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Quantum technology promises revolutionary advantages in information processing and transmission compared
to classical technology; however, determining which specific resources are needed to surpass the capabilities of
classical machines often remains a nontrivial problem. To address such a problem, one first needs to establish the
best classical solutions, which set benchmarks that must be beaten by any implementation claiming to harness
quantum features for an enhanced performance. Here we introduce and develop a self-contained formalism to
obtain the ultimate, generally probabilistic benchmarks for quantum information protocols including teleportation
and approximate cloning, with arbitrary ensembles of input states generated by a group action, so-called
Gilmore-Perelomov coherent states. This allows us to construct explicit fidelity thresholds for the transmission
of multimode Gaussian and non-Gaussian states of continuous-variable systems, as well as qubit and qudit
pure states drawn according to nonuniform distributions on the Bloch hypersphere, which accurately model
the current laboratory facilities. The performance of deterministic classical procedures such as square-root
measurement strategies is further compared with the optimal probabilistic benchmarks, and the state-of-the-art
performance of experimental quantum implementations against our newly derived thresholds is discussed. This
work provides a comprehensive collection of directly useful criteria for the reliable certification of quantum
communication technologies.
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I. INTRODUCTION

Quantum information technology [1] is progressing at a
fast pace. Theoretical and experimental results announcing
groundbreaking demonstrations of the power of quantum
hardware and quantum algorithms for the encoding and
secure transmission of information receive media attention
on an almost daily basis. However, while basic building
blocks for a distributed quantum communication network
are available with current technology (encompassing, e.g.,
photonic architectures, solid-state memories, and hybrid in-
terfaces thereof) [2], there remains as a crucial question to
verify that the practical implementations of such devices are
genuinely harnessing quantum resources and can provably
outperform optimized special-purpose classical machines in
realistic conditions of noise and decoherence. The problem of
verifying quantum devices is in fact playing center stage for the
lively debate surrounding the operation of D-Wave “quantum”
annealing processors; see, e.g., [3].

A general verification method consists in deriving tests,
or benchmarks, which have to be passed by any realization
of a quantum protocol, to corroborate its genuine use of
quantumness; in this respect, benchmarks establish a quality
control for realistic quantum information processing devices.
A standard way to construct such benchmarks is by focusing
on a protocol and its figure of merit, and determine the
corresponding classical threshold, i.e., the maximum value
of the figure of merit which can be attained if the involved
parties do not make use of any shared quantum resource,
such as entanglement and quantum communication. Hence, if
an actual experimental demonstration, despite being affected
by unavoidable losses and imperfections, still manages to

achieve a higher value of the figure of merit compared to
the classical threshold, then the benchmark has been passed
and the experiment is certified quantum, in the sense that its
performance could not have been reached without the sharing
and the utilization of suitable quantum resources.

The task of benchmarking quantum protocols has spurred
an intense activity in the last two decades. The majority of
relevant studies focused on the primal example of quantum
teleportation and storage [4,5], and derived benchmarks for
the fidelity as a figure of merit [6], for different classes
of input states. To give an incomplete list, at present exact
teleportation fidelity benchmarks are known in particular for
input ensembles consisting of pure qubits and qudits with
uniform prior distribution [7,8], pure displaced Gaussian
states with finite-width Gaussian displacement distribution
[9], pure squeezed Gaussian states with unknown squeez-
ing in one quadrature [10], pure squeezed Gaussian states
with finite-width squeezing distribution [11], pure displaced
and squeezed Gaussian states with known squeezing and
uniform displacement distribution [12], and pure displaced
and squeezed Gaussian states with finite-width distributions
of unknown squeezing and displacement [11]. Other studies
focused on numerical methods (e.g., based on semidefinite
programming) to derive teleportation benchmarks for more
realistic sets of possibly mixed input states [13]. Very recently,
device-independent benchmarks for teleportation of qubit
states were investigated [14]. Benchmarks applicable to other
protocols have been developed as well. Benchmarks for non-
unit-gain protocols, which include amplification, attenuation,
and N → M quantum cloning of qubits, qudits, and coherent
states, have been studied in detail [8,15–18]; they reduce to the
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corresponding results for teleportation in particular limits (e.g.,
in the case of cloning for N = M = 1). Finally, an alternative
approach to quantum benchmarks, testing the ability of a
quantum device to transmit entanglement, has also been put
forward [19–21].

In this paper we develop a powerful and general formalism
to obtain benchmarks for quantum protocols with arbitrarily
distributed input ensembles generated by a group action, so-
called generalized Gilmore-Perelomov coherent states (GPCS)
[22,23]. While this formalism allows us to straightforwardly
recover a number of benchmark results existing in literature
on teleportation, cloning and amplification of conventional co-
herent states (pure displaced Gaussian states) [9,17,18], it then
goes significantly beyond by leading us to obtain analytical
benchmarks for broad and relevant classes of input ensembles
which can be used in present-day experiments. For example,
our framework allows one consider pure qubit and qudit states
distributed according to realistically finite-width distributions
on their respective Hilbert spaces, as well as single-mode
and multimode Gaussian and non-Gaussian squeezed states
with adjustable finite-width squeezing distributions, which
are all examples of GPCS. Our machinery thus provides
directly useful tests to certify the quantum domain of current
and future experiments encompassing discrete-variable and
continuous-variable systems with realistic prior distributions.

The benchmarks we derive are probabilistic [11,18]; that
is, we allow for the possibility to discard some unfavorable
trials. This increases the achievable fidelity threshold, at the
expense of a nonunit success probability of the corresponding
classical strategy. This procedure sets therefore the ultimate
bounds that need to be surpassed by quantum implementations
claiming to exploit authentic quantum resources to attain clas-
sically unreachable performances. Probabilistic benchmarks
are important not only as a stronger certificate of quantumness,
but also because they are indispensable for assessing recent
breakthrough experiments in quantum optics, implementing
new quantum devices, that achieve an enhanced performance
at the price of a nonunit probability of success. The latest
demonstrations of noiseless probabilistic amplifiers [24–27]
provide a fitting example of such devices. Clearly, this new
generation of quantum experiments cannot be assessed using
the old benchmarks, which referred only to deterministic
strategies. The increased interest in probabilistic devices
provides also a strong motivation to analyze ensembles of
input states with nonuniform priors, because the advantages
of probabilistic protocols can only be seen in this setting
[18,24–28].

The paper is organized as follows. In Sec. II we de-
velop the general machinery of probabilistic benchmarks for
GPCS. In Sec. III we showcase examples specialized to
benchmarks for quantum cloning of qubit and qudit states
with finite-width prior distributions. In Sec. IV we derive
benchmarks for quantum cloning of relevant families of
single-mode Gaussian states. In Sec. V we present benchmarks
for general multimode non-Gaussian states belonging to the
class of Perelomov squeezed states. In Sec. VI we investigate
whether deterministic measure-and-prepare strategies (such
as the square-root measurement) can achieve the bounds
determined by the general probabilistic benchmarks of the
previous sections. In Sec. VII we discuss the implementation

of the optimal transposition of GPCS, a task which cannot be
realized perfectly, and for which quantum protocols offer no
advantage over the benchmarks. In Sec. VIII we conclude
with a summary and an outlook on future theoretical and
experimental directions. Some technical proofs and derivations
are deferred to the Appendix.

II. QUANTUM BENCHMARKS FOR THE STATE
TRANSFORMATION OF GENERALIZED

COHERENT STATES

This section presents the general framework and the key
result on quantum benchmarks for generalized coherent states,
providing the foundation for the concrete applications worked
out in the rest of the paper. We start from the general framework
of quantum benchmarks and then specialize ourselves to the
case of generalized coherent states, providing a general ex-
pression that allows one to evaluate the benchmarks explicitly.

A. General framework for quantum benchmarks

1. State transformation games

A convenient way to discuss quantum benchmarks is in
terms of a game featuring two collaborating players, Alice
and Bob, and a verifier, traditionally referred to as Victor [6].
In this game, Victor presents Alice with an input state ρx ,
with the label x ranging in some set X, and later he asks Bob
to provide an output state, which should resemble as much
as possible some desired target state ρ ′

x . In between, Alice
and Bob team up to achieve the best possible approximation
of the transformation ρx �→ ρ ′

x , using the resources that are
available to them. Here we assume that Alice and Bob know
exactly the set of input states {ρx |x ∈ X} and the set of target
states {ρ ′

x |x ∈ X}, but they do not know which particular input
ρx is presented to them. We refer to games of this form as
state transformation games. Most of the relevant examples of
quantum information processing tasks can be cast in the form
of state transformation games, by suitably choosing the Hilbert
spaces of the input (output) system—here denoted by Hin

(Hout)—and the input (output) states. For example, choosing
Hin = Hout and ρ ′

x = ρx one has the game of implementing
quantum teleportation and quantum memories for the set of
states {ρx |x ∈ X}. For Hin = H⊗N,Hout = H⊗M,ρx = ψ⊗N

x ,
and ρ ′

x = ψ⊗M
x one has the game of quantum cloning, with an

input of N identical copies and an ideal target of M output
copies.

In a state transformation game, the role of the verifier Victor
is to assess the quality of Alice’s and Bob’s implementation.
For this purpose, Victor chooses the input state ρx at random
with probability px and tests the output provided by Bob
by performing a two-outcome measurement, described by a
positive operator-valued measure (POVM) {Tx,1 − Tx}. If the
test gives the outcome corresponding to the operator Tx , then
it is passed; otherwise, it is failed. Note that if the target state is
pure, say ρ ′

x = |ψx〉〈ψx |, then a natural choice for the operator
Tx is Tx = |ψx〉〈ψx |, so that the probability of passing the test
is equal to the fidelity between Bob’s output and the target
state. Nevertheless, we stress that our setting and our results
are fully general, and include any operational test {Tx,1 − Tx}
that the verifier may want to perform. In the following we will
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consider the (average) probability of passing the test as our
figure of merit, and denote it by F .

Suppose that Alice and Bob follow a deterministic protocol,
described by a trace-preserving completely positive (CP) map
M. In this case, the average probability of passing Victor’s
test is

FM =
∑

x

px Tr[TxM(ρx)]. (1)

More generally, however, the protocol adopted by Alice and
Bob can be probabilistic. A probabilistic protocol will either
implement a desired quantum process—described by a trace-
nonincreasing CP map N—or output a “failure” message,
heralding the fact that the process N did not take place. The
probability that the process takes place on the input state ρx

is p(yes|x) = Tr[N (ρx)]. When this happens, the output state
becomes

ρ̄x = N (ρx)

Tr[N (ρx)]
. (2)

The average probability that the process takes place is

pyes =
∑

x

px Tr[N (ρx)]. (3)

Conditional on the occurrence of the process N , the figure of
merit is given by

FN =
∑

x

p(x|yes) Tr[Txρ̄x], (4)

where p(x|yes) is the probability that the input state was ρx

conditioned on the information that N took place. Inserting
Eq. (2) into the above expression and using Bayes’ rule
p(x|yes) = p(yes|x)px/pyes one then obtains

FN =
∑

x px Tr[TxN (ρx)]

Tr[N (ρ)]
, (5)

where ρ is the average input state

ρ :=
∑

x

pxρx. (6)

Note that when the device is deterministic (i.e., when N is
trace-preserving), Eq. (5) coincides with Eq. (1).

2. Ultimate performance achievable by quantum strategies

How well Alice and Bob can fare in a given state
transformation game depends on which resources they are
allowed to use. In particular, if Alice and Bob are allowed to
communicate quantum states to one another (which implies,
in particular, that they can share entanglement), they can act
effectively as a single superplayer, who in principle is able to
implement arbitrary quantum devices. In this way, they can
achieve the best performance allowed by quantum mechanics,
given by the supremum of the figure of merit in Eq. (5) over
all CP trace-nonincreasing maps. This supremum, denoted
by Fq , represents the ultimate limit that can be achieved by
arbitrary processes in nature (assuming quantum mechanics as
the correct theory of nature), including even processes that take
place with small probability. The actual value of Fq , which can

be computed along the lines of Refs. [18,29], is given by

Fq = ∥∥[(1out ⊗ ρ− 1
2
)
�
(
1out ⊗ ρ− 1

2
)]�in

∥∥
∞, (7)

where 1out is the identity on the output Hilbert space, �in is
the operation of partial transpose on the input Hilbert space,
the operator � is defined as

� :=
∑

x

px Tx ⊗ ρx, (8)

and ‖A‖∞ denotes the operator norm, which for positive
operators is given by the maximum expectation value

‖A‖∞ = sup
‖ψ‖=1

〈ψ |A|ψ〉. (9)

Clearly, when the set of states is continuous, the sums in
Eqs. (5), (6), and (8) have to be replaced by integrals and the
probability distribution px has to be replaced by a probability
density p(x)dx.

3. Quantum benchmarks

Suppose now that Alice and Bob are only allowed to
communicate classical data. Under this restriction, the most
general protocol that they can perform is a measure-and-
prepare (MP) protocol, i.e., a procedure where Alice measures
the input system and communicates the outcome to Bob, who
uses this information to prepare the output system in a suitable
quantum state. The supremum of the figure of merit of Eq. (5)
over all MP protocols is the quantum benchmark for the task
ρx → ρ ′

x . By definition, if Alice and Bob can beat the quantum
benchmark, they must have used quantum communication
resources, either directly (with Alice sending quantum states
to Bob) or indirectly (using the assistance of entanglement).

The most stringent benchmark is obtained if we allow Alice
and Bob to use probabilistic protocols, which provide an output
to the verifier only if the measurement outcome belongs to
a subset of favorable outcomes. A generic MP protocol, as
schematically depicted in Fig. 1, is specified by a POVM
{Py}y∈Y and by a set of quantum states {σy}y∈Yyes that are
re-prepared when the measurement outcome belongs to the set
of favorable outcomes Yyes ⊆ Y. In the favorable instances,
the protocol is described by the CP map Ñ given by

Ñ (ρ) :=
∑

y∈Yyes

Tr[Pyρ] σy. (10)

We denote by Fc the supremum of the figure of merit in
Eq. (5) over all probabilistic MP protocols described by CP
maps Ñ as in Eq. (10). Following the arguments of Ref. [18],
the actual value of Fc can be expressed as

Fc = ∥∥(1out ⊗ ρ− 1
2
)
�
(
1out ⊗ ρ− 1

2
)∥∥

×, (11)

where � is the operator defined in Eq. (8) and ‖A‖× denotes
the injective cross norm [30], which for positive operators is
given by the maximum expectation value on product states

‖A‖× = sup
‖φ‖=‖ψ‖=1

〈φ|〈ψ |A|φ〉|ψ〉. (12)

Equation (11) quantifies the ultimate performance that can
be achieved by arbitrary MP protocols, even allowing for
protocols that produce an output with nonunit, arbitrarily
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FIG. 1. (Color online) Scheme of a probabilistic measure-and-
prepare (MP) state transformation game. The figure of merit F is
typically the fidelity between the output prepared by Bob and the
target state set by the verifier Victor for a given input state supplied
to Alice, averaged over the input set X according to a specified
prior probability distribution. The maximum value Fc of F over
all MP protocols implementable by Alice and Bob sets a quantum
benchmark for the transformation of the input ensemble of states. Any
demonstration of state transformation of the input set which achieves,
on average, a figure of merit exceeding Fc, implies necessarily that a
quantum channel has been used as a resource by Alice and Bob.

small probability. Hence, if an experiment achieves a figure of
merit which exceeds the classical threshold Fc, then one can
certify that the experimental setup has implemented a genuine
quantum processing. If each Tx is of the form Tx = |ψx〉〈ψx |
for some pure state |ψx〉, then we call Fc the probabilistic
classical fidelity threshold (CFT) for the transformation
ρx �→ |ψx〉〈ψx |.

Note the following important property:
Proposition 1. The CFT for the transformation ρx �→

|ψx〉〈ψx | is equal to the CFT for the three transformations

ρx �→ |ψ∗
x 〉〈ψ∗

x |,
ρ∗

x �→ |ψx〉〈ψx |,
ρ∗

x �→ |ψ∗
x 〉〈ψ∗

x |,

where |ψ∗
x 〉 (ρ∗

x ) is the complex conjugate of |ψx〉 (ρx) in a
given basis.

The validity of the above property can be immediately
derived from Eqs. (8), (11), and (12): Indeed, the value of
the cross norm does not change if we replace the test operator
Tx and/or the state ρx by its complex conjugate. Similarly,
the optimal MP protocol for one of the four tasks can be
obtained from the optimal MP protocol of any of the others by
applying complex conjugations where needed. Note also that,
at the density matrix level, complex conjugation is equivalent
to transposition.

Combining this fact with Proposition 1, one can see that the
difference between the ultimate quantum fidelity Fq and the
quantum benchmark Fc is nothing but the difference between

two norms, namely the operator norm in Eq. (7) and the cross
norm in Eq. (11).

B. Generalized coherent states

We now specialize our analysis to the processing of
generalized coherent states, providing an explicit and easily
computable expression for the quantum benchmark of Eq. (11).
We consider Gilmore-Perelomov coherent states (GPCSs)
[22,23,31,32], a broad class of quantum states that contains the
coherent states of the harmonic oscillator, the spin-coherent
states common in atomic physics, the families of coherent,
squeezed, and pure Gaussian states in quantum optics, and
(infinitely) many other families of non-Gaussian quantum
states for continuous-variable systems.

Technically, GPCSs are associated with irreducible repre-
sentations of locally compact groups [31,32]. Given a group
G, a unitary projective representation U : g �→ Ug acting on
some Hilbert space H, and a unit vector |φ〉 ∈ H, we say that
the states

|φg〉 := Ug|φ〉 g ∈ G (13)

are GPCSs if the action of the representation U is irreducible
in the subspace spanned by them.

The best known examples of GPCSs are the coherent states
of the harmonic oscillator, defined as

|α〉 := D(α)|0〉 α ∈ C,

where D(α) is the displacement operator D(α) = exp[αa† −
α∗a], a and a† satisfy the commutation relation [a,a†] = 1, and
|0〉 is the vacuum state, identified by the equation a|0〉 = 0.
Another example is provided by the spin-coherent states

|j,θ,φ〉 := ei θ
2 (sin ϕJx−cos ϕJy ) |j,j 〉 θ ∈ [0,π ],ϕ ∈ [0,2π ],

where Jx,Jy,Jz are the angular momentum operators, satisfy-
ing the relations [Jx,Jy] = iJz, [Jy,Jz] = iJx , [Jz,Jx] = iJy

and |j,j 〉 is the state identified by the equation Jz|j,j 〉 =
j |j,j 〉.

In addition to being GPCSs, the harmonic oscillator
coherent states and the spin-coherent states have an important
feature: when one takes the tensor product of two states with
the same label, one still obtains a GPCS. For example, the
product states |j,θ,ϕ〉|j ′,θ,ϕ〉 are GPCSs for every pair of val-
ues (j,j ′), as they are unitarily equivalent to the spin-coherent
state |j + j ′,θ,ϕ〉. Similarly the product states |gα〉|g′α〉 are
GPCSs for every pair of complex numbers g and g′, as they
are unitarily equivalent to the coherent state |

√
|g|2 + |g′|2α〉.

It turns out that this property is common to most of the
examples that are relevant for applications, including squeezed
states, pure Gaussian states, and arbitrary pure states of
finite-dimensional quantum systems. The property plays a
crucial role in our work and therefore it is convenient to give
it a name:

Definition 1. Two sets of GPCSs {|φ1,g〉} and {|φ2,g〉}
are mutually coherent if the product states {|φ1,g〉|ψ2,g〉} are
GPCSs.

The definition can be extended to more than two sets in
the obvious way: if {|φi,g〉} is a set of GPCSs for every
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i = 1, . . . ,K , we say that the K sets are mutually coherent
if the product states {|φ1,g〉|φ2,g〉 · · · |φK,g〉} are GPCSs.

In representation theory, the chief example of mutually
coherent GPCSs is the example of GPCSs generated by the
action of a semisimple Lie group on highest weight vectors
[32]. We recall that every semisimple Lie algebra can be
decomposed into roots, and that highest (lowest) weight
vectors are those that are annihilated by all the positive
(negative) roots. For example, the Lie algebra of SU(2) can
be decomposed as su(2) = jz ⊕ j+ ⊕ j−, where the j+ is the
positive root and j− is the negative root, and the vector |j,j 〉
is a highest weight vector, as j+|j,j 〉 = 0. By definition, if
|φi〉 ∈ Hi is a highest weight vector for every i, then also
|φ1〉|φ2〉 · · · |φK〉 is a highest weight vector and the subspace
generated by the product vectors |φ1,g〉 · · · |φK,g〉 is irreducible.
Hence, the states {|φ1,g〉 · · · |φK,g〉} are GPCSs. Summarizing,
GPCSs that are generated from a highest weight vector are
always mutually coherent. This is the case of the spin-coherent
states in atomic physics [associated with the group SU(2)] and
of most of the squeezed states considered in quantum optics
[associated with the group SU(1,1)].

C. General quantum benchmark for GPCSs

We consider the task of transforming N copies of an input
generalized coherent state |φg〉 ∈ H into M copies of another,
possibly different generalized coherent state |ψg〉 ∈ K. As a
figure of merit, we consider the maximization of the fidelity
between the output state produced by the device and the
target state |ψg〉⊗M . In the notation of Sec. II A, this means
choosing x ≡ g, ρg = (|φg〉〈φg|)⊗N , ρ ′

g = (|ψg〉〈ψg|)⊗M , and
Tg = (|ψg〉〈ψg|)⊗M . Importantly, here we do not require the
probability distribution p(g) to be uniform. Instead, we allow
it to be any probability distribution of the form

pγ (g) = dγ |〈φγ |φγ,g〉|2, (14)

where |φγ,g〉 := Uγ,g|φγ 〉 is a GPCS in some Hilbert space Hγ

and dγ is the normalization constant defined by

dγ :=
(∫

dg|〈φγ |φγ,g〉|2
)−1

,

dg being the Haar measure on the group G. For example, when
G is the group of translations in the plane, picking |φγ,g〉 to be
the ordinary coherent states |√γα〉 = D(

√
γα)|0〉, we have

the Gaussian prior

pγ (α) = γ e−γ |α|2 . (15)

In general, the prior of Eq. (14) has a precise operational
meaning: it is the prior that can be generated by preparing a
GPCS |φγ 〉 and by measuring it via the coherent-state POVM

Pγ,g = dγ |φγ,g〉〈φγ,g|,
whose normalization

∫
dg Pγ,g = 1 follows from Schur’s

lemma. Hence, we can imagine that the ensemble of input
states {|φg〉,pγ (g)} is generated by performing the coherent-
state POVM and, conditionally on outcome g, preparing
the state |φg〉. The uniform distribution, traditionally consid-
ered in most of the past literature, can be seen as a special
case of our probability distribution in Eq. (14), obtained by

choosing the space Hγ to be one-dimensional and the group
representation to be trivial (Ug ≡ 1 for every g ∈ G).

From now on, we will make the standing assumption that
the states |φg〉⊗N , |ψg〉⊗M , and |φγ,g〉 are mutually coherent
GPCSs. Under this assumption, we provide a straightforward
and in principle easy to compute expression for the quantum
benchmark of Eq. (11). This expression is the central result of
the paper and is summarized in the following theorem:

Theorem 1. The probabilistic CFT for the transformation
|φg〉⊗N �→ |ψg〉⊗M is given by

Fc(γ ) =
∫

dgpγ (g)|〈ψ |ψg〉|2M |〈φ|φg〉|2N∫
dgpγ (g)|〈φ|φg〉|2N

. (16)

It is easy to see that there exists a probabilistic MP protocol
(see Fig. 1) that achieves the above fidelity. The protocol
consists in the following steps:

(1) measure the input states on the two-outcome POVM
{Pyes,Pno}, where Pyes := (|φ〉〈φ|)⊗N and Pno := 1⊗N − Pyes;

(2) if the outcome is yes, prepare the output state |ψ〉⊗M ;
if the outcome is no, then declare “failure.”

The successful instance of this protocol is described by
the quantum operation N (ρ) := Tr[Pyesρ] (|ψ〉〈ψ |)⊗M which
takes place with average probability

pyes =
∫

dg pγ (g)|〈φ|φg〉|2N . (17)

Conditional on the occurrence of the successful outcome, the
fidelity of the protocol is given by Eq. (5) and is exactly equal
to Fc(γ ). In the Appendix we prove that this value of the
fidelity is optimal; i.e., it is the highest value of the fidelity
that can be achieved by arbitrary MP protocols. Therefore, we
have that Fc(γ ) is the CFT.

The result of Theorem 1 can be extended to benchmarks
where the performance is assessed on groups of k output
systems. Imagine that a quantum device attempts at performing
the transformation |φg〉⊗N → |ψg〉⊗M and the performances
of the device are tested according to the following recipe:

(1) pick a number k � M at random with probability p(k);
(2) pick a k-element subset of the output systems, say Sj ,

at random with probability p(j |k);
(3) test the fidelity between the state of the output systems

in Sj and k perfect copies of the state |ψg〉.
Even in this more general setting, the quantum benchmark

has a simple form, given by the CFT:

Fc(γ,p) =
M∑

k=1

p(k)

∫
dgpγ (g)|〈ψ |ψg〉|2k|〈φ|φg〉|2N∫

dgpγ (g)|〈φ|φg〉|2N
. (18)

The derivation of the benchmark is immediate: On the one
hand, it is clear that Fc(γ,p) is an upper bound, because for
every fixed k a generic MP protocol cannot perform better than
the optimal MP protocol, whose fidelity is given by Eq. (16)
with M = k. On the other hand, it is easy to see that the MP
protocol described after Theorem 1 achieves probabilistically
the fidelity Fc(γ,p).

III. BENCHMARKS FOR DISCRETE VARIABLES

Equations (16) and (18) cover a wide range of applica-
tions, including the benchmarks for teleportation and storage,
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complex conjugation, cloning, and loss of generalized coherent
states. We now analyze some of the most relevant cases
and highlight the applications of our benchmarks to several
experimental setups. For simplicity, we start from discrete
variables, while in the next two sections we will present
results for continuous variables, both in the Gaussian and
non-Gaussian scenario.

A. Pure qubit states

Let us start from the simplest possible case: benchmarking
devices that transform N equally prepared qubits into M

approximate copies. For M = N , the devices in question can
be teleportation devices or quantum memories, where the state
of the N identically prepared qubits is stored. For M > N

the devices are quantum copy machines (cloners), while for
M < N they are noisy channels in which N − M qubits are
lost. The case M < N is interesting because it allows us to
distinguish between different types of noise: on one hand, the
noise resulting from the mere loss of particles, and on the
other hand the noise due to a measurement, possibly by an
eavesdropper controlling the transmission line.

Thanks to Eq. (16), we can now evaluate the CFT for all
the above cases. Let us denote by |ψθ,ϕ〉⊗N the state of N

identically prepared qubits, where

|ψθ,ϕ〉 := cos
θ

2
|0〉 + sin

θ

2
eiϕ |1〉 θ ∈ [0,π ], ϕ ∈ [0,2π ),

(19)

is the single-qubit state with Bloch vector �rθ,φ =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ). It is well known that the uni-
taries in SU(2) are represented by rotations on the Bloch sphere
and that a generic pure state |ψθ,ϕ〉 can be obtained by applying
a rotation on the initial state |ψ0,0〉 ≡ |0〉.

Similarly, the states {|ψθ,ϕ〉⊗N } are generated from the state
|0〉⊗N by the N -fold tensor representation of the group SU(2).
They are GPCSs for every N , since they are generated from
the highest weight vector |0〉⊗N .

We consider input states distributed according to the prior
distribution

pβ(θ,ϕ)dθdϕ := dβ |〈0|ψθ,ϕ〉|2β sin θ dθ dϕ

4π

= (β + 1)

(
cos

θ

2

)2β+1

sin
θ

2
dθ

dϕ

2π
, (20)

which for integer β is of the form Eq. (14) [recall that
the SU(2)-invariant measure on the sphere is given by
sin θdθdϕ/(4π )]. Qubit states that are picked according to
the prior pβ(θ,ϕ) have a Bloch vector �rθ,ϕ with totally
random orientation in the x-y plane and with z compo-
nent distributed according to the marginal prior distribution
pβ(z) = 2−(β+1)(β + 1)(z + 1)β , for z ∈ [−1,1]. Note that
pβ(z) becomes more peaked around z = 1 as β becomes
larger, as illustrated in Fig. 2 where we plot pβ(z) for several
values of β.

Now, using Eq. (16) it is immediate to evaluate the CFT,
which is given by

F (2)
c (β) = N + β + 1

M + N + β + 1
, (21)

FIG. 2. (Color online) (a) Marginal prior probability distribution
pβ (z) for the z component of the Bloch vector of single-qubit pure
states, plotted for different values of the inverse-width parameter
β (β = 0,1,2,5). (b) Overlay of the corresponding prior probability
distribution pβ (θ,ϕ) for single-qubit states |ψθ,ϕ〉 on the Bloch sphere
(where θ,ϕ denote the polar and azimuthal angles), for β = 5.

where the superscript (2) refers to the dimension of the input
systems. In Appendix A 2 we extend the validity of this formula
from integer β to arbitrary β > 0, allowing one to interpolate
continuously from the completely flat distribution for β = 0
to the Dirac-delta distribution for β → ∞.

Our Eq. (21) can be readily applied, for instance, to
validate implementations of quantum telecloning of qubit
inputs [33,34]. The benchmark for these tasks is plotted in
Figs. 3(a)–3(b). The benchmark for probabilistic single-qubit
teleportation, derived by setting the special case N = M = 1
in Eq. (21), is

F (2)tele
c (β) = β + 2

β + 3
. (22)

Interestingly, both Eqs. (21)–(22) reproduce known results
in the literature [7,8] in the limit of uniform prior β → 0. Since
these results had been derived for deterministic protocols, their
coincidence with our benchmark shows that, for uniform prior,
probabilistic strategies offer no advantage: the absolute best
MP protocol can be implemented with probability 1. This
feature is general: the “magic” of probabilistic protocols for the
processing of GPCSs fades away in the presence of maximal
symmetry, as observed in Ref. [28] (cf. the Methods section
therein and the discussion of the so-called “many-world
fairness”), and as proven explicitly in Appendix A 4 of this
paper.

B. Spin-coherent states

The result for qubits can be extended in a straightforward
way to spin-coherent states of spin-j quantum systems with
arbitrary j . From the mathematical point of view, the extension
is trivial, because a system of spin j can be thought as a
composite system of 2j qubits. However, from the physical
point of view, it is worth treating this case separately, since not
all physical systems of spin j are composite systems of qubits
(think, for example, of the orbital angular momentum of an
atom).

For spin systems we can consider a device that attempts
at transforming N copies of the coherent state |j,j 〉θ,ϕ into
M copies of the coherent state |k,k〉θ,ϕ . Assuming a prior
distribution of the form of Eq. (20), the probabilistic CFT for
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FIG. 3. (Color online) Fidelity benchmark for the N → M trans-
formation of arbitrary pure qudit states with (a)–(b) d = 2, (c)–(d)
d = 3, and (e)–(f) d = 4. The input states are distributed according
to a prior distribution pβ dependent on an inverse-width parameter β

as explained in the main text. In the first column [panels (a), (c), (e)],
we set β = 0, corresponding to a uniform distribution. In the second
column [panels (b), (d), (f)], we set β = 5, which gives a peaked
distribution depicted in Fig. 2(b) for the qubit case (d = 2). The color
legend for the CFT F (d)

c in the bar charts is 0 (green) to 1 (red).

this transformation is

F (spin)
c (β) = 2jN + β + 1

2jN + 2kM + β + 1
, (23)

which follows from Eq. (23) by making the substitutions
N → 2jN and M → 2kM .

For j = k and M = N = 1, Eq. (23) gives the probabilistic
CFT for the teleportation and storage of spin-coherent states
[35–37], while for M > N it provides the CFT for successful
implementation of spin-coherent state cloning [38]. For k > j

and M = N = 1, it gives the CFT for “spin-stretching,”
namely the task of enlarging the angular momentum of
quantum systems while preserving its orientation in space [39].
To the best of our knowledge, the optimal spin stretching has
not been implemented yet in atomic systems and beating the
CFT in Eq. (23) sets the goal for future experiments in this
direction.

C. Pure qudit states

We now extend our result for qubits to arbitrary d-
dimensional quantum systems (qudits), with d < ∞. We
analyze the task of transforming N copies of a generic pure
state |ψ〉 ∈ Cd into M copies of the same state, with a prior

pβ(ψ) = dβ |〈0|ψ〉|2β, (24)

where |0〉 is a fixed pure state and dβ is the normalization
constant defined by

dβ :=
(∫

dψ |〈0|ψ〉|2β

)−1

, (25)

dψ being the SU(d)-invariant probability distribution on the
set of pure states. Again, for integer β the prior is exactly of
the form of Eq. (14) and goes from the uniform prior for β = 0
to a Dirac-delta centered around the state |0〉 for β → ∞.

The state |ψ〉 can be expressed in the Hurwitz parametriza-
tion [40,41] as

|ψ〉 = cos θ0e
iϕ0 |0〉 +

d−1∑
j=1

cos θj e
iϕj

(
j−1∏
n=0

sin θn

)
|j 〉, (26)

where θj ∈ [0, π
2 ) and ϕj ∈ [0,2π ) for n ∈ {0, . . . ,d − 2},

while ϕd−1 = θd−1 = 0. In this parametrization, the SU(d)-
invariant measure reads [41]

dψ = (d − 1)!

πd−1

d−2∏
j=0

cos θj (sin θj )2(d−j−1)−1dθjdϕj . (27)

In addition, one has |〈0|ψ〉| = cos θ0 and the normalization
constant in Eq. (25) can be evaluated explicitly as

dβ = �(β + d)

�(β + 1)�(d)
≡
(

β + d − 1

d − 1

)
. (28)

The CFT for the transformation |ψ〉⊗N �→ |ψ〉⊗M , expressed
as a function of the dimension d and the inverse width β of the
prior, is then given by

F (d)
c (β) =

(
N + β + d − 1

d − 1

)
(
M + N + β + d − 1

d − 1

) , (29)

and is plotted in Fig. 3.
This expression follows directly from the combination of

Eq. (28) with Eqs. (16) and (25), which gives F (d)
c (β) =

dN+β/dM+N+β . Naturally, the quantum benchmark for qubits
[Eq. (21)] can be retrieved by setting d = 2 in Eq. (29). In
Appendix A 2 we extend the validity of Eq. (29) from integer
β to arbitrary positive real β.

IV. BENCHMARKS FOR SINGLE-MODE
GAUSSIAN STATES

When moving from finite to infinite dimension, an almost
trivial result is obtained if one takes the limit d → ∞ in
Eq. (29): in this limit, F (d)

c tends to zero for every finite β,M,N .
This reflects the fact that it is impossible for Alice and Bob
to perform a reliable MP protocol simulating the transmission
and processing of arbitrary pure states of a continuous-variable
system. Meaningful benchmarks need therefore to consider
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restricted sets of input states, the most interesting of which
are those that can be prepared with the current experimental
techniques. An important example is provided by the Gaussian
states, which are the principal resources for most quan-
tum information protocols with continuous-variable systems
[42–46]. Although they live in an infinite-dimensional Hilbert
space, Gaussian states enjoy a simple mathematical description
in terms of a finite set of degrees of freedom, given by the
first and second moments of their creation and annihilation
operators. Pure Gaussian states and many of their relevant
subclasses are GPCSs. This is the case, e.g., of the conventional
coherent states, generated by the Weyl-Heisenberg group, and
of the squeezed states, generated by the group SU(1,1).

In the following we recall some recent results on quan-
tum benchmarks for N → M transformation of single-mode
Gaussian states, and we present several new results on general
non-Gaussian and multimode quantum states.

A. Coherent states

The coherent states of the harmonic oscillator are the
prototype example of GPCSs, and the optimal cloning [47–51]
and optimal amplification [18,24–27,52–54] of coherent states
form a canonical chapter of continuous-variable quantum
information [42,45]. Recently, the experimental breakthroughs
in the demonstration of noiseless probabilistic amplifiers
[24–27] have sparked a renewed interest in the optimal
processing of coherent states. Here the valuable feature is
that quantum devices based on probabilistic filters can almost
achieve the impossible tasks of amplification and cloning,
with the catch that their probability of success decreases
exponentially fast with the amplitude of the input coherent
state. For this reason, being able to handle a nonuniform prior
concentrated on the low-amplitude states is the key to discuss
the new experiments of probabilistic amplification. In this
section we review the known benchmarks for the amplification
of coherent states, showing how the general result of our paper
provides an easy and quick derivation of the probabilistic CFT.

As mentioned in Sec. II B, a coherent state of a single-mode
continuous-variable system can be written as

|α〉 = D(α) |0〉 , (30)

where

D(α) = exp(αa† − α∗a) (31)

is the displacement operator, a and a† are annihilation and
creation operators obeying the commutation relation [a,a†] =
1, and |k〉 denotes the kth Fock state, with |0〉 being the vacuum.
Now, suppose that an experimenter Alice is given N copies
of an input state |α〉 with complex displacement α distributed
according to the Gaussian distribution

pλ(α) = λ

π
e−λ|α|2 (32)

with inverse width λ−1, and suppose that her task is to produce
M copies of the target state |gα〉 for some fixed g ∈ C.
When g is positive and larger than 1, the state |gα〉 is an
amplified version of |α〉. More generally, allowing g to be
a complex number means allowing also for attenuation and
phase shifting. Teleportation, storage, complex conjugation,

cloning, loss, amplification, and attenuation of coherent states
are all examples of the general task discussed here and can be
retrieved by setting N,M , and g to the appropriate values.

The study of quantum benchmarks for the processing of
coherent states was first addressed in the case of teleportation
by Hammerer et al. [9], who proved the optimality of a fidelity
threshold conjectured by Braunstein, Fuchs, and Kimble
[6]. Later, benchmarks for deterministic amplification and
attenuation were put forward by Namiki et al. [17]. More
recently, Chiribella and Xie derived the quantum benchmark
for probabilistic amplification of coherent states [18]. Quite
surprisingly, the value of the probabilistic benchmark coin-
cides with the value of the deterministic benchmark obtained
in Ref. [17], implying that probabilistic MP protocols offer
no advantage over deterministic ones in the case of coherent
states. All these findings can be obtained from the general
result of Theorem 1. Indeed, since the prior of Eq. (32) is
of the form given in Eq. (14), our general machinery applies
and the probabilistic CFT can be obtained via Eq. (16). The
calculation is immediate and gives the result

F (1c)
c (λ) = N + λ

M|g|2 + N + λ
, (33)

where we use the suffix “(1c)” to indicate that the benchmark
holds for single-mode coherent states. For N = M = 1,
the above value coincides with the teleportation benchmark
conjectured in [6] and proven in [9], which converges to 1

2 for
uniform prior distribution (λ → 0). For general N and M , it
reproduces the various bounds given in [16–18].

B. Squeezed vacuum states

An important class of single-mode squeezed states is
generated by squeezing the vacuum. Mathematically, this
means applying the squeezing operator

S(ξ ) = exp
[

1
2 (ξa†2 − ξ ∗a2)

]
(34)

to the vacuum state, thus obtaining the state

|ξ 〉 := S(ξ )|0〉.
In this subsection we will provide the benchmark for states
of this form, with arbitrary complex squeezing parameter ξ .
In the same spirit of the previous sections, we deal with the
input state with a nonuniform prior, of the form pβ(ξ )μ(d2ξ ),
where pβ(ξ ) is proportional to |〈0|ξ 〉|2(β+2) and μ(d2ξ ) is the
invariant measure on the squeezed states, given by

μ(d2ξ ) = sinh s cosh s ds dθ/(2π ) ξ := seiθ

(see, e.g., [55]). Precisely, the prior is given by

pβ(ξ )μ(d2ξ ) := dβ |〈ξ |0〉|2(β+2)μ(d2ξ )

= β sinh s ds

(cosh s)β+1

dθ

2π
. (35)

The single-mode squeezed vacuum is a special case of a
much broader category of (generally multimode and generally
non-Gaussian) squeezed states, known as Perelomov squeezed
states [31]. For this category of states the quantum benchmark
can be derived in a unified way, which will be presented in
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Sec. V. We anticipate here the probabilistic benchmark for the
single-mode squeezed vacuum, given by

F (1s)
c (β) = N + β

M + N + β
. (36)

Note that for N = M = 1 the benchmark (36) reduces to the
benchmark for teleportation of single-mode squeezed vacuum
states recently obtained by some of us in Eq. (3a) of Ref. [11].

The single-mode squeezed vacuum states are frequently
used as an approximation of the so-called “even Schrödinger
cat states” [56–59], which are defined as superpositions of two
coherent states

|ψeven cat(α)〉 := |α〉 + | − α〉√
2(1 + e−2|α|2 )

.

The approximation is accurate when the squeezing degree |ξ |
is small, and rapidly worsens as |ξ | increases. Choosing a prior
distribution that is concentrated around ξ = 0 (i.e., choosing a
sufficiently large β), we can guarantee that the input squeezed
state will be with high probability a good approximation of an
even cat state and we can use Eq. (36) as a teleportation and
cloning validation criterion for even cat input states. Needless
to say, the feature that our benchmarks hold for a generally
nonuniform prior is essential here.

C. Arbitrary single-mode Gaussian states

A general pure single-mode Gaussian state can be written
as

|α,ξ 〉 := D(α)S(ξ ) |0〉 , (37)

where D(α) is defined in Eq. (31) and S(ξ ) is defined in
Eq. (34). Pure single-mode Gaussian states are thus entirely
specified by their displacement vector α ∈ C, their squeezing
degree s ∈ R+, and their squeezing phase θ ∈ [0,2π ). Quite
conveniently for our purposes, they are also a family of GPCSs,
generated by the action of the Jacobi group on the vacuum [60].

Following the general prescription of Eq. (14), we consider
the following prior distribution [11]:

pλ,β(α,s,θ ) = λβ

2π2

e−λ|α|2+λRe(e−iθ α2) tanh s sinh s

(cosh s)β+2
. (38)

This prior, depicted in Fig. 4, depends on two inverse-
width parameters, λ regulating the distribution of the dis-
placement α, and β regulating the distribution of the
squeezing degree s, while the squeezing phase θ is uni-
formly distributed. Note that the prior in (38) can be writ-
ten as pλ,β(α,ξ ) ∝ |〈0|λα,ξ 〉|2|〈0|ξ 〉|2(4+β)ν(d2α,d2ξ ), where
ν(d2α,d2ξ ) = d2α sinh s(cosh s)3dsdθ is the invariant mea-
sure under the joint action of displacement and squeezing [31].
In the case of no squeezing (β → ∞), this prior correctly
reproduces the Gaussian prior for coherent states, with
limβ→∞

∫
d2ξ pλ,β(α,ξ ) = pλ(α). Similarly, the marginal

prior of Eq. (35) for squeezed states is recovered by integrating
pλ,β(α,ξ ) over α, namely

∫
d2α pλ,β(α,ξ ) = pβ(ξ ) [11].

For integer values of λ,β, the benchmark for N → M

transformation of arbitrary pure single-mode Gaussian states
distributed according to the prior in (38) is then given by
evaluating Eq. (16), which results in the following CFT, where

FIG. 4. (Color online) Prior probability distribution over the in-
put ensemble of pure single-mode Gaussian states, Eq. (38), setting
the inverse-width parameters to λ = 2 and β = 6. Panel (a) depicts
the marginal prior distribution for displacement α and squeezing
degree s after integrating Eq. (38) over the squeezing phase θ ,
yielding pλ,β (α,s) = π−1λβe−λ|α|2 sinh s(cosh s)−β−2I0[λ|α|2 tanh s]
[11], where I0 is a modified Bessel function. Panel (b) depicts cross
sections of the phase-space Wigner functions for a small sample
of pure single-mode Gaussian states with parameters α, s, and θ

randomly sampled according to the considered prior distribution.
The correspondence between the parameters of a Gaussian state
and the form factor of the corresponding cross section (which is
an ellipse obtained by cutting the two-dimensional Gaussian Wigner
function) is as follows: the center of the ellipse has phase-space
coordinates (q,p) ≡ (

√
2Reα,

√
2Imα), the ellipse is rotated by θ/2

with respect to the horizontal axis, and the ratio between the lengths
of the semiaxes is e2s ; see, e.g., [46] for more detail.

the suffix “(1cs)” stands for one-mode coherent (i.e., displaced)
squeezed states:

F (1cs)
c (λ,β) = (N + λ)(N + β)

(N + M + λ)(N + M + β)
. (39)

The benchmark of Eq. (39) is plotted in Fig. 5. For
N = M = 1, this result reproduces the very recent benchmark
for teleportation and storage of pure single-mode Gaussian
states, obtained by some of us in Ref. [11]. Interestingly, the
benchmark for pure Gaussian states is equal to the product
of the benchmarks for coherent states [Eq. (33) with g = 1]
and the benchmark for squeezed vacuum states [Eq. (36)].

FIG. 5. (Color online) Fidelity benchmark for the N → M trans-
formation of arbitrary pure single-mode Gaussian states, distributed
according to the prior pλ,β of Eq. (38), with (a) λ = β = 0
(input ensemble of infinite energy), and (b) λ = 2, β = 6 (peaked
distribution as in Fig. 4). The color legend for the CFT F (1cs)

c in the
bar charts is 0 (green) to 1 (red).
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These two benchmarks are retrieved in the limits β → ∞ (no
squeezing) and λ → ∞ (no displacement), respectively. One
can numerically verify that the benchmark in Eq. (39) holds
for generally noninteger values of β and λ as well, by using a
laborious but straightforward operator approach [11].

V. BENCHMARKS FOR NON-GAUSSIAN MULTIMODE
SQUEEZED STATES

In the following, we turn our attention from single-
mode Gaussian states to multimode non-Gaussian states.
Specifically, we introduce the benchmark for a family of
squeezed states which were first proposed by Perelomov
[23,31]. The family of Perelomov squeezed states includes
Gaussian states such as the single-mode squeezed vacuum
states (discussed in Sec. IV B) and, more intriguingly, also
several non-Gaussian states. For example, the state obtained
by squeezing a single-photon Fock state belongs to this class;
such a state is a good approximation of an “odd Schrödinger
cat state” and has applications in hybrid continuous variable
quantum information processing [56–59,61].

A. Benchmark for general Perelomov squeezed states

Perelomov squeezed states are characterized by an index
j > 0 and by a squeezing parameter ξ = seiθ . For every fixed
value of j one has a family of squeezed states, generated by
the action of a suitable squeezing operator on a given state.
The members of the family are states of the form

|ξ,j 〉 := 1

(cosh s)j

∞∑
n=0

√(
n + j − 1

n

)
(eiθ tanh s)n|ψ (j )

n 〉,

(40)

where {|ψ (j )
n 〉}n∈N is a given orthonormal basis. For a fixed

value of j , we call the states in this family the Perelomov-j
states. Many known families of squeezed states can be ex-
pressed as Perelomov-j states. For example, the single-mode
squeezed vacuum states, discussed in Sec. IV B, can be viewed
as Perelomov- 1

2 states by setting |ψ (j=1/2)
n 〉 ≡ |2n〉 in Eq. (40).

Similarly, the squeezed single-photon states can be viewed as
Perelomov- 3

2 states by setting |ψ (j=3/2)
n 〉 ≡ |2n + 1〉.

Let us consider the transformation |ξ,j 〉⊗N → |ξ,k〉⊗M ,
where N copies of a Perelomov-j state are mapped into M

copies of the corresponding Perelomov-k state. Among the
possible examples one has not only state teleportation and
cloning, but also more exotic tasks, such as the transformation
of squeezed vacuum states into squeezed single-photon states.
Assuming the same prior used in Eq. (35) it is easy to evaluate
the benchmark from Eq. (11). The calculation, presented
in Appendix A 3, yields the following CFT for Perelomov
squeezed states:

F (P)
c (β) = 2jN + β

2kM + 2jN + β
. (41)

Plenty of appealing results can be derived from Eq. (41),
e.g., the benchmark for the single-mode squeezed states in
Eq. (36). In the rest of this section we will show a selection of
what we believe are the the most meaningful ones.

B. Squeezed single-photon states

The squeezed single-photon states are defined as S(ξ )|1〉,
where S(ξ ) is the single-mode squeezing operator (34) and
|1〉 is the one-photon Fock state [62]. When the amount of
squeezing is small, they are a good approximation of the odd
Schrödinger cat states [56–59], i.e., of the superposition of two
coherent states defined by

|ψodd cat(α)〉 := |α〉 − | − α〉√
2(1 − e−2|α|2 )

.

As we mentioned earlier, the squeezed single-photon states
are the Perelomov-j states with j = 3/2. Accordingly, the
benchmark for transforming N copies of a squeezed single-
photon state into M copies is obtained by setting j = k = 3/2
in Eq. (41), which yields the CFT

F
(P 3

2 )
c = 3N + β

3(N + M) + β
. (42)

The benchmark is plotted in Figs. 6(c)–6(d). Note that
when β is large and the prior distribution of the squeez-
ing parameter is concentrated around |ξ | = 0, this bench-
mark can be approximately applied to the teleportation and
cloning of odd Schrödinger cat states. The application of
our benchmark leads to some rather strong consequences.
Indeed, when the average photon number is small (here we
choose |α| � 1), an odd cat state |ψodd cat(α)〉 can be well
approximated by the squeezed single-photon state |ξ∗,3/2〉
where the optimal amount of squeezing is ξ∗ = s∗e2iθ with
s∗ = 1

2 ln(|α|2/3 +
√

9 + 4|α|4/3) and θ being the phase of
α [59]. Choosing β to be large, one can guarantee that
the squeezing degree is smaller than |ξ∗(α = 1)| with high
probability, so that the input states are likely to be close to
odd cat states. For example, one can consider the case of
teleportation (N = M = 1); solving the inequality∫ 2π

0

dθ

2π

∫ s∗(1)

0

β sinh sds

(cosh s)β+1
� 0.99,

one gets β � 95.79, which, plugged into the benchmark (42),
yields

F (odd cat)
c � 0.971.

This lower bound shows that MP protocols can achieve
high fidelity in the teleportation of odd cat states with
small photon numbers (|α| � 1), due to the large amount of
prior information available about the input. In this regime,
demonstrating a genuine quantum teleportation of odd cat
states appears nearly impossible. Of course, one can still
consider the more feasible task given by teleportation of
single-photon squeezed states for broader prior distributions,
allowing the input states to be different from cat states.

C. Unbalanced two-mode squeezed number states

In this subsection we introduce the benchmark for another
important family of continuous-variable states, which are
generated by applying the two-mode squeezing operator

S(2)(ξ ) = exp[−ξ ∗a1a2 + ξa
†
1a

†
2] (43)
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FIG. 6. (Color online) Fidelity benchmark for the N → M trans-
formation of Perelomov-j squeezed states with (a)–(b) j = 1,
corresponding to (Gaussian) two-mode squeezed vacuum states,
(c)–(d) j = 3

2 , corresponding to (non-Gaussian) squeezed single-
photon states, and (e)–(f) j = 3, corresponding to (non-Gaussian)
states obtained by applying a two-mode squeezing operation to the
Fock states |2〉|0〉. The input states are distributed according to a
prior distribution pβ dependent on an inverse-width parameter β as
explained in the main text. In the first column [panels (a), (c), (e)],
we set β = 0, corresponding to a uniform distribution. In the second
column [panels (b), (d), (f)], we set β = 4. The color legend for the
CFT F (P j )

c in the bar charts is 0 (green) to 1 (red).

to the two-mode Fock state |m〉|0〉, with m an arbitrary integer.
For m = 0, these are the standard two-mode squeezed vacuum
states, which are ubiquitous in continuous-variable quantum
information processing [42,43,45]. For m > 0, one has instead
a set of non-Gaussian unbalanced two-mode squeezed number
states [63]. Like in the case of squeezed single-photon
states, the non-Gaussianity of these states is a precious
resource for continuous-variable quantum information pro-
cessing [58,61,64]. Consequently, having a benchmark for this
class of states provides a useful criterion for the verification of
quantum protocols empowered by non-Gaussianity [65].

The unbalanced two-mode squeezed state of Eq. (43)
corresponds to the Perelomov-(m + 1) state

|ξ,m + 1〉 = S(2)(ξ )|m〉|0〉,

where the basis in Eq. (40) is |ψ (m)
n 〉 := |n + m〉|n〉. Setting

k = j = m + 1 in Eq. (41), we immediately get the CFT

F (P m+1)
c = 2(m + 1)N + β

2(m + 1)(N + M) + β
. (44)

This is plotted in Fig. 6 for selected values of m and β.
Notice in particular that the benchmark for Gaussian two-

mode squeezed vacuum states (m = 0) returns:

F (P 1)
c = 2N + β

2(N + M) + β
. (45)

Such a CFT can be equivalently obtained from the benchmark
for Gaussian single-mode squeezed vacuum states, Eq. (36), by
doubling N and M . This is consistent with the fact that a two-
mode squeezed vacuum state can be always generated from
two single-mode squeezed vacuum states (equally squeezed in
orthogonal quadratures) by means of a balanced beam splitter.
A quantum memory for entangled two-mode squeezed light
was demonstrated in [66]. However, in that implementation the
input squeezing degree was assumed to be known and therefore
a different benchmark was used to validate the experiment [12].

VI. DETERMINISTIC VS PROBABILISTIC BENCHMARKS

In the preceding sections we established the ultimate
probabilistic benchmarks for a variety of protocols and input
states. A natural question is whether there exist deterministic
MP strategies which are able to achieve the benchmarks. In
the following we address this question, considering separately
the cases of uniform and nonuniform priors.

A. Uniform prior: Optimality of the square-root measurement

Let us assume that the input states {|φg〉} are chosen
at random according to the normalized Haar measure. This
assumption is easily justified when the group G is compact.
Nevertheless, one can make sense of it also in more general
cases of noncompact groups, by considering the uniform prior
as the limit of a sequence of priors with increasing width.
Alternatively, one can also interpret the (unnormalized) Haar
measure as a weight that Victor assigns to the different input
states when computing the figure of merit.

Whenever the input states are uniformly distributed (or
weighted), one can prove that the the probabilistic benchmark
can be reached by a deterministic strategy, which consists in
performing the square-root measurement [67] and preparing
the output state that corresponds to the measurement outcome.
In general, for a given set of states {ρx} and a given set of
probabilities {px}, the square-root measurement is the POVM
{Px}x∈X defined by

Px = ρ− 1
2 (pxρx) ρ

− 1
2

x , (46)

where ρ = ∑
x px ρx (note that this definition makes sense

even if {px} are weights, provided that the sum is finite). In the
case of the uniformly distributed GPCS {|φg〉}, the square-root
measurement is just the POVM with operators

Pg = dφ |φg〉〈φg| dφ :=
(∫

dg |〈φ|φg〉|2
)−1

. (47)
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In Appendix A 4 we prove that performing the square-root
measurement and repreparing the output state corresponding
to the outcome is an optimal strategy. In other words, the
ultimate CFT Fc can be achieved with unit probability when
the prior is uniform. This feature holds also not only for MP
protocols but also for the optimal quantum devices: in the
case of uniform prior Alice and Bob can achieve the ultimate
quantum fidelity Fq with probability 1 by applying a suitable
quantum channel [68], which generalizes the universal cloning
channel by Werner [69] and the Gaussian cloners by Cerf, Ipe,
Rottenberg, Iblisdir, and Lindblad [47–49].

B. Nonuniform prior: A counterexample

The result of the previous paragraph might suggest that
one can always attain our benchmarks using a deterministic
protocol based on the square-root measurement. A further clue
that goes in that direction comes from the benchmarks for
coherent states of the harmonic oscillator [9,17,18], which can
all be achieved by the square-root measurement. Nevertheless,
these results cannot be generalized to arbitrary GPCSs: here we
show a counterexample where the square-root measurement
does not achieve the probabilistic benchmark. It remains how-
ever an open question whether more complicated deterministic
strategies can achieve our probabilistic benchmarks in the
general case.

Suppose that Alice wants to teleport a single-qubit state to
Bob, chosen at random on the Bloch sphere according to the
nonuniform prior pβ(dg) = dβ |〈φ|φg〉|2βdg of Eq. (20) and
Fig. 2. Consider the MP protocol that consists in measuring
the square-root measurement with POVM operators

Pη(g) := pη(g)ρ
− 1

2
η (|ψg〉〈ψg|)⊗N ρ

− 1
2

η , (48)

where

ρη =
∫

pη(dg) (|ψg〉〈ψg|)⊗N.

Strictly speaking, the square-root measurement associated
with the input ensemble would have η ≡ β, but here we grant
Alice and Bob the additional freedom to optimize over η,
possibly obtaining a better fidelity.

By performing the square-root measurement with param-
eter η and repreparing the qubit state corresponding to the
outcome, Alice and Bob get the teleportation fidelity

F (β,η) =
∫

dg

∫
dĝpβ(g)pη(ĝ)|〈ψg|τ− 1

2
η |ψĝ〉|2|〈ψg|ψĝ〉|2.

(49)

For fixed inverse width β, we can now find the value of η

that maximizes the teleportation fidelity. The optimization
can be done analytically (see Appendix A 5) and yields a
fidelity Fηopt (β) that is strictly smaller than the benchmark
F (2)tele

c (β) = β+2
β+3 from Eq. (22). In Fig. 7, the fidelity for the

optimal square-root measurement Fηopt (β) and the benchmark
F (2)tele

c are plotted as functions of β. Clearly, the square-root
measurement is not optimal for every finite value β ∈ (0,∞).
The explicit expression of the gap �(β) between the two fideli-
ties is reported in Appendix A 5. Interestingly, for large β the
gap vanishes polynomially with β, precisely �(β) ≈ O(β−3).
Therefore we conclude that the square-root measurement is

FIG. 7. (Color online) The fidelity Fηopt (β) := maxη F (β,η) for
the optimal deterministic square-root measurement (red dashed line)
and the ultimate probabilistic benchmark F (2)tele

c (β) for one-qubit
teleportation (blue solid line) as functions of the inverse width β

of the prior distribution. The (green) filling between the two lines
represents the gap between the benchmark and the performance of
the optimal square-root measurement.

asymptotically optimal, when the prior knowledge about the
input state becomes more and more peaked.

VII. QUANTUM BENCHMARKS VS OPTIMAL QUANTUM
STRATEGIES: A TASK WITH NO QUANTUM ADVANTAGE

The main application of quantum benchmarks is the
certification of quantum advantages in realistic experimental
settings. However, not every task displays a quantum advan-
tage: for some transformations, the maximum fidelity achieved
by arbitrary quantum strategies is equal to the quantum
benchmark associated with the best MP procedure.

An example of this situation is the following: Suppose that
we want to transform N copies of the GPCS |φg〉, distributed
with prior probability pγ (g) = dγ |〈φγ |φγ,g〉|2, into M copies
of the state |ψ∗

g 〉, the complex conjugate of another GPCS
state |ψg〉. As in the rest of the paper, we assume that the
states |ψg〉⊗M , |φg〉⊗N , and |φγ,g〉 are mutually coherent, i.e.,
that their product is a GPCS. In this setting, we can prove
that there is no quantum advantage: MP protocols are optimal
among all possible quantum strategies. The proof is presented
in Appendix A 6, where we show the equality Fq = Fc between
the ultimate quantum fidelity in Eq. (7) and the benchmark of
Eq. (11).

The simplest example of this situation is illustrated by the
optimal approximation of the universal NOT gate for qubits
[70,71], which is unitarily equivalent to the optimal complex
conjugation (i.e., optimal transposition). In this case, the fact
that a MP protocol is the best among all possible quantum
strategies was exploited in Ref. [72] to design an experimental
implementation of the optimal transposition of photonic qubit
states. For higher dimensional systems and for coherent states
of the harmonic oscillator, the optimal transposition map was
derived in Ref. [73]. Very recently, the observation that this
map can be achieved by a MP protocol has been used for an
experimental demonstration for qutrit states encoded into the
path and polarization degrees of freedom of a single photon

042319-12



CERTIFYING QUANTUMNESS: BENCHMARKS FOR THE . . . PHYSICAL REVIEW A 90, 042319 (2014)

[74]. Optimal MP protocols for the transposition of arbitrary
pure states in finite dimensions have also been proposed in
[74]. Our result extends the optimality of MP protocols to
a large variety of new scenarios, including the transposition
of various Gaussian and non-Gaussian pure states, distributed
according to a generally nonuniform prior.

VIII. DISCUSSION AND CONCLUSIONS

Very recent experiments have reached a remarkable degree
of control in the preparation and manipulation of hybrid states
of light and matter [58,75–77]. Hybrid optical technologies
[61] combine the best of both worlds, discrete-variable and
continuous-variable systems, in order to efficiently realize
elementary building blocks for distributed quantum communi-
cation [2]. For instance, in a recent experiment a single-photon
state was teleported unconditionally, i.e., deterministically,
using a continuous-variable setup [75]. Complementary to
such an approach, a proposal to realize high-fidelity telepor-
tation of continuous-variable states by multiple single-photon
teleportation channels was also recently put forward [78]. One
can easily imagine extensions of such protocols from telepor-
tation to the more general instance of asymmetric telecloning
[33], where remote parties receive approximate copies of
input unknown states, possibly with nonuniform fidelities. So
far, telecloning has been successfully implemented for Gaus-
sian (coherent) inputs exploiting Gaussian shared entangled
states [79].

However, to the best of our knowledge, a completely satis-
factory teleportation or telecloning experiment demonstrating
the use of entangled resources to surpass the best classical
performance in the transmission of an ensemble of input states
has not been achieved to date. Such an experiment would
require sampling a high number of input states from a prior
distribution known to senders and receivers, accomplishing
the transmission for each input, and eventually calculating the
experimental average fidelity over the ensemble. This should
then be compared to, and shown to surpass, the ultimate
benchmark corresponding to the given input ensemble.

The present work offers a powerful and general machinery
to derive such benchmarks for many instances of relevant input
ensembles, with adjustable prior distributions which can be
tailored to reliably mimic the experimental facilities. One of
the strengths of our approach to quantum benchmarking is that
it encompasses under a unifying mathematical framework both
discrete- and continuous-variable states, and both Gaussian
and non-Gaussian ones in the latter case. The obtained
benchmarks are therefore ideally and naturally suited to be
used as tests to validate current and future implementations of
hybrid quantum communication.

We hope this paper may stimulate further efforts by the
experimental community, and further interaction with the
theoretical one, in order to reach new heights in the successes of
quantum optical technologies and demonstrate performances
even more markedly above what classically possible. In
particular, new (possibly probabilistic) protocols and new
tools are required to beat the benchmarks for the transmission
of squeezed vacuum or squeezed Fock states (or, similarly,
Schrödinger-cat-like states) using affordable degrees of shared

entangled resources, as discussed, e.g., in [80] and in the
present paper.

Finally, despite the large variety of relevant cases in which
this work succeeds to deliver analytical benchmarks, let us
briefly comments on some limitations of our approach which
call for further investigation. One of the main limitations is
in the fact that our input states are always assumed to be
pure. A more faithful analysis of experiments might require
the derivation of benchmarks for ensembles of initially mixed
states; while this may not be possible in closed form for all
the classes of states analyzed here, one can always resort
to numerical methods, e.g., semidefinite programming as in
[13]. From this point of view, Eq. (11) represents a convenient
starting point. More generally, the application of our group-
theoretic methods to the assessment of the ultimate quantum
(rather than classical) bounds in protocols such as remote
state preparation, optimal quantum cloning, amplification and
attenuation of generalized coherent states, and optical imaging
technologies, will be analyzed in forthcoming works.
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APPENDIX: PROOFS

1. Proof of Theorem 1

Since we have already exhibited a probabilistic MP protocol
that achieves the fidelity in Eq. (16), here we only need to
show that the right-hand side of Eq. (16) is an upper bound for
arbitrary MP protocols. To this purpose, we start from Eq. (11),
which now reads

Fc(γ ) = ∥∥(Iout ⊗ ρ
− 1

2
γ

)
�γ

(
Iout ⊗ ρ

− 1
2

γ

)∥∥
×, (A1)

where ργ is the averaged input state, given by

ργ :=
∫

pγ (dg)(|φg〉〈φg|)⊗N,

and �γ is the average input-output state, given by

�γ :=
∫

dg pγ (g) (|ψg〉〈ψg|)⊗M ⊗ (|φg〉〈φg|)⊗N.
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Now, for every operator A we have the inequality ‖A‖× � ‖A‖∞, where ‖A‖∞ = sup‖|�〉‖=1〈�|A|�〉. Hence, we have the
bound

Fc(γ ) ≤ ∥∥(Iout ⊗ ρ
− 1

2
γ

)
�γ

(
Iout ⊗ ρ

− 1
2

γ

)∥∥
∞

= min
{
λ � 0|(Iout ⊗ ρ

− 1
2

γ

)
�γ

(
Iout ⊗ ρ

− 1
2

γ

)
� λ Iout ⊗ Iin

}
= min{λ ≥ 0|�γ � λ(Iout ⊗ ργ )} =: λmin.

On the other hand, ργ and �γ can be expressed as

ργ = dγ TrHγ

[(∫
dg(|φg〉〈φg|)⊗N ⊗ |φγ,g〉〈φγ,g|

)
(Iin ⊗ |φγ 〉〈φγ |)

]
�γ = dγ TrHγ

[(∫
dg(|ψg〉〈ψg|)⊗M ⊗ (|φg〉〈φg|)⊗N ⊗ |φγ,g〉〈φγ,g|

)
(Iout ⊗ Iin ⊗ |φγ 〉〈φγ |)

]
.

Since by hypothesis the states |φg〉⊗N,|ψg〉⊗M and |φγ,g〉 are mutually coherent, Schur’s lemma implies that the integrals on the
right-hand side of the above equations are proportional to projectors on irreducible subspaces. Specifically, we have∫

dg(|φg〉〈φg|)⊗N ⊗ |φγ,g〉〈φγ,g| = P

dP

dP :=
(∫

dg |〈φ|φg〉|2N |〈φγ |φγ,g〉|2
)−1

, (A2)

∫
dg(|ψg〉〈ψg|)⊗M ⊗ (|φg〉〈φg|)⊗N ⊗ |φγ,g〉〈φγ,g| = Q

dQ

dQ :=
(∫

dg |〈ψ |ψg〉|2M |〈φ|φg〉|2N |〈φγ |φγ,g〉|2
)−1

, (A3)

where P and Q are the projectors on the irreducible subspaces
HP and HQ spanned by the vectors {|φg〉⊗N |φγ,g〉} and
{|ψg〉⊗M〉|φg〉⊗N |φγ,g〉}, respectively. Since HQ is a subspace
of H⊗M ⊗ HP , we have Q � (I⊗M ⊗ P ). Hence, we have the
bound

�γ = dγ TrHγ

[
Q

dQ

(Iout ⊗ Iin ⊗ |φγ 〉〈φγ |)
]

� dγ TrHγ

[
Iout ⊗ P

dQ

(Iout ⊗ Iin ⊗ |φγ 〉〈φγ |)
]

= dP

dQ

Iout ⊗
{
dγ TrHγ

[
P

dP

(Iin ⊗ |φγ 〉〈φγ |)
]}

= dP

dQ

Iout ⊗ ργ .

In conclusion, we have proven the inequality

λmin � dP

dQ

=
∫

dg |〈ψ |ψg〉|2M |〈φ|φg〉|2N |〈φγ |φγ,g〉|2∫
dg |〈φ|φg〉|2N |〈φγ |φγ,g〉|2 ,

(A4)

having used Eqs. (A6) and (A8) in the second equality.
Combined with the inequality Fc(γ ) � λmin, Eq. (A4) gives

the desired upper bound once. Since the right-hand side of the
inequality is achievable by a probabilistic MP protocol (see
the main text), we proved the following equality:

Fc(γ ) = ∥∥(Iout ⊗ ρ
− 1

2
γ

)
�γ

(
Iout ⊗ ρ

− 1
2

γ

)∥∥
×

≡ ∥∥(Iout ⊗ ρ
− 1

2
γ

)
�γ

(
Iout ⊗ ρ

− 1
2

γ

)∥∥
∞. (A5)

2. Proof of the benchmark in Eq. (29) for general
d and general β

Equation (29) is the specialization of Eq. (16) to pure qudit
states. Since we know that the fidelity in Eq. (16) is achievable,
here we only need to show that no MP protocol can achieve a
higher fidelity. To this purpose, we use the upper bound

Fc � ‖A‖∞ A := (
Iout ⊗ ρ− 1

2
)
�
(
Iout ⊗ ρ− 1

2
)
, (A6)

which follows immediately from the general expression for the
CFT given in Eq. (11) and from the inequality ‖A‖× � ‖A‖∞.
In the following we compute directly the operator norm, by
working out the expressions for the operators ρ and �. Since
these operators depend on the inverse width β, we will denote
them by ρβ and �β , namely

ρβ :=
∫

dψpβ (ψ)(|ψ〉〈ψ |)⊗N,

�β :=
∫

dψpβ (ψ)(|ψ〉〈ψ |)⊗(M+N), (A7)

Aβ := (
Iout ⊗ ρ

− 1
2

β

)
�β

(
Iout ⊗ ρ

− 1
2

β

)
.

Let us start from the computation of ρβ (the computation
of �β is identical and the result can be obtained by replacing
N by M + N ). Using the Hurwitz parametrization, the state
|ψ〉⊗N can be expressed as

|ψ〉⊗N =
∑

n∈PN,d

√(
N

n

)⎛⎝d−1∏
j=0

cj

⎞⎠ |N,n〉, (A8)

where the summation is over the set PN,d consisting of
all partitions of N into d nonnegative integers, (N

n ) is the
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multinomial (
N

n

)
:= �(N + 1)∏d−1

j=0 �(nj + 1)
,

the coefficients {cj } are given by

c0 := eiθ0 cos θ0, cj := eiθj cos θj

(
j−1∏
k=0

sin θk

)
j ∈ {1, . . . ,d − 2}, cd−1 :=

d−2∏
k=0

sin θk,

and |N,n〉 is the unit vector obtained by projecting the vector |0〉n0 |1〉n1 · · · |d − 1〉nd−1 on the symmetric subspace. Using
Eqs. (A3), (24), and (27), we then obtain

ρβ = dβ(d − 1)!2d−1
∑

n∈PN,d

(
N

n

)⎡⎣∫ π/2

0
dθ0(cos θ0)2β+1(sin θ0)2(d−1)−1

d−2∏
j=1

∫ π/2

0
dθj cos θj (sin θj )2(d−j−1)−1

⎤⎦
×
∣∣∣∣∣∣
d−1∏
j=0

c
nj

j

∣∣∣∣∣∣
2

|N,n〉〈N,n|

= dβ(d − 1)!2d−1
∑

n∈PN,d

(
N

n

)[∫ π/2

0
dθ0(cos θ0)2(β+1+n0)−1(sin θ0)2(d−1+∑d−1

k=1 nk )−1

]

×
⎡⎣d−2∏

j=1

∫ π/2

0
dθj (cos θj )2(nj +1)−1(sin θj )2(d−j−1+∑d−1

k=j+1 nk)−1

⎤⎦ |N,n〉〈N,n|.

The integrals can be computed using the relation∫ π/2

0
dx(cos x)2p−1(sin x)2q−1 = �(t)�(q)

2�(p + q)
,

which yields

ρβ = dβ(d − 1)!2d−1
∑

n∈PN,d

(
N

n

)[
�(β + 1 + n0)�

(
d − 1 +∑d−1

k=1 nk

)
2�(β + d + N )

]

×
⎡⎣d−2∏

j=1

�(nj + 1)�
(
d − j − 1 +∑d−1

k=j+1 nk

)
2�
(
d − j +∑d−1

k=j nk

)
⎤⎦ |N,n〉〈N,n|

= dβ(d − 1)!
∑

n∈PN,d

(
N

n

)
�(β + n0 + 1)

∏d−1
j=1 �(nj + 1)

�(β + d + N )
|N,n〉〈N,n|

= dβ

∑
n∈PN,d

(
N

n

)(
N+β+d−1

d−1

)(
N+β

n+β

) |N,n〉〈N,n| β := (β,0, . . . ,0) ∈ Rd . (A9)

Replacing N by M + N , we obtain the expression for the operator �β :

�β = dβ

∑
t∈PM+N,d

(
M+N

t

)(
M+N+β+d−1

d−1

)(
M+N+β

t+β

) |M+N,t〉〈M+N,t|. (A10)

In order to compute the operator norm in Eq. (A6), we now diagonalize the operator Aβ . To this purpose, we define the vectors

|�M+N,t〉 := (
Iout ⊗ ρ

− 1
2

β

)|M + N,t〉,
so that one has

Aβ = dβ

∑
t∈PM+N,d

(
M+N

t

)(
M+N+β+d−1

d−1

)(
M+N+β

t+β

) |�M+N,t〉〈�M+N,t|, (A11)
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as follows from Eqs. (A7) and (A10). Note that the vectors |�M+N,t〉 are mutually orthogonal. Indeed, using the relation

|M + N,t〉 =
∑

m ∈ PM,d ,n ∈ PN,d

m + n = t

√√√√(
M

m

)(
N

n

)(
M+N

t

) |M,m〉|N,n〉,

we get

〈�M+N,t|�M+N,t′ 〉 = 〈M + N,t|(Iout ⊗ ρ−1
β

)|M + N,t′〉

=
∑

m + n = t
m′ + n′ = t′

√√√√(
M

m

)(
N

n

)(
M+N

t

)
√√√√(

M

m′
)(

N

n′
)(

M+N

t′
) 〈M,m|M,m′〉〈N,n|ρ−1

β |N,n′〉

=
∑

m + n = t
m′ + n′ = t′

√√√√(
M

m

)(
N

n

)(
M+N

t

)
√√√√(

M

m′
)(

N

n′
)(

M+N

t′
) δm,m′

[
d−1

β

(
N+β+d−1

d−1

)(
N+β

n+β

)(
N

n

) δn,n′

]

= δt,t′

[ ∑
m+n=t

(
M

m

)(
N+β

n+β

)(
M+N

t

) ]
d−1

β

(
N + β + d − 1

d − 1

)

= δt,t′

(
M+N+β

t+β

)(
M+N

t

) d−1
β

(
N + β + d − 1

d − 1

)
.

Here we used Eq. (A9) in the third equality and the Chu-
Vandermonde identity for multinomials [81] in the fifth
equality.

Finally, defining the normalized vectors

|�M+N,t〉 := |�M+N,t〉√〈�M+N,t|�M+N,t〉
and using Eq. (A11) we obtain the desired diagonalization

Aβ =
(
N+β+d−1

d−1

)(
M+N+β+d−1

d−1

) ∑
t∈PM+N,d

|�M+N,t〉〈�M+N,t|.

Note that the operator Aβ is proportional to a projector and the
proportionality constant is the operator norm

‖Aβ‖∞ =
(
N+β+d−1

d−1

)(
M+N+β+d−1

d−1

) .

By Eq. (A2), we obtain the upper bound Fc �
(N+β+d−1

d−1 )/(M+N+β+d−1
d−1 ). The upper bound coincides with

the achievable value given in Eq. (29), thus proving the
optimality of our benchmark.

3. Proof of the benchmark for multimode squeezed
states Eq. (41)

In this section we prove the benchmark Eq. (41) following
a similar route as we did in Appendix A 2. We will prove an
upper bound for the MP protocols using Eq. (A6), and then
show that it is achievable.

In order to compute the operator norm in Eq. (A6), we
need to first determine ρβ and �β (labeled by the inverse
width parameter β of the prior). A tensor product of M

identical copies of Perelomov-k states and N identical copies
of Perelomov-j states can be represented as

|ξ,k〉⊗M |ξ,j 〉⊗N = 1

(cosh s)Mk+Nj

∞∑
n=0

(eiθ tanh s)n
√(

kM + jN + n − 1

n

)∣∣�(k,j )
M,N,n

〉
. (A12)

Here {|�(k,j )
M,N,n〉}n is a set of vectors defined as

∣∣�(k,j )
M,N,n

〉 =
√(

kM + jN + n − 1

n

)−1 ∑
{ni }∈Pn,M+N

(
M⊗

α=1

√(
nα + k − 1

nα

)∣∣ψ (k)
nα

〉)⊗
⎛⎝ M+N⊗

β=M+1

√(
nβ + j − 1

nβ

)∣∣ψ (j )
nβ

〉⎞⎠ ,

where {ni} := {n1,n2, . . . ,nN+M} is a possible partition of n into N + M nonnegative integers and the summation is over the
set Pn,N+M consisting of all such partitions. We further note the orthonormality of {|�(k,j )

M,N,n〉}n so that Eq. (A12) is a proper
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expansion of |ξ,k〉⊗M |ξ,j 〉⊗N . Notice that〈
�

(k,j )
M,N,n

∣∣�(k,j )
M,N,m

〉
=
√(

kM + jN + n − 1

n

)−1(
kM + jN + m − 1

m

)−1

×
∑

{ni }∈Pn,(M+N)

∑
{mi }∈Pm,(M+N)

[
M∏

α=1

√(
nα + k − 1

nα

)(
mα + k − 1

mα

)
δnα,mα

]⎡⎣ M+N∏
β=M+1

√(
nβ + j − 1

nβ

)(
mβ + j − 1

mβ

)
δnβ,mβ

⎤⎦
= δm,n

(
kM + jN + n − 1

n

)−1 ∑
{ni }∈Pn,(M+N)

[
M∏

α=1

(
nα + k − 1

nα

)]⎡⎣ M+N∏
β=M+1

(
nβ + j − 1

nβ

)⎤⎦
= δm,n

(
kM + jN + n − 1

n

)−1 ∑
{ni }∈Pn,(M+N)

[
M∏

α=1

(−1)nα

(−k

nα

)]⎡⎣ M+N∏
β=M+1

(−1)nβ

(−j

nβ

)⎤⎦
= δm,n(−1)n

(
kM + jN + n − 1

n

)−1 ∑
{ni }∈Pn,(M+N)

[
M∏

α=1

(−k

nα

)]⎡⎣ M+N∏
β=M+1

(−j

nβ

)⎤⎦
= δm,n(−1)n

(−kM − jN

n

)(
kM + jN + n − 1

n

)−1

= δm,n,

having used the Chu-Vandermonde identity (see, e.g., Chap. 7 of [82]).
With the proper expansion Eq. (A12) and the prior Eq. (35), ρβ and �β can be calculated. Notice that |ξ,j 〉⊗N can be expanded

as

ρβ =
∫

pβ(ξ )μ(d2ξ ) (|ξ,j 〉〈ξ,j |)⊗N

=
∞∑

m,n=0

∫ 2π

0

dθ

2π
ei(n−m)θ

∫ ∞

0

dsβ(sinh s)n+m+1

(cosh s)2jN+β+n+m+1

√(
jN + n − 1

n

)(
jN + m − 1

m

)∣∣�(k,j )
0,N,n

〉〈
�

(k,j )
0,N,m

∣∣
=

∞∑
n=0

β
(
jN+n−1

n

)
(2jN + β)

(
jN+β/2+n

n

) ∣∣�(k,j )
0,N,n

〉〈
�

(k,j )
0,N,n

∣∣,
and we know that it is a diagonal form of ρβ from the orthogonality of {|�(k,j )

0,N,n〉}n. Similarly we have �β diagonalized as

�β =
∫

pβ(ξ )μ(d2ξ ) (|ξ,k〉〈ξ,k|)⊗M ⊗ (|ξ,j 〉〈ξ,j |)⊗N

=
∞∑

m=0

β
(
kM+jN+m−1

m

)
(2kM + 2jN + β)

(
kM+jN+m+β/2

m

) ∣∣�(k,j )
M,N,m

〉〈
�

(k,j )
M,N,m

∣∣.
In the same spirit as Appendix A 2, we now diagonalize Aβ := (I ⊗ ρ

− 1
2

β )�β(I ⊗ ρ
− 1

2
β ) by first defining∣∣�(k,j )

M,N,m

〉
:= (

I ⊗ ρ
− 1

2
β

)∣∣�(k,j )
M,N,m

〉
so that

Aβ =
∞∑

m=0

β

2kM + 2jN + β

(
kM + jN + m − 1

m

)(
kM + jN + m + β/2

m

)−1∣∣�(k,j )
M,N,m

〉〈
�

(k,j )
M,N,m

∣∣. (A13)

The vectors |�(k,j )
M,N,m〉 are mutually orthogonal. The proof can be completed by using the property

∣∣�(k,j )
M,N,m

〉 = m∑
n=0

√(
kM + m − n − 1

m − n

)(
jN + n − 1

n

)(
kM + jN + m − 1

m

)−1∣∣�(k,j )
M,0,m−n

〉∣∣�(k,j )
0,N,n

〉
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to calculate the inner product of any two vectors, obtaining〈
�

(k,j )
M,N,m

∣∣�(k,j )
M,N,m′

〉 = 〈
�

(k,j )
M,N,m

∣∣(I ⊗ ρ−1
β

)∣∣�(k,j )
M,N,m′

〉
=

m∑
n=0

m′∑
n′=0

√√√√(
kM+m−n−1

m−n

)(
jN+n−1

n

)(
kM+jN+m−1

m

)
√√√√(

kM+m′−n′−1
m′−n′

)(
jN+n′−1

n′
)(

kM+jN+m′−1
m′

) 〈
�

(k,j )
M,0,m−n

∣∣�(k,j )
M,0,m′−n′

〉〈
�

(k,j )
0,N,n

∣∣ρ−1
β

∣∣�(k,j )
0,N,n′

〉

=
m∑

n=0

m′∑
n′=0

√√√√(
kM+m−n−1

m−n

)(
jN+n−1

n

)(
kM+jN+m−1

m

)
√√√√(

kM+m′−n′−1
m′−n′

)(
jN+n′−1

n′
)(

kM+jN+m′−1
m′

) (2jN + β)
(
jN+β/2+n

n

)
β
(
jN+n−1

n

) δm−n,m′−n′δn,n′

= δm,m′

m∑
n=0

(2jN + β)
(
kM+m−n−1

m−n

)(
jN+β/2+n

n

)
β
(
kM+jN+m−1

m

) = δm,m′
(2jN + β)

(
kM+jN+β/2+m

m

)
β
(
kM+jN+m−1

m

) .

The last step comes from the properties of binomials and the
Chu-Vandermonde identity [82].

Finally, defining the normalized vectors |�̄(k,j )
M,N,m〉 :=

|�(k,j )
M,N,m〉√

〈�(k,j )
M,N,m|�(k,j )

M,N,m〉
(cf. Appendix A 2) and using Eq. (A13) we

get the diagonalization

Aβ = 2jN + β

2kM + 2jN + β

∞∑
m=0

∣∣�̄(k,j )
M,N,m

〉〈
�̄

(k,j )
M,N,m

∣∣,
which is proportional to a projector. Consequently, the operator
norm equals any one of the eigenvalues of Aβ :

‖Aβ‖∞ = 2jN + β

2kM + 2jN + β
.

By Eq. (A6) we upper-bounded the MP fidelity F (P)
c (β) �

(2jN + β)/(2kM + 2jN + β). The upper bound is always
achievable as shown in Eq. (16). Therefore we conclude that
we have found the benchmark (41).

4. Optimality of the square-root measurement
in the case of uniform prior

Consider the deterministic protocol that consists in mea-
suring the square-root measurement {Pĝ} and repreparing the
generalized coherent state |ψĝ〉. Its fidelity is given by

Fsqrt =
∫

dg

∫
dĝ〈φg|Pĝ|φg〉|〈ψg|ψĝ〉|2

= dφ

∫
dg

∫
dĝ|〈φg|φĝ〉|2|〈ψg|ψĝ〉|2

= dφ

∫
dg|〈φ|φg〉|2|〈ψ |ψg〉|2

≡ Fc.

Here we used the definition of Pg in Eq. (47) in the first
equality, the invariance of the Haar measure in the second
equality, and Eq. (11) in the third equality. In conclusion,
the fidelity of the simple protocol based on the square-root

measurement coincides with the ultimate probabilistic CFT,
implying that, for uniform prior, there is no advantage from
using a probabilistic strategy.

5. Teleportation fidelity achieved by the optimal
square-root measurement

Here we investigate the performance of the deterministic
MP protocol that consists in testing the input with the square-
root measurement {Pη(g)}g∈SU(2) [cf. Eq. (48)] and preparing
the output state that corresponds to the outcome.

As shown in Eq. (49), the teleportation fidelity can be
expressed as

F (β,η) = Tr
[
�β

(
I ⊗ ρ

− 1
2

η

)
�η

(
I ⊗ ρ

− 1
2

η

)]
, (A14)

where

�η :=
∫

dgpη(g)|ψg〉〈ψg|⊗2

= η + 1

η + 3

〈
η

2
,
η

2

∣∣∣∣Pη/2+1

∣∣∣∣η2 ,
η

2

〉
and

ρη :=
∫

dgpη(g)|ψg〉〈ψg|

= η + 1

η + 2

〈
η

2
,
η

2

∣∣∣∣Pη/2+1/2

∣∣∣∣η2 ,
η

2

〉
.

Here |J,m〉 denotes as usual the eigenstate corresponding
to the eigenvalue m of the z component of the total an-
gular momentum for a system of total spin J and PJ :=∑J/2

m=−J/2 |J,m〉〈J,m|. Using the definition and the Clebsch-
Gordan coefficients for the coupling of angular momenta, it is
easy to obtain the relations

ρη = η + 1

η + 2

∣∣∣∣12 ,
1

2

〉〈
1

2
,
1

2

∣∣∣∣+ 1

η + 2

∣∣∣∣12 , − 1

2

〉〈
1

2
,−1

2

∣∣∣∣
and

�η = η + 1

β + 3
|1,1〉〈1,1| + 2(η + 1)

(η + 3)(β + 2)
|1,0〉〈1,0|

+ 2

(η + 3)(η + 2)
|1,−1〉〈1,−1|.
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Inserting these relations into Eq. (A14) we then obtain the fidelity

F (β,η) = η + 2

η + 3
× β + 1

β + 3
+ (1 + √

η + 1)2

η + 3

β + 1

(β + 2)(β + 3)
+ 4

(η + 3)(β + 3)(β + 2)
,

which, optimized over η, yields the value

max
η

F (β,η) = F (2)tele
c (β) − 4β

(β + 2)(β + 3)[(β + 1)(β + 3) +
√

β4 + 8β3 + 22β2 + 8β2 + 9]
, (A15)

where F (2)tele
c (β) = β+2

β+3 is the teleportation benchmark of Eq. (22).
Interestingly, the optimal value of η, given by

ηopt = β4 + 8β3 + 16β2 − 4β + 3 + (β2 + 4β − 1)
√

β4 + 8β3 + 22β2 + 8β + 9

2(β + 2)2
,

is not equal to β. In summary, (i) our parametric family
of square-root measurements does not achieve the proba-
bilistic benchmark for any finite value of β and (ii) the
square-root measurement associated to the input ensemble
is not optimal among the measurements in this parametric
family.

6. Proof of the optimality of MP protocols for the complex
conjugation of generalized coherent states

Here we prove that there is no quantum advantage in
the complex conjugation of GPCSs, i.e., for the task of
transforming N copies of the input GPCS |φg〉, given with
prior probability pγ (g) as in Eq. (14), into M copies of the
output GPCS |ψ∗

g 〉.
For the complex conjugation of GPCSs, the optimal

quantum fidelity can be obtained from Eq. (7), which now
reads

Fq(γ ) = ∥∥(Iout ⊗ ρ
− 1

2
γ

)
�γ

(
Iout ⊗ ρ

− 1
2

γ

)∥∥
∞ ≡ λmin,

where the operators ργ and �γ are given by

ργ :=
∫

dgpγ (g)|φg〉〈φg|, (A16)

�γ :=
∫

dgpγ (g)|ψg〉〈ψg| ⊗ |φg〉〈φg|. (A17)

The two operators ργ and �γ defined here coincide with the
operators ργ and �γ in the previous section of this Appendix,
where we have shown an upper bound on the operator norm.
Replacing �γ by �Tout

γ , the upper bound of Eq. (A4) now reads∥∥(Iout ⊗ ρ
− 1

2
γ

)
�γ

(
Iout ⊗ ρ

− 1
2

γ

)∥∥
∞

�
∫

dg|〈ψ |ψg〉|2M |〈φ|φg〉|2N |〈φγ |φγ,g〉|2∫
dg|〈φ|φg〉|2N |〈φγ |φγ,g〉|2 ≡ Fc(γ ).

(A18)

Hence, the ultimate quantum fidelity is upper bounded by the
CFT. Since by definition Fq(γ ) � Fc(γ ), this means that one
has the equality Fq(γ ) = Fc(γ ). In other words, MP protocols
and general quantum strategies fare equally well.
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042313 (2004).
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