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We explore the dynamics of hard-core lattice bosons in the presence of strong non-local particle
loss. The evolution occurs on two distinct time-scales, first a rapid strongly correlated decay into a
highly degenerate Zeno state subspace, followed by a slow almost coherent evolution. We analytically
solve the fast initial dynamics of the system, where we specifically focus on an initial Mott insulator
state, and perform an analysis of the particle arrangements in the Zeno subspace. We investigate the
secondary slow relaxation process that follows and find an intricate regime where the competition
between dissipation and coherence results in various types of interacting particle complexes. We
classify them and analyse their spectral properties in the presence and absence of nearest-neighbor
interactions. Under certain circumstances the dispersion relations of the complexes feature flat
bands, which are a result of an effective spin-orbit coupling.

PACS numbers: 03.65.Xp,03.65.Yz,03.65.Ge

I. INTRODUCTION

The out-of-equilibrium behaviour of open quantum
many-body systems is currently under intense investiga-
tion [1–6]. This interest is rooted in the fact that often
the competition between coherent and incoherent pro-
cesses gives rise to seemingly counterintuitive phenom-
ena. Examples are the creation of entanglement by dissi-
pation [7–15] and the emergence of effective interparticle
interactions [16, 17]. In certain cases the latter may even
lead to a binding mechanism [1, 4, 5], which is qualita-
tively different to the one resulting from coherent forces
that bind constituent particles, in for example molecules
or atoms [18]. In Ref. [1] the creation of dissipatively
bound complexes was shown to be due to the quantum
Zeno effect [8, 19–23], i.e. due to strong dissipation pre-
venting the occupation of particular states by projecting
the system onto a reduced state space, the Zeno subspace.
While this leads to a good understanding of the few-body
physics, a systematic exploration of out-of-equilibrium
dynamics on the many-body level is so far lacking.

The purpose of this work is to provide insight into
many-body dynamics resulting from a competition be-
tween coherent particle motion and strong non-local par-
ticle loss through primarily analytic analysis. To this
end we consider the situation of a one-dimensional lattice
filled with hard-core bosons in a Mott insulating state.
We find that the evolution proceeds in two stages. The
first stage is characterized by a purely dissipative dynam-
ics that leads to a strongly correlated loss of bosons until
the system reaches a highly degenerate Zeno subspace.
The second stage is governed by the competition between
the dissipation and coherent particle hopping that leads
to the formation of dissipatively bound complexes. We
identify two qualitatively different types which naturally
occur in the Zeno subspace. Their dispersion relations
depend strongly on the number of constituent bosons
and we find for some configurations the emergence of
so-called flat bands [24] which result from an effective
spin-orbit coupling and gives rise to immobile complexes
[25]. Such flat bands are of interest in the study of exotic

topological states of matter e.g. in quantum Hall physics
[26]. We further analyze the effect of interactions among
neighboring bosons and between complexes.

II. SYSTEM

We consider a one-dimensional lattice with N sites
filled with hard-core bosons [17], a scenario which can for
example be realized with optically trapped cold atoms
[27]. Bosons tunnel between adjacent sites at a rate J
such that the Hamiltonian is given by

H = J
∑
j

(σ−j σ
+
j+1 + σ+

j σ
−
j+1). (1)

Here σ±k = (σxk ± iσyk)/2, with {σx, σy, σz} being the
standard Pauli matrices. In addition to the Hamiltonian
evolution we consider non-local dissipation which is given
by distance-selective pair loss, meaning that two bosons
separated by the critical distance R are ejected from the
lattice at a rate γ [see Fig. 1]. This type of dissipa-
tion can for instance be physically realised in cold atoms
experiments by exploiting the properties of high-lying ex-
cited states, so-called Rydberg states, as shown in Ref.
[1]. The dynamics of the density matrix ρ of the system
is described by a master equation in Lindblad form,

ρ̇ =− i[H, ρ] +

N∑
j=1

(LjρL
†
j −

1

2
{L†jLj , ρ})

≡Lc ρ+ Ld ρ, (2)

with jump operators

Lj =
√
γσ−j σ

−
j+R. (3)

In this work we focus on the limit of strong dissipation,
i.e. γ � J . Furthermore, we assume that the Markov
approximation is valid, which is e.g. the case in the pro-
posed experimental implementation of this dissipation
type, outlined in Ref. [1]. This leads to a separation
of the two timescales on which the coherent Lc and dis-
sipative Ld dynamics proceed.
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FIG. 1. (a) Evolution of the boson density p(t) under the dissipative dynamics Ld from an initial Mott insulator. The
stationary density is p(t → ∞) = e−2 ≈ 0.14. The inset shows a single trajectory with 40 bosons with R = 3 and periodic
boundary conditions. For this particular trajectory 16 jumps (loss processes) occur, such that the final state contains solely 8
bosons. (b) Representative boson arrangements in the stationary state with R = 3, where single free bosons and two types of
particle complexes can emerge. The circles indicate sites, a filled circle indicates an occupied site, a cross indicates a site whose
occupation is forbidden, as the resulting configuration would not lie in the Zeno subspace, and a box indicates the “size” of a
complex. The type I complex — defined as having a size smaller than R — is, in this example, constituted of two bosons. These
bosons are unable to tunnel away from each other without running into a forbidden site which leads to an effective binding. The
type II complex has a spatial extent that is larger than R. It is qualitatively different to type I in the sense that the removal
of one boson (in the center) destroys the binding for the remaining ones. (c) Probability distributions for single bosons, type
I and type II complexes in the stationary state that is reached from a Mott insulator for the cases of R = 3, 12. The relative
abundances of the species change once R becomes comparable to the mean interparticle distance, e2, in the stationary state.

III. FAST DISSIPATIVE DYNAMICS AND THE
ZENO SUBSPACE

We begin by analyzing the fast dissipative dynam-
ics. Its stationary subspace — the Zeno subspace — is
spanned by all states |s〉 that satisfy

Lj |s〉 = 0∀j, (4)

i.e. they do not contain any two bosons at the critical dis-
tance R. To understand the dissipative non-equilibrium
evolution into the Zeno subspace we consider our system
starting in a Mott insulator state. The corresponding
evolution of the average boson density

p(t) =
∑
j

〈nj(t)〉
N

, (5)

with nj = σ+
j σ
−
j , can be found analytically: The mean

value of the density on site j evolves under the fast dy-
namics of Ld according to

˙〈nj〉 = −γ(〈njnj+R〉+ 〈nj−Rnj〉), (6)

i.e. it depends on a two-point correlation function. Defin-

ing the correlators Ck = 〈
∏k
l=0 nj+lR〉 and using transla-

tional invariance we obtain the hierarchy

Ċk = −γ(kCk + 2Ck+1). (7)

This equation can be solved by introducing (see Ref. [28])
the generating function

G(x, t) =

∞∑
k=0

xkCk
k!

(8)

which evolves according to

Ġ(x, t) = −γ(2 + x)∂xG(x, t). (9)

For a Mott insulator state we have the initial condi-
tion Ck = 1 and therefore G(x, 0) =

∑∞
k=0 x

k/k! = ex.
With this, the solution for this initial condition becomes

G(x, t) = e(2+x)e
−γt−2 and thus its density evolves as

p(t) = C0 = G(x = 0, t) = e2(e
−γt−1). (10)

Numerical Monte Carlo simulations [see Fig. 1(a)] con-
firm the rapid exponential decay of the boson density on
a timescale ∼ γ−1. The inset shows a generic trajectory
which displays the fast removal of boson pairs and a sta-
tionary configuration in which boson pairs at a distance
R are absent. This is one configuration of many that
span the high dimensional stationary Zeno subspace, the
projector onto which can be explicitly written as

Q0 =

N∏
j=1

(1− njnj+R). (11)

The average density in the stationary state reached from
a Mott insulator is given by

p(t→∞) = e−2 ≈ 0.14. (12)

Note, that this result is in fact independent of the value
of R

IV. EFFECTIVE COHERENT DYNAMICS IN
THE ZENO SUBSPACE

Once having reached the Zeno subspace the dissipative
evolution governed solely by Ld comes to a halt. How-
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ever, in the presence of quantum tunneling, due to Lc,
non-trivial coherent dynamics emerges which takes place
on a timescale J−1. As shown in Ref. [1] the effective
master equation for the projected density matrix onto
the Zeno subspace, µ ≡ Q0ρQ0, in the limit γ � J , is
obtained by means of Kato perturbation theory [17, 29]:

µ̇ = −i[HZ, µ] +
∑
j,α

(L
(Z)
j,α µL

(Z)
j,α

†
− 1

2
{L(Z)

j,α

†
L
(Z)
j,α , µ}),

(13)

with

HZ =Q0HQ0, (14)

L
(Z)
j,1 =

√
2Γ(Aj − σ+

j−RBj − σ
+
j+2RBj+R) (15)

L
(Z)
j,2 =

√
ΓBj , (16)

with the effective decay rate Γ = 2J2/γ and the operators
Aj = σ−j+R+1σ

−
j + σ−j+R−1σ

−
j + σ−j+Rσ

−
j+1 + σ−j+Rσ

−
j−1

and Bj = σ−j−Rσ
−
j−1σ

−
j+R + σ−j−Rσ

−
j+1σ

−
j+R. For the full

derivation see appendices A and B.
By construction the dynamics under HZ is restricted to

the Zeno subspace. Dissipation within the Zeno subspace

affects boson pairs (L
(Z)
j,1 ) or triples (L

(Z)
j,2 ) in configura-

tions that are “one tunneling event away” from contain-
ing bosons at the critical distance R. Such configura-
tions undergo an incoherent evolution at a rate Γ, which
is strongly suppressed for fast two-body decay γ � J .
Therefore the evolution within the Zeno subspace be-
comes predominantly coherent.

V. FAMILIES OF COHERENT PARTICLE
COMPLEXES

The approximately coherent evolution under HZ has
interesting consequences. Due to the explicit appearance
of the projector Q0, the simultaneous occupation of two
sites at a distance of R is forbidden. This is the quantum
Zeno effect as the system may not coherently evolve into
the strongly dissipated states. This leads to strong cor-
relations and the formation of bound complexes. These
complexes can contain a variable number of bosons, but
there are two qualitatively different configuration sets in
which they can form. Let us start with the simplest case
— referred to as type I — aspects of which were already
discussed in Ref. [1]. Here m bosons are localized in a
region with spatial extent smaller than R, an example of
which is shown in Fig. 1(b). These bosons are effectively
bound since they cannot separate by more than R − 1
sites under the evolution governed by HZ. The second
class — type II — are distinguished by having a spatial
extent greater than R. These complexes can form when
the bosons and their associated critical distances overlap
[see Fig. 1(b)]. Here, unlike for type I, not every particle
binds all the others, but one can even encounter situa-
tions in which the removal of one boson destroys the en-
tire complex, an example of which is shown in Fig. 1(b).

By defining the complexes in this manner it is possible
to classify each self-contained object present in the Zeno
subspace. Both type I and II complexes appear naturally
in the stationary state that is reached from a Mott insula-
tor. The relative abundances of the complexes in the sys-
tem is dependant on the critical distance. Moreover, as
the mean inter particle distance is fixed by (12) to be e2,
there is a crossover in the relative abundances at R ≈ e2:
When R < e2 single bosons dominate with a significant
proportion of bosons populating type I complexes. When
R > e2 complexes are more abundant than single bosons,
with type II becoming more and more dominant with in-
creasing R. An example is shown in Fig. 1(c).

A. Type I complexes

We limit our study to the dynamics of a single complex
in the lattice, addressing the interactions among com-
plexes later. In the following we will provide three quali-
tatively different examples: immobile complexes without
internal structure, complexes with an internal structure
and effective spin-orbit (SO) coupling, and complexes
whose dispersion relations feature a flat band arising from
this effective SO coupling.

We start with the simplest type I state: two bosons and
a critical distance R = 2. The only possible configuration
of these bosons, in a type I state, is to be adjacent. Thus,
the basis states are |j, 1〉 = σ+

j σ
+
j+1|Φ〉, where |Φ〉 is the

vacuum state. In this notation j denotes the position of
the complex and the second index labels the “internal
state” of the complex. The projected Hamiltonian HZ in
this basis is identically zero. Hence the basis states are
trivially eigenstates and |j, 1〉 represents immobile type
I complexes. These type I solutions emerge whenever
R = m, with m being the number of bosons involved in
the complex.

In order to see some non-trivial physics we require a
complex with some “internal states”. The simplest case
of this is constituted by 2 bosons with R = 3, previously
discussed in [1]. In order to calculate the spectrum of
this complex, a basis of the internal states is defined as
|j, 1〉 = σ+

j σ
+
j+1|Φ〉 and |j, 2〉 = σ+

j σ
+
j+2|Φ〉. We may also

define a creation operator |j, α〉 ≡ b
(α)†
j |Φ〉, allowing us

to express HZ = J
∑
j [b

(2)†
j b

(1)
j + b

(1)†
j+1b

(2)
j + H.c.]. To

obtain the corresponding dispersion relation ε±(K) [see
Fig. 2(a)] and eigenstates |K±〉, we perform a discrete
Fourier transform, using periodic boundary conditions
and find:

ε±(K) =± 2J cos
(qK

2

)
, (17)

|K〉± =
1√
2N

∑
j

eijqK [|j, 2〉 ± e−iqK/2|j, 1〉], (18)

where qK = 2πK/N is the quasi-momentum. We see
that the internal state of the complex is strongly linked
to its motion on the lattice, namely the group velocity
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FIG. 2. (a) Dispersion relations (solid curves) for type I com-
plexes of two bosons with R = 3 and R = 4. Both cases show
a crossing at qK = π, and when R = 4 a flat band occurs. In
the presence of nearest neighbor interactions (here V = J) the
degeneracy is lifted and the flat bands are distorted (dashed
curves). The sketches above the panels show a particular in-
ternal state of the respective complex. Panel (b) shows the
evolution of the boson density of a type I complex formed by

two bosons in the state |F(I)
j 〉 with R = 4 (see sketch above

the panel) and γ = 100J on a lattice of 10 sites simulated
with the full master equation.

of the internal states is always in the opposite direction
for the same quasi-momentum. This is what we term
as effective SO coupling. Note that this spectrum has a
degeneracy, or crossing, that occurs at qK = π.

Lastly we consider a complex where the effective SO
coupling results in a flat band, namely the case of two
bosons with R = 4. We define a basis with three internal
states as: |j, 1〉 = σ+

j σ
+
j+1|Φ〉, |j, 2〉 = σ+

j σ
+
j+2|Φ〉 and

|j, 3〉 = σ+
j σ

+
j+3|Φ〉. The resulting dispersion relations

[shown in Fig. 2(a)] and eigenstates are given by

εη(K) =η 2
√

2J cos
(qK

2

)
, (19)

|K0〉 =
∑
j

eijqK√
2N

[|j, 3〉 − e−iqK |j, 1〉], (20)

|K±〉 =
∑
j

eijqK

2
√
N

[e−iqK |j, 1〉 ±
√

2e−iqK/2|j, 2〉+ |j, 3〉].

(21)

This complex has three branches labelled by η =
{0,+,−}. The branch η = 0 is a flat band. Dispersion
relations featuring flat bands may result in immobile lo-
calized states which in contrast to the first type I example
are non-trivial. Localized states are formed by super-
imposing many quasi-momentum eigenstates and hence
for non-flat dispersion relations, immobile states cannot
form. However, in a flat band all quasi-momentum states
have the same energy and the resulting superposition
state is thus an eigenstate of the Hamiltonian.

A concrete example is given by the states

|F(I)
j 〉 =

√
2

R

j+R/2−1∑
i=j

[(−1)iσ+
i σ

+
R−i+1]|Φ〉. (22)

Using one of these states as the initial condition and prop-
agating it under the full master equation we find indeed

0

(a) (b)

21050
0

1

1

9

0

2

-2

FIG. 3. (a) Evolution of boson density for a type II complex

in the immobile state |F(II)
3 〉, with R = 3 and γ = 100J . (b)

Dispersion relation for a type II complex consisting of four
bosons with R = 4.

that it remains immobile as shown in Fig. 2(b). Note,
that the boson density is slowly decreasing on a timescale
Γ−1. This clearly shows that the flat bands are not an
artifact of infinitely strong dissipation but instead that
they indeed have a drastic effect on the boson dynam-
ics in a system with competing coherent and dissipative
evolution.

Let us make some general remarks on the emergence
of flat bands in case of type I complexes: For complexes
consisting of two bosons, flat bands exist provided that R
is even. Furthermore, we find that for two, three and four
bosons a flat band emerges when R/m ∈ N. Interactions
among bosons also play an important role. In order to il-
lustrate this we consider nearest-neighbor interactions of
the form Hnn = V

∑
j njnj+1 which might, for instance,

emerge in cases where non-local loss is engineered via Ry-
dberg dressing (see Ref. [1]). Such interactions modify
the dispersion relations as shown in Fig. 2(a) in the sense
that they lift the degeneracy point observed for R = 3,
and distort the flat band in the case of R = 4.

B. Type II complexes

We now move our study to type II complexes, i.e. com-
plexes that are larger than R. We give two examples, one
without internal structure and one with effective SO cou-
pling.

First we consider three bosons and a critical distance
R = 3. The only possible type II complexes have the ba-
sis |j, 1〉 = σ+

j σ
+
j+2σ

+
j+4|Φ〉. They are immobile — similar

to the first type I example — as each boson’s movement
is inhibited by its the nearest bosons. This is confirmed
as well by numerical exact simulations as shown in Fig.
3(a). Such immobile states can be straight-forwardly gen-
eralized to larger boson numbers, e.g. in the given ex-
ample by attaching bosons to either end of the complex
keeping a separation of one site.

In the second example we consider four bosons and a
critical distance R = 4. The resulting complex has five
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FIG. 4. (a) Evolution of the boson density for a single boson
impinging an immobile type II complex (R = 2). The single
boson is in the wave packet state |G〉 with initial central quasi-
momentum of q0 = π/2 and width σ = 2. The two-particle
loss rate is γ = 100J . The single boson is reflected elastically
off the type II complex due to the presence of an effective next
nearest neighbor exclusion interaction. (b) We show three
examples of two type I complexes, in different internal states,
interacting with one another. We see that the distance of the
interaction depends on the internal state of the complexes.

internal states:

|j, 1〉 =σ+
j σ

+
j+3σ

+
j+6σ

+
j+9|Φ〉,

|j, 2〉 =σ+
j σ

+
j+3σ

+
j+6σ

+
j+8|Φ〉,

|j, 3〉 =σ+
j σ

+
j+3σ

+
j+5σ

+
j+8|Φ〉,

|j, 4〉 =σ+
j σ

+
j+2σ

+
j+5σ

+
j+7|Φ〉,

|j, 5〉 =σ+
j σ

+
j+2σ

+
j+5σ

+
j+8|Φ〉

and the dispersion relations shown in Fig. 3(b):

ε0(K) =0, (23)

εη,δ(K) =η

√
3 + δ

√
5 + 4 cos(qK), (24)

with η, δ = ±. Hence, this type II complex features a flat
band and spatially localized states of the form

|F(II)
j 〉 = [−σ+

j σ
+
j+3σ

+
j+6σ

+
j+9 + σ+

j+1σ
+
j+3σ

+
j+6σ

+
j+8]|Φ〉.

(25)

Again let us conclude with some more general remarks:
A flat band of similar structure exists for five bosons with
R = 4. For R = 3 and 4, a flat band exists provided the
number of bosons is equal to or greater than R. The dis-
persion relation of this type II complex is not modified
by the presence of nearest neighbor interactions. This is
due to the fact that given the arrangement of the bosons,
the simultaneous occupation of neighboring sites is for-
bidden. Thus, the flat bands of certain type II complexes
are in this case protected from interaction effects in con-
trast to the type I case.

VI. INTERACTION BETWEEN COMPLEXES

As can be seen in the inset of Fig. 1(a) complexes are
typically not isolated in the stationary subspace of Ld.

Hence, interactions between complexes, and complexes
and single bosons occur. We study the case of R < e2,
which given the abundance of each species [see Fig. 1(c)],
the latter is the most common scenario. An example for
such an interaction is given in Fig. 4. Here we display a
single boson in the wave packet state

|G〉 =
1√

2πσ2

∑
j

e−iq0je(j−j0)
2/2σ2

|j〉, (26)

where j0, q0, σ are the initial central position, quasi-
momentum, and width of the wave packet, respectively,
impinging an immobile type I complex with R = 2. In
much the same way that the dissipation acts to bind the
bosons, it results in a hard core exclusion interaction be-
tween isolated bosons and complexes that in this example
extends over R sites. In the case at hand this leads to
an elastic collision with the type I complex essentially
acting as a hard boundary. Using this mechanism one
could imagine a situation where two immobile complexes
enclose a boson, thereby acting as a trap.

More generally the range of the exclusion interaction is
dependent on the internal state of interacting complexes.
For the type I complex of two bosons with R = 3 we
define an effective complex-complex interaction as

H
(I)
int = lim

W→∞
W
∑
m>k

∑
{α,β}

Θ(R+ α− |k −m|)n(α)k n(β)m ,

(27)

with nαk = b
(α)†
k b

(α)
k and Θ(x) is the Heaviside step func-

tion (see Fig. 4 for an illustration).

VII. OUTLOOK

We have shown that in a system of hard-core bosons
the interplay between distance-selective particle loss and
coherent hopping results in rich out-of-equilibrium dy-
namics. The quasi-stationary Zeno subspace reached
from an initial Mott insulator state features two families
of coherently bound complexes, that exhibit a number of
interesting properties, such as effective SO coupling, flat
dispersion relations and state-dependent interactions. In
the future it will be interesting to study the quantum
phases that emerge in systems that contain solely a single
kind of complex, e.g. ones that feature state-dependent
interactions and flat bands. Such pure systems could be
experimentally prepared in the ultra cold atoms lattice
experiments discussed in Refs. [30, 31]. Furthermore it
would be interesting to study the dynamics of the sys-
tem after lifting the hard-core constraint. In such a case
of finite interaction one might also expect fermionic sys-
tems [32, 33] to actually show qualitatively new features
in comparison to the bosonic system studied here.
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Appendix A: Derivation of the effective master
equation

The effective master equation models the dynamics on
Zeno subspace. We derive this effective master equation
using the Kato resolvent method [17, 29]. The form of
our particular Ld allows us to decompose it into a set of
eigenvalues, ki, and eigenspaces or pseudo-projectors, Pi,

Ld =
∑
i

kiPi. (A1)

These projectors form a complete orthogonal set,

PiPj =δi,jPi, (A2)∑
i

Pi =1. (A3)

The Zeno subspace has a corresponding zero eigenvalue,
removing it from the expansion. Subbing Eq. (A1) into
the master equation we get

ρ̇ =Lcρ+
∑
λ

kλρλ, (A4)

where ρi = Piρ and λ omits the steady state space. As
the steady state space is the one of interest we define
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the projector onto the irrelevant space as Q =
∑
λ Pλ.

We split Eq. (A4) into the evolution of the relevant and
irrelevant spaces by applying the respective projectors:

µ̇ =P0Lcµ+ P0LcQρ, (A5)

Qρ̇ =QLQρ+QLµ, (A6)

where L = Ld+Lc. Formal integration of Eq. (A6) gives

Qρ(t) = etQLQρ(0) +

∫ t

0

dτe(t−τ)QLQLµ(τ). (A7)

We assume that we start entirely in the steady state space
i.e. Qρ = 0. Expanding L we show that Eq. (A7)
becomes

Qρ(t) =

∫ t

0

dτe(t−τ)QLQLcµ(τ). (A8)

Which is substituted into Eq. (A5) to give

µ̇ =P0Lcµ+ P0Lc
∫ t

0

dτe(t−τ)QLQLcµ(τ). (A9)

Taking a Laplace transform of this equation gives

L[µ̇] = P0LcL[µ] + P0Lc
1

s−QL
QLcL[µ]. (A10)

We then use the fact that γ � J , implying that the
amplitudes of the Liouvillians compare as Ld � Lc. This
allows an expansion of (s−QL)−1 to second order:

L[µ̇] ≈ P0LcL[µ] + P0Lc
1

s−QLd
QLcL[µ]. (A11)

We then perform an inverse Laplace transform to give

µ̇ ≈ P0Lcµ(t) + P0Lc
∫ t

0

dτe(t−τ)LdQLcµ(τ). (A12)

Expanding Ld in terms of its projectors and expanding
the exponential, we find

µ̇ ≈ P0Lcµ(t) +
∑
λ

P0Lc
∫ t

0

dτe(t−τ)kλPλLcµ(τ).

(A13)

By integration by parts, this remaining integral is re-
expressed as

µ̇ ≈P0Lcµ(t) +
∑
λ

P0Lc[(
−1

kλ
PλLc(µ(t) + µ(0)etkλ))

−e
tkλ

kλ

∫ t

0

dτe−τkλPλLc
dµ(τ)

dτ
]. (A14)

Due to Ld is a purely dissipative Liouvillian, the kλ’s are
all negative. As we are interested in the long time limit,
t � 1/γ, the second term is considered negligible, as is
the remaining integral due to it is of higher order in J/γ

as dµ(τ)
dτ ∝ J . Leaving an effective master equation with

the form

µ̇ ≈P0Lcµ(t)−
∑
λ

1

kλ
P0LcPλLcµ(t). (A15)

Appendix B: Derivation of the Projected
Hamiltonian and Jump Operators

Due to the form of Eq. (A15), we are only interested in
states which are coupled to the Zeno subspace via a single
tunnelling event. This leads us to only study the cases of
a single pair and a double pair, which shares the central
boson, at the critical distance R. We define the forms of
the pseudo-projectors, Pi, of Ld on this truncated space
as:

P0ρ =Q0ρQ0 +
∑
i

σ−i σ
−
i+RQ1ρQ1σ

+
i+Rσ

+
i

+
∑
i

σ−i−Rσ
−
i σ
−
i+xQ2ρQ2σ

+
i+Rσ

+
i σ

+
i−R, (B1)

P1ρ =Q0ρQ1 +Q1ρQ0, (B2)

P2ρ =Q0ρQ2 +Q2ρQ0 (B3)

where:

Q1 =
∑
m

nmnm+R

∏
i 6=m

(1− nini+R), (B4)

Q2 =
∑
m

nm−Rnmnm+R

∏
i 6=m,m−R

(1− nini+R). (B5)

Q0 was introduced previously and projects onto no pairs,
Q1 projects onto a single pair and Q2 projects onto two
pairs which share the central boson. The first projector
P0 is the steady state space of Ld, P0 = limt→∞ Ld,
it includes only states with no pairs of bosons at the
critical distance. The next two higher order projectors,
P1 and P2 include states with a single pair and a double
pair which share a central boson. It can be checked that
P0, P1 and P2 project onto the eigenspaces of Ld with
eigenvalues 0, −γ/2 and −γ respectively.

The exact derivation of the projected Hamiltonian
from the first term of (A15) relies on the assumption
that the system starts in the steady state space, mean-
ing that we reduce µ = P0ρ = Q0ρQ0, and the property
of the Q’s, QiQj = δi,jQi, allowing it to be found by the
following method

P0LcP0µ =− iP0[H,µ]

=− iP0(HQ0ρQ0 −Q0ρQ0H)

=− i(Q0HQ0ρQ0 −Q0ρQ0HQ0)

=− i[Q0HQ0, ρ] (B6)

Giving the form of HZ as quoted.
We then formulate the projected jump operators from

the second term of (A15). We first rewrite this term as:

−
∑
λ

1

kλ
P0LcPλLcP0µ(t) = P0(− 2

γ
[H,Q1[H,µ]Q0]

− 2

γ
[H,Q0[H,µ]Q1]− 1

γ
[H,Q2[H,µ]Q0]

− 1

γ
[H,Q0[H,µ]Q2]) (B7)
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Which splits into two equations corresponding to the kλ
eigenvalues

=− 2

γ
(Q0HQ1HQ0µ+ µQ0HQ1HQ0

− 2
∑
j

σ−j σ
−
j+RQ1HQ0µQ0HQ1σ

+
j+Rσ

+
j )−

1

γ
(Q0HQ2HQ0µ+ µQ0HQ2HQ0

− 2
∑
j

σ−j−Rσ
−
j σ
−
j+RQ2HQ0µQ0HQ2σ

+
j+Rσ

+
j σ

+
j−R)

(B8)

Upon expansion of Q0HQ1 and Q0HQ2 we find a Lind-
blad form with the jump operators shown.

Appendix C: Derivation of dispersion relations

To demonstrate how the dispersion relations are calcu-
lated the single example of a type I state with 2 bosons

for R = 4 will be shown. As stated, each site has an as-
sociated set of internal states, |j, α〉, where {α} = 1→ 3.
We define a state of the system as |ψ(j)〉 = [A(j)|1〉 +
B(j)|2〉+C(j)|3〉]|j〉 and perform a Fourier transform on
this state to give the external quasi-momentum states
|K〉 = (1/N)

∑
j e
ijqK [A(K)|1〉+B(K)|2〉+C(K)|3〉]|j〉

We rewrite the projected Hamiltonian in this basis as

HZ =J

N∑
j=1

[|j, 1〉〈j, 2|+ |j + 1, 1〉〈j, 2|

+ |j, 2〉〈j, 3|+ |j + 1, 2〉〈j, 3|+ H.c.]. (C1)

Applying this to the |K〉 state it is shown that you are it
reduces to an operator on the spin structure:

HZ|K〉 = J

 0 1 + e−iqK 0
1 + eiqK 0 1 + e−iqK

0 1 + eiqK 0

 |K〉
(C2)

Solving for the eigenvalues and eigenvectors of this ma-
trix yields the results shown for the dispersion relations
of this complex.


