Mathematical Sciences, University of Nottingham, NG7 2RD.
jkl@maths.nott.ac.uk

