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Abstract
Although surgical treatment of nail conditions can be traced back centuries to the writings of
Paul Aegineta (625–690 AC), little is known about the physical laws governing nail growth.
Such a poor understanding together with the increasing number of nail salons in the high street
should raise legitimate concerns regarding the different procedures applied to nails. An
understanding of the physics of nail growth is therefore essential to engage with human medicine
and to understand the aetiology of nail conditions. In this context, a theory of nail plate adhesion,
including a physical description of nail growth can be used to determine the transverse and
longitudinal curvatures of the nail plate that are so important in the physical diagnosis of some
nail conditions. As a result physics sheds light on: (a) why/how nails/hooves adhere strongly, yet
grow smoothly; (b) why hoof/claw/nail growth rates are similar across species; (c) potential nail
damage incurred by poor trimming; (d) the connection between three previously unrelated nail
conditions, i.e. spoon-shaped, pincer and ingrown nails and; last but not least, (e) why ingrown
nails occur preferentially in the big toes.

Keywords: hard and growing tissues, biomechanics, dermatology, adhesion

Introduction

The human nail is a keratinized structure and window to the
nail bed, held in place by lateral nail folds (the cutaneous
folded structures providing the lateral borders of the nail). It is
made of dead cells that multiply from the proximal matrix. As
a result, the nail originates from this proximal matrix, grows
longitudinally, and ends at a free edge distally. Nail adhesion
to the nail bed involves a number of well characterised
microscopic adhesive units. These units are apposed in a
pattern along longitudinal epidermal ridges (or lamellae)
stretching to the lunula, the half moon, pale convex portion of
the matrix seen through the nail (figure 1(A)). On the
underside of the nail plate there is a complementary set of
ridges as if the nail plates were held to the nail beds via a set
of longitudinal rails. A similar anatomical structure exists

across all species. However, depending on the animal con-
sidered, the epidermal ridges can be more complex than in
man as they can display primary and secondary structures that
are thought to increase adhesiveness. For example, slow-
moving animals like humans and cattle have only primary
lamellae (Thoefner et al 2005) whereas fast-moving
animal like horses (Pollitt 1994) or heavy animals like ele-
phants (Benz et al 2009) have primary and secondary
lamellae (figures 1(B), (C), (D) and (E) show the horse foot as
an example).

Even though there now exists an in depth and complex
cross-species description of macroscopic/microscopic anato-
mical and cellular/sub-cellular structures, how nail and hoof
growth inform their shape remains unclear. This apparently
simple question is in fact central to medicine as the first
diagnosis of a nail/hoof condition by medics or vets is
necessarily a physical and visual appraisal of the shape or
form of the nail/hoof. In this context it is worth noting that
although nail cutting and hoof trimming have traditionally
been advocated to alleviate pain and reshape the nail/hoof
with time, there is little theory on which to ground these
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practices (Eliashar 2012). Furthermore, for each shape-related
condition, it is unclear whether another cutting/trimming
method exists that could be optimized. As a result, if a con-
nection exists between the zoology of nail shapes and the
zoology of nail conditions, it is paramount to describe how
these changes have been made possible and what ‘physical’
parameters are involved. These parameters should help to
define the aetiology of nail/hoof conditions and give valuable
clues as to how they should be treated.

The present work considers the nail as an adhering solid
plate and will start by a brief hand-waiving introduction of
physical concepts used. The adhesion and growth stresses
present in nail will be modelled and incorporated into the
general balance of stresses to obtain unique solutions. The
optimization of the total energy of the nail including bending
and potential energies will be performed using the Euler–
Lagrange method to determine the nail shape equation. The
nail shape equation will be tested against specific nail con-
ditions where changes in the shape of the affected nail occur.
We conclude that our model may provide a continuous rela-
tionship between three well known, but previously thought to
be unrelated, nail conditions namely ingrown, pincer and
spoon-shaped nails. Finally we shall also discuss the potential
importance of nail cutting in the aggravation of nail
conditions.

Model

Below we explain the different concepts that will be used.
As a nail is a growing solid that adheres to a substrate, the
adhesion of the nail plate on its bed is necessarily involved
in the way it grows. Adhesion between cells and the
extracellular matrix is formed via specialized junctions
involving different sets of macro-molecules including more
complex ones such as focal adhesion or hemi-desmosomes
(Worth and Parsons 2008). Cellular adhesion has been
extensively modelled in different contexts. As a function of
the biology considered, the frameworks can differ, but
intermolecular bonds forming adhesions are usually treated
as Hookean springs that can either remain fixed vertically
(Dembo et al 1988, Dong and Lei 2000) and/or tilt from
their vertical position under stress (Reboux et al 2008). As a
nail adheres strongly, but needs to grow smoothly (i.e.
without stick-slip), one possibility is that this adhesion
imposes a ratchet-like mechanism on the nail so that the
‘growth’ is essentially confounded with diffusion. This is
possible if the length of nail growth per unit of time has a
magnitude that is similar to the thermal tilting of an adhe-
sive unit. In these conditions the adhesive units should not
‘feel’ the nail to which they are bound, and a nail should
grow smoothly and adhere strongly. This ratchet-like model

Figure 1. Anatomy of nail and hoof adhesion. (A) Avulsion of the human nail showing the nail bed and in particular the epidermal ridges
interacting with the nail plate (figure reproduced from de Berker, Andre and Baran 2007). The anatomy of the epidermal structures is similar
across species. (B) Avulsion of the equine hoof capsule showing the bed and in particular the epidermal ridges interacting with the hoof
capsule. (The material was obtained from an ethically managed abattoir). (C) Internal view of epidermal ridges separated from foot (B). (D)
Internal view of dried epidermal ridges. (E) A microscopic section shows that in addition to the first lamellae (pink colour) there is a second
one (dark blue/dark purple colour pointed by the black arrow) that is connected to the hoof capsule (red colour). The hoof-lamellar interface
increases the surface area for adhesion.
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indicates a universal form of growth for hooves and nails in
non-pathological conditions but it needs to be amended
when the growth rate of the keratinized plate is too fast. In
this case, the adhesive forces opposing the nail plate
movement and the mechanics of the plate need to be con-
sidered together. To understand clearly how mechanical
stresses arise, it is essential to understand the mechanical
impact of the nail edge as a boundary condition.

To explain this let us isolate a thin longitudinal slab of
the nail plate, from the proximal matrix to the free end. As the
pink colour underneath the slab is proportional to the number
of adhesive units involved in the adhesion of the slab, the
longer the slab the higher the adhesion. As a result, with a
constant growth force emanating from the proximal matrix,
the longer the slab the harder it will be to make it move
forward or grow. Thus, given the parabola-like shape where
the adhesion of the nail terminates, the right and left extre-
mities of the nail of a thumb should grow faster than the
longitudinal slab positioned exactly in its center because the
latter would be longer than any other slab. Naturally, this is
never observed as the nail has solid properties. Nevertheless it
describes the set of residual longitudinal shear stresses
involved when the nail grows that result directly from the
boundary conditions. As a longitudinal shear stress promotes
a tendency toward rotation (i.e. to generate angular momen-
tums) but because nails do not rotate locally, another stress,
transverse this time, must balance the virtual rotation primed
by the shear stress. This transverse stress resulting from the
profile of the nail edge, is expected to have an impact on the
transverse curvature of the nails, which is important in the
diagnosis of nail conditions.

Thermal growth rate

To provide a model, let us first focus on a single adhesive unit
that stands vertically without solicitation of any sort. Single
molecular adhesion can only last a time −k~1/ where, −k , is
the unbinding kinetic (figure 2(A)). If, when the adhesive unit
has just bonded, a movement involving a constant velocity,V ,
is now imposed on the unit and that the unit is fully compliant
mechanically, the unit will tilt up to a certain angle, θ, before
unbinding. This angle is expected to be, θ −V z k~ / 0

(figure 2(B)). The thermal agitation of any free, i.e. unbound,
unit can also define an angle proportional to the absolute
temperature, θk k T~el B

2 , where kel is the tilt modulus of
the unit, kB the Boltzmann’s constant and T , the absolute
temperature (figure 2(C)). Equating the two relations
allows one to define a thermal velocity:

−V z k k T k~ / (1)th B el0

This velocity defines a limit below which adhesion/
binding is controlled by the thermal energy. This means that
the movement of a nail plate onto adhesive units is possible
without further damage of units other than those determined
thermally if the velocity is close to, or below, Vth. Using

−k k T~ 10 10el B
3 (Reboux, Richardson and Jensen 2008),

−
−k s~ 10 1 (Ra et al 1999) and z ~ 10 nm0 (Arnold

et al 2004, Cavalcanti-Adam et al 2006, Cavalcanti-Adam
et al 2007) one finds −V day~ 0.1 1 mm/th at room tempera-
ture. The growth rate of nail/hoof/claw measured in a range of
species (table 1) falls within the range of thermal velocities
that can be predicted by this model. In addition, the very close
similarity between growth rates in-vivo suggests that physics
drives the process of growth. Indeed these in-vivo values are
not dependent on allometric properties and, as a result, do not
seem to involve the species–species metabolic rates, at least
under normal conditions.

Binding probability of adhesive units

Above the thermal velocity the probability that a unit
remains attached becomes a function of the stress imposed
on the unit. In this context, consider as above a single
adhesive unit that stands vertically without solicitation of
any sort. Once bound with a chemical energy, ΔE0, the
thermal escape rate from the bound state is Δ

−
−k e f~ E k T/

0
B0

where, f0, is a fundamental frequency. Upon movement of
the nail the unit tilts and the energy landscape changes. In
this context the unit has two possibilities, to remain bound
or to break and as a result the transition rate between the

‘bound’ and ‘unbound’ states is: Δ θ
−

− −( )f e f~ E k k T/2 /
0

el B0
2

.
Considering independent and identical adhesion units, a
kinetic model can be used to describe the probability, P,
that a unit is attached over time:

= − × + × −− +dP dt f P k P/ (1 ) (2)

where +k is the binding rate. The last term on the right-
hand-side of equation (2) represents the probability that an
adhesive unit rebinds after unbinding. In this case, the
relaxation time relating to the adhesive unit going from a
stretched state to its resting position before rebinding is
neglected. The later relation also assumes that there is no
competition between binding sites and that a reservoir of
ligands exists so that the binding can be considered spatially
continuous. Considering a steady state regime of growth,
i.e. =dP dt/ 0, it follows:

⎡⎣ ⎤⎦α= +
−( )( )P V V1 exp /2 (3)2

1

where =V V V/ th and α = − +k k/ (figure 2(D)). Equation (3)
shows the sensitivity of ( )P V with regard to the growth rate
of nails.

Adhesion force developed by adhesive units

Focusing on a single adhesion unit, the force that opposes the
growth can be determined trivially as: ×− ( )k V z k V P V/el th 0

2 .
Consider a small element of nail surface area, the adhesion
per unit of surface of nail is thus:

ρ= ×− ( )f V k V z k V P V( ) /adh el th 0
2 (figure 2(E)), where ρ is

the number of adhesive units per surface area of nail that will
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be considered constant and = −f k V z k pN/ ~ 10adh el th
0

0
2 . Note

that as the nail plate is a projection of the nail bed and that
avulsion of the nail plate reveals a pattern of longitudinal
epidermal ridges involved in adhesion (figure 1), the ‘true’
total surface area available for adhesion is larger than the
visible surface of the nail plate and as a result a factor, λ,
needs to be introduced to determine the true number of
adhesive units per unit of surface area to draw comparisons
between species. In these conditions:

λρ=f V f VP V a( ) ¯ ( ¯ ) (3 )adh adh
0

Balance of in-plane stresses

The adhesive stress being defined, plate mechanics theory can
now be used to start investigating the interaction between the
shape and adhesion of nails.

The nail is held in place by an adhesion stress and a
boundary stress generated by the skin folds. However, as the
change of nail shape is expected to be slow, the deformation
of the nail bed and related impact on the adhesion stress
normal to the nail bed is unlikely to intervene actively in the
process, suggesting that we can consider the adhesion stress
constant at least for moderate deformations. In addition, as the
full characterisation of the external stresses applied by the
skin folds on the boundary of nail are, for the moment,
unknown to us, we shall only focus on a nail plate that is free
from external stresses induced by skin folds.

Consider the in-plane description and a nail plate orien-
tated in such a way that the y-axis corresponds to the direction
of growth from the proximal to the distal parts and an x-axis
orthogonal to the y-axis along the proximal matrix
(figure 3(A)). Let us assume that the nail has a width, l, a
length, ′h x( ), with a constant thickness, e. The initial 3D
stress tensor, σ[ ]i j, , can be reduced to a two dimensional stress

tensor: ⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥=f x y

f x y f x y

f x y f x y
( , )

( , ) ( , )

( , ) ( , )i j

x x x y

y x y y
,

, ,

, ,
with:

∫ σ=
−

f dzi j e

e
i j, /2

/2
, where fi j, is defined as a force per unit of

length along the ‘j’-axis with direction along the ‘i’-axis
(figure 3(B)). Note that the terms on the diagonal define

Figure 2. Adhesion and growth force. (A) Adhesive units bind and unbind to their ligand over time. In a steady state regime, with no
velocity involved, the bound and unbound states can be described by a basic 2 states model. (B) When the nail grows, the binding of the
adhesive units last until a certain value of the titling angle is reached, that is determined thermally or mechanically depending on the regime
considered. (C)When the adhesive unit is not bound, the tilt fluctuates around the vertical position and the use of thermodynamics allows one
to determine the deviation from the average value. (D) Representation of the probability that a bond is not consumed as a function of the
growth rate and α . (E) Representation of the force generated by a bound adhesive unit as a function of the growth rate and α .

Table 1. Hoof/nail growth rates for different animal species.

Animal
Growth rate
(mm day−1) References

Horse 0.2–0.3 (Butler and Hintz 1977)
Sheep 0.1–0.2 (Shelton et al 2012)
Deer 0.1–0.2 (Miller et al 1986)
Cow 0.1–0.3 (Harrison et al 2007, Telezhenko

et al 2009)
Elephant 0.1–0.3 (Benz, Zenker, Hildebrandt, Weis-

sengruber, Eulenberger and
Geyer 2009)

Pig 0.3–0.4 (Johnston and Penny 1989)
Rat 0.1–0.2 (Godwin 1959)
Human 0.1–0.2 (de Berker, Andre and Baran 2007)
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the classical surface tension whereas the non diagonal
terms define the shear stresses. Finally, the balance of
stresses on an element of surface dxdy of the nail can be
written as:

∂ + ∂ =f x y f x y( , ) ( , ) 0 (4)x x x y x y, ,

∂ + ∂
− ⋅ − =
f x y f x y

f V H y h x

( , ) ( , )

( ) ( ( )) 0 (5)

y y y x y x

adh

, ,

where − =H y h x( ( )) 1 if ⩽y h x( ) or zero otherwise and
where h x( ) defines the adhesion profile (see figure 3). As no
local rotation appears when nails grow, the conservation of
angular momentum imposes that:

=f x y f x y( , ) ( , ) (6)x y y x, ,

Hence the 2D stress tensor is symmetrical. To fully
define the problem, boundary conditions need to be added,
and two of those can be defined. We first assume that the
growth stress f x( )0 is only defined at the origin on the y-axis
(i.e. proximal side) and has direction along the y-axis. This
first boundary condition leads to:

= −f x f x( , 0) ( ) (7)y y, 0

Furthermore, let us assume that no force is applied dis-
tally i.e. that the nail has a free distal edge. Therefore two

further conditions follow (see appendix 1):

′ ⋅ ∂ ′ = ′f x h x h x f x h x( , ( )) ( ) ( , ( )) (8)x x x x y, ,

′ = ∂ ′ ⋅ ′f x h x h x f x h x( , ( )) ( ) ( , ( )) (9)y y x x y, ,

From the geometry of the nail (i.e. its symmetrical
shape), it is obvious that the stresses will have to follow some
important symmetry conditions. Figure 3(C) enounces all the
symmetries with regard to the stresses:

− =
− =
− = −

∂ =

f x y f x y

f x y f x y

f x y f x y

f

( , ) ( , )

( , ) ( , )

( , ) ( , )

0 (10)

x x x x

y y y y

y x y x

y x y

, ,

, ,

, ,

,

The set of equations (4)–(10) defines the physical stresses
present in a growing nail.

Stress solutions

Let us consider a solid nail growing at a constant velocity, V .
Without further assumptions and using the set of
equations (4)–(10) it is possible to determine the components
of the stress tensor analytically. To this end, let us consider

Figure 3. Nail characteristics. (A) The nail is described by a system of axes allowing a simple analytic representation. h x( ) is the adhesion
profile i.e. the upper boundary between the white and pink parts (i.e. delimiting the yellow region from the blue one), and ′h x( ) the
most distal part of the nail (i.e. delimiting the blue region from the outside). These profiles are symmetrical and will be expressed by
polynomials involving even functions only. For a clearer representation, h0 corresponds to the limit of the green area from the proximal
matrix. (B) Representation of the set of stresses applied to the element of surface dxdy. (C) Results concerning the symmetry analysis. The
stress tensor can be used on every side of the small square dxdy to determine the conditions of symmetry with regard to the set of forces
applied to the nail. Given the balance of angular momentums we will further assume that ∂y fx,y is also equal to zero everywhere on the x-axis.
This is equivalent of considering that the shear stress along a longitudinal slab is constant (does not change much at the lowest order) along
the y-axis.
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equations (5) & (7) and integrate equation (5) over the ‘y’
variable. By virtue of ∂ = ∂ =f f 0y x y y y x, , (i.e. fy x, is inde-
pendent of the ‘y’ variable—see equation (10)). One obtains:

∫= − + −

− ∂ ×

f x y f x f V H u h x du

f x y

( , ) ( ) ( ) ( ( ))

( ) (11)

y y adh

y

x y x

, 0
0

,

Replacing equation (11) into the boundary condition
given by equation (9) leads to:

⎡⎣ ⎤⎦∫
=

+
′

− +

f x f

h x
f u f V h u du

( ) (0)

1

( )
( ) ( ) ( ) (12)

y x y x

x

adh

, ,

0
0

Provided the adhesion profile of the nail and the profile
of the distal edge, equation (12) completely determines
f x( )x y, and, by symmetry, f x( )y x, . As f x( )y x, is an odd
function (equation (10)), the shear stress in x = 0 has to be null
and as a result: =f (0) 0y x, . Therefore, f x( )x y, and, by sym-
metry, f x( )y x, are now fully determined. Replacing
equation (12) into equation (11) allows us to complete the
determination of, f x y( , )y y, , as follow:

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡⎣ ⎤⎦

∫

∫

= − −
′

+
−

−
′

+
′

∂ ′

× − +

f x y f x
y

h x

h x f V
H u h x du

h x

y

h x

y

h x
h x

f u h u f V du

( , ) ( ) 1
( )

( ) ( )
( ( ))

( ) ( )

( )
( )

( ) ( ) ( ) (13)

y y

adh

y

x

x

adh

, 0

0

0
0

Using equation (4) together with ∂ =f x( ) 0y x y,

(equation (10)) allows one to determine that: ∂ =f 0x x x, , namely
that fx x, is only dependent on the variable ‘y’, i.e. is constant
along the x-axis for a given value on the y-axis. As fx x, is only a
function of the variable ‘y’, it is convenient to introduce ‘y’
using the reciprocal function, ‘ ′−h 1’ of the edge equation defined
as ′ ′ =−h h x x( ( ))1 . Therefore, using the boundary condition
given by equation (8) allows the full determination of, fx x, :

= ′

=
∂ ′

= ∂ ′ × ′− −( )

f x y h x

f x

h x

h y f h y

( , ( ))

( )

( )

( ) ( ) (14)

x x

x y

x

y x y

,

,

1
,

1

As a result, provided the shapes of the adhesion profile and
edge of a nail, with the set of equations that have been determined
so far, it is possible to determine the stress tensor components
without any ambiguity. It is worth noting here that it is onlywhen
the growth and adhesion stresses do not compensate each other,
i.e. − + ≠f u f V h u( ) ( ) ( ) 0adh0 , that fy x, and fx x, differ from
zero. In turn this could lead to some pathological conditions

The normal case

Let us first consider a nail that is trimmed in such a way that:
′ =h x h x( ) ( ) and which has a growth profile given by:

=f x f V h x( ) ( ) ( )adh0 . In this case, one finds:

⎛
⎝⎜

⎞
⎠⎟

=
=

= − −

f f

f x y f x
y

h x

0

( , ) ( ) 1
( )

(15)

x x x y

y y

, ,

, 0

Equation (15) shows that the only existing stress is linked
to the growth stress. Such a stress should define the natural
longitudinal curvature, i.e. the claw shape, of any growing nail.

The pathological case

Let us now consider a nail that is trimmed in such a way that:
′ =h x h x( ) ( ) and that has an imbalanced growth profile such
that: = − + ≠F x f x f V h x( ) ( ) ( ) ( ) 0adh0 . In this case,
one shall assume also that, F x( ), is small and is an even
function of the variable ‘x’ to preserve the conditions
regarding the symmetry of the nail. As a result, F x( )
can be developed using Taylor series as follow:

= + ∑ ∂=
∞

=F x F F x i( ) (0) /2 !i x x
i

1 0
2i2 . Naturally, each term

in the later development is expected to be small compared to
the leading term. Applying the same operation to the equation
of the edge, ′ = = + ∑ ∂=

∞
=h x h x h h x i( ) ( ) (0) /2 !i x x

i
1 0

2i2 ,
and replacing the Taylor series of F x( ) and ′ =h x h x( ) ( ) into
equations (11), (12) and (13), leads to:

⎛
⎝⎜

⎞
⎠⎟

α

β

γ

=

=
∂

= − −

+
∂

=

=

f x
F x

h
x

f x
F

h h
x

f x y f x
y

h x

yx
h F

h
x

( )
(0)

(0)
( )

( )
(0)

(0)
( )

( , ) ( ) 1
( )

(0)

(0)
( ) (16)

y x

x x
x x

y y

x x

,

,
0

, 0

2 0

2

2

where the expression of α x( ), β x( ) and γ x( ) are given in
appendix 2 and where α β γ= = =(0) (0) (0) 1. We note here
that for nails having very flat distal edges, i.e. when:
∂ ≪=h 1x x 02 , the stress component that will dominate over
all the others in the distal part of the nail (the yellow and
blue parts in figure 3(B)) is: f x( )x x,

2. This result suggests
that nails with a flat profile such as those the big toe should be
more prone to distal transverse stresses, if the difference
between the growth and adhesion stresses is not properly
balanced.

2 As by definition: = ∂f f h/x x x y x, , (equation (14)), it follows that for flat
profiles the edge equation musty verifies ∂ ≪h 1x and therefore, ≫f fx x x y, , .
From equation (13) and ∂ ≪h 1x , it follows that − −f f x y h x~ ( )(1 / ( ))y y, 0 .
As in the distal part of a flat nail y h x~ ( ), one can assume f ~ 0y y, or at least
very small. Note that these results do not hold when the nail has not a flat
profile.
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Application to ingrown nails: why the big toe?

The ingrowing nail or ‘onychocryptosis’ is a condition
causing much discomfort and morbidity in school children/
adolescents/young adults (Khunger and Kandhari 2009) and
is diagnosed in 15% of pregnant women (Ponnapula and
Boberg 2010). Though recognized for a long time, a satis-
factory treatment of onychocryptosis remains elusive, in part,
because the aetiology for ingrown nails is not understood.
Different theories were initially proposed and classified
according to whether the primary fault is based on the nail
plate or not (Haneke 2008). However a structural abnormality
of the nail plate has been ruled out (Pearson et al 1987), but it
was demonstrated instead, that a change in the transverse
curvature of the nail plate (i.e. curvature along the x-axis)
located distally promotes the condition (Pearson, Bury,
Wapples and Watkin 1987). As a transverse curvature of the
nail plate is involved, this suggests in turn, that some
mechanical consideration may be underlie the aetiology of
onychocryptosis.

It is well known that ingrown nail occurs predominantly
in the big toe. From a physical point of view one central
difference between the big toe and all other toes or fingers is
the fact that the adhesion profile of the nail plate is remark-
ably flat (but not straight—as otherwise the boundary
conditions defined by equation (8) and (9) would not apply).
As seen above, this means that the transverse stress fx x, is the
leading stress in the distal part of the nail. If an exaggerated
distal curvature of the nail defines the ingrown nail, it is
central to determine how the curvature is related to the
transverse stress.

To determine how the shape of the nail is affected we
concentrate on the energies method.

As fx x, is the leading stress in the distal part of the nail, the

potential energy of the nail can be simplified to ∬E f~ dSx x1 ,

where the integration is performed over the nail surface area.
As the potential energy is transformed into a bending energy to
impose a new configuration to the nail and that, ingrown nails
are diagnosed by a change in the transverse curvature (i.e.
along the x-axis—see figure 4(B)) and not by longitudinal
curvature (i.e. not along the y-axis), it is legitimate to assume
that the only curvature involved is the one along the x-axis. In
these conditions, Kirchhoff’s theory of plate bending allows us
to rewrite the bending energy under the form (Helfrich 1973,

Ventsel and Krauthammer 2001): ∬= −( )E C C dSD
x2 2 0

2 ,
where the integration is performed over the nail surface and
where, υ= −D Ye /12(1 )3 , is the flexural rigidity of the nail
plate (Y , is the Young modulus assumed to be isotropic across
the nail and; υ the Poisson’s coefficient), Cx, the transverse
curvature of the nail surface along the x-axis and, C0, the
spontaneous curvature of the nail that is identical to the cur-
vature of the finger3. For small deformations, it is convenient
to describe the nail using the Monge gauge, i.e. by its height
′ = ′ ′z w x y( , ), with respect to a reference plane where x’
and y’ are the Cartesian coordinates in the reference plane. As

′ ′ = ′dx dy dS and dS are related together by:
⎡⎣ ⎤⎦⎡⎣ ⎤⎦= + ∂ ∂ ′ + ∂ ∂ ′ ′dS w x w y1 ( / ) 1 ( / ) dS2 2 , making use of

the small deformation hypotheses: ∂ ∂w w~ ~ 0y y
2 and of

∂ ≪′w 1x and ∂ ≪′e w 1x 2 ; it is possible to rewrite the sum
of energies to the leading orders in the displacement along the
z’-axis as follows:

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

∬

∬

+ ∂
∂ ′

−

+ ′ + ∂
∂ ′

′

+ ∂
∂ ′

∂
∂ ′

′

E E
D w

x
C

f y
w

x

o
w

x

w

x

~
2

( ) 1
1

2
dS

; dS (17)

x x

1 2

2

2 0

2

,

2

3

3

3

Finally, removing the superscript prime (i.e. “ ’ ”) as all
the physical variables are now expressed in the fix Cartesian
referential, the Euler–Lagrange method determines the
equation of the nail shape (see appendix 3):

λ∂ − ∂ =w y w( ) 0 (18)x x4 2

where λ =y f y D( ) ( )/x x, . Using Fourier series with the fol-

lowing initial conditions: ==w wx 0 0, ∂ ==w 0x x 0
and

∂ =
=

w Cx
x

2
0

0 leads to the ‘ingrown nail equation’:

⎡⎣ ⎤⎦λ
λ= + −( )w x y w

C

y
x y( , )

( )
cosh ( ) 1 (19)0

0

Figure 4. Nail shape and related conditions. (A) Transverse profile of the distal part of a nail for different sign of λ. (B) Photos of nail
conditions: pincer nail (left), ingrown nail (middle) and spoon-shaped nail (right); photos from Baran R et al (2014).

3 Nails are composed of dead cells that grow from soft tissues and therefore
it is legitimate to assume that any nail should take the shape of the finger in
normal conditions.
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Let us assume that λ ≪y l( ) 1/ , where l is the width of

the nail, one finds: ⎡⎣ ⎤⎦+ + λw x y w x x( , ) ~ 1
C y

0 2
2 ( )

12
20 . This

last relation shows that the sign of λ y( ) (i.e. the sign of
f y( )x x, ) will influence the sign of the curvature as seen in

figure 4(A). As β=
∂

−
=

f y h y( ) ( ( ))x x
F

h h,
(0)

(0)
1

x x2 0
, the leading

term of f y( )x x, , i.e. = − +F f f V h(0) (0) ( ) (0)adh0 , can
change sign depending onto whether the growth stress is
larger or smaller than the adhesion stress.

Influence of trimming on nail conditions

f y( )x x, is defined by the boundary condition given by
equation (14) and, as a result, exists only when the distal edge
of the nail is slightly curved. Therefore, cutting the nail in a
straight way, i.e. removing the slight curvature, and main-
taining this profile over time should remove f y( )x x, and
therefore improve the ingrown nail condition.

Conversely, bad trimming of the distal part of the nail
may amplify the magnitude of, f y( )x x, . To demonstrate this
point, assume in this case that the distal part is trimmed such
that ′ = ′ −h x h a x l( ) (0) (2 / ) m2 . If ≠F x( ) 0, from
equation (14) the transverse stress can be rewritten as,

′ − −
f a h y~ [ /( (0) )]x x,

m
m

1
, showing that the magnitude of the

transverse stress can be very high. This suggests that careful
attention should be given to the different ways of trimming
nails to avoid the worsening of nail conditions involving the
transverse curvature.

Discussion

It has been known since the time of Hippocrates that a par-
ticular change in nail shapes can signify specific underlying
conditions (Myers and Farquhar 2001). From a physical point
of view, nail growth and shape are necessarily inter-related.
Therefore, it seemed important to investigate whether physics
could play a role in, and as a result explain, the aetiology of
some nail conditions.

As our daily experience of nail suggests that the nail plate
is hard and therefore should be considered as a solid we have
modelled both the adhesion and balance of stresses in this 2D
system. When diseased nails are surgically removed, their
shapes remain the same and as a result we made the implicit
assumption that the nail adapts the unbalanced stresses by
changing shape over time. To conclude, the model suggests
that the imbalance between the growth and adhesion stresses
is responsible for changing the distal transverse curvature of
nails, and confirms that it is the big toe that is predominantly
afflicted by nail conditions of mechanical origin due to its flat
profile.

This important result seems to agree relatively well with
observations in the field of nail conditions. For example, in
man, the term pincer nails (figure 4(B) left) describes an
exaggerated transverse curvature of the nail plate along the
longitudinal axis (Baran et al 2001, Cornelius and

Shelley 1968). This condition is mostly acquired during
advanced age (Lee et al 2008). Although the aetiology is not
fully understood a change in nail growth related to a weaker
growth force with advanced age has been suggested (de Berker
et al 2007). The other well known condition, the ingrown nail
(figure 4(B) middle), is often diagnosed in school children/
adolescents/young adults (Khunger and Kandhari 2009) and
pregnant women (Ponnapula and Boberg 2010). It is remark-
able that this condition occurs in patients where metabolic
growth is active. For example, in pregnancy, periods of high
sex hormone productions are well known to accelerate nail
growth (Hewitt and Hillman 1966, Ponnapula and
Boberg 2010). A last condition referred to as ‘spoon-shaped
nails’ corresponds to an inverted curvature of the nail
(figure 4(B) right). This shape can be described by the model.
Indeed, such a condition, which occurs in newborns or in brittle
nails, is expected to appear when the growth stress is small
enough to allow the curvature inversion (so that λ <y( ) 0) and/
or the nail is thin enough and thus brittle (Fawcett et al 2004) as
λ ∝y e( ) 1/ 3. This shape is also predicted if the adhesion of the
nail drops, possibly as a result of aging.

Each condition cited above is diagnosed based on the
shape of the nail. These shapes can be modelled by a set of
physical equations suggesting that pincer, ingrown and
spoon-shaped nails are interrelated conditions forming a
continuum. In this context, physics suggests that the imper-
fection in nail growth, possibly due to aging and/or metabolic
changes, can precisely define the aetiology of some nail
conditions. Finally, although it seems that any condition
should recover with time, the trimming has great importance,
and should be carefully monitored, especially with the
increasing number of nail salons.

Conclusion

We suggest that some nail conditions affecting the nail shape
can be explained by first principles. These are thus not dis-
parate conditions but form a continuum of natural conditions.
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Appendix A. balance of stresses and boundary
conditions

We consider the square a given by figure 3(B.1) to
determine the balance of stresses and focus on the y-axis. The
balance of stresses gives ∂ + ∂ − ⋅f x y f x y f V( , ) ( , ) ( )y y y x y x adh, ,
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− =H y h x( ( )) 0, where − =H y h x( ( )) 1 if ⩽y h x( ) or
zero otherwise. Integrating this equation over the y-axis gives:

⎡⎣
⎤⎦

∫
=

− ∂

− ⋅ −

f x y f x

f x y

f V H y h x

( , ) ( , 0)

( , )

( ) ( ( )) dy (A1.a)

y y y y

y

x y x

adh

, ,

0
,

Where = −f x f x( ) ( , 0)y y0 , as defined in the text.
Assuming further that no force is applied on the distal edge of
the nail, one finds:

⎡⎣ ⎤⎦ ⃗⃗ ⋅

= ′ + ′
=

{ }f x h x n e

f x h x n f x h x n

( , ( ))

( , ( )) ( , ( ))

0 (A1.b)

i j y

y x x y y y

,

, ,

where ⃗ ⃗⎯→ + ∂ ′ = −∂ ′ +n h x h x e e1 ( ) ( )x x x y
2 . The balance of

stresses along the x-axis can be determined similarly:

∂ + ∂ =f x y f x y( , ) ( , ) 0 (A1.c)x x x y x y, ,

As one assumes that no stress is applied over the x-axis
the only relation regarding the boundary condition of the
distal edge, is:

⎡⎣ ⎤⎦ ⃗⃗ ⋅

= ′ + ′ =
{ }f x h x n e

f x h x n f x h x n

( , ( ))

( , ( )) ( , ( )) 0 (A1.d)

i j x

x x x x y y

,

, ,

as seen in the text.
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Appendix C. Energy optimisation using the Euler–
Lagrange method

Consider the free energy:

⎜ ⎟
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One needs to find the function, w, that minimizes the free
energy above. Let us perform a small variation of

δ→ +w w w. The concomitant change in the free energy is
then:
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Where δ δ= + −E E w w E w( ) ( )tot tot tot . Working the
energy difference to the first order of the small quantity δw
one finds:
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Splitting equation (A3.c) into two different integrals, i.e.
over the curvature and the gradient of w one finds:
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Where the interval −x x[ , ]o0 is the interval of integration over
the x-axis, i.e. the extend of the projection of the nail surface
area over the x-axis contained in the Cartesian reference
plane. Using the conditions of symmetry, namely that δw and
w are even function of the variable ‘x’, from equations (A3.e)
& (A3.d) it follows that δEtot can be reduced to zero if:

∂
∂

− ∂
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=w

x
f y

w

x
( ) 0 (A3.f)x x
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4 ,

2

2
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