# **Supplementary Information**

# Porous Macromolecular Dihydropyridyl Frameworks Exhibiting Catalytic and Halochromic Activity

Bo Xiao,<sup>*a,b*</sup> Timothy L. Easun,<sup>*a*</sup> Amarajothi Dhakshinamoorthy,<sup>*c,g*</sup> Izabela Cebula,<sup>*d,e*</sup> Peter H. Beton,<sup>*d*</sup> Jeremy J. Titman,<sup>*a*</sup> Hermenegildo Garcia,<sup>*c*</sup> K. Mark Thomas<sup>*f*</sup> and Martin Schröder<sup>\*,*a*</sup>

<sup>a</sup> School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

<sup>b</sup> School of Chemistry & Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom.

<sup>c</sup> Instituto de Tecnología Química (CSIC-UPV), Avda. de los Naranjos s/n., 46022 Valencia, Spain.

<sup>d</sup> School of Physics and Astronomy University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

<sup>e</sup> Institute of Experimental Physics, University of Wroclaw, pl. M. Borna 9, 50-204 Wroclaw, Poland.

<sup>f</sup> Wolfson Northern Carbon Reduction Laboratories, School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.

<sup>*g*</sup>Centre for Green Chemistry Processes, School of Chemistry, Madurai Kamaraj University, Tamil Nadu, India 625 021.

## (1) Spectroscopic Measurements



**Figure S1.** 1H-NMR (DMSO-d6) spectrum of 3,3'-benzene-1,4-diylbis(3-aminoprop-2-enenitrile).



Figure S2. FTIR spectrum of 3,3'-benzene-1,4-diylbis(3-aminoprop-2-enenitrile).



**Figure S3.** Solid-state UV-vis spectra of protonated and deprotonated PMF materials (black: protonated; red: deprotonated). The protonated PMFs are yellow turns red on deprotonation with OH<sup>-</sup>. This protonation/deprotonation reaction is reversible.

#### (2) Gas Adsorption Studies

#### Nitrogen Adsorption

Isotherms for nitrogen adsorption and desorption at 77 K on PMF-NOTT-1 and PMF-NOTT-2 (black squares: adsorption; open squares: desorption) and DFT/Monte-Carlo pore size distributions (slit pore model; liquid  $N_2$  density: 0.808 g cm<sup>-3</sup>) are shown in Figures S4 and S5, respectively.



**Figure S4**. Isotherms of nitrogen adsorption and desorption on PMF-NOTT-1 and PMF-NOTT-2 at 77 K (black squares: adsorption; open squares: desorption).



**Figure S5**. DFT/Monte-Carlo pore size distributions (slit pore model; liquid  $N_2$  density: 0.808 g cm<sup>-3</sup>).

#### Dubinin-Radushkevich (D-R) Graphs for CO<sub>2</sub> adsorption

The D-R plots of CO<sub>2</sub> adsorption isotherms on PMF-NOTT-1 and PMF-NOTT-2 are given in Figure S6. It is evident that the D-R graphs overlap when plotted on a relative pressure  $(p/p^0)$  basis.



a)

b)



**Figure S6.** Dubinin-Radushkevich graphs of CO<sub>2</sub> adsorption isotherms at 273-303 K on a) PMF-NOTT-1 and b) PMF-NOTT-2.

a)





b)







e)





d)









j)







i)







h)

**Figure S7.** Virial graphs (polynomial:  $\ln (n/P) = A_0 + A_1n + A_2n^2$  and linear:  $\ln (n/P) = A_0 + A_1n$ ) for CO<sub>2</sub> adsorption isotherms of PMF-NOTT-1 and PMF-NOTT-2 at 273, 283 and 303 K. a) PMF-NOTT-1 (273 K) (Polynomial Equation), b) PMF-NOTT-1 (273 K) (Linear Equation), c) PMF-NOTT-1 (283 K) (Polynomial Equation), d) PMF-NOTT-1 (283 K) (Linear Equation), e) PMF-NOTT-1 (303 K) (Polynomial Equation), f) PMF-NOTT-1 (303 K) (Linear Equation), g) PMF-NOTT-2 (273 K) (Polynomial Equation), h) PMF-NOTT-2 (273 K), (Linear Equation) i) PMF-NOTT-2 (283 K) (Polynomial Equation), j) PMF-NOTT-2 (283 K) (Linear Equation), k) PMF-NOTT-2 (303 K) (Polynomial Equation), l) PMF-NOTT-2 (303 K) (Linear Equation).

The isosteric adsorption heat at zero coverage  $(q^{st,0})$  was calculated from the gradient of plotting  $A_0$  against 1/T i.e.  $\partial A_0/\partial (1/T) = q^{st,0}/R$  (R = 8.314 J K<sup>-1</sup> mol<sup>-1</sup>).



**Figure S8.** Variation of virial parameter A<sub>0</sub> with 1/T for a) PMF-NOTT-1 and b) PMF-NOTT-2. The isosteric heat  $(q^{st,0})$  of adsorption at zero surface coverage was calculated from the gradient of the straight line. The polynomial fitting of ln  $(n/p) \sim n$  gives values for PMF-NOTT-1 of 33.09 ± 3.26 kJ mol<sup>-1</sup> and for PMF-NOTT-2 of 31.86 ± 1.35 kJ mol<sup>-1</sup>; as a comparison, linear fitting gives PMF-NOTT-1: 33.74 ± 2.44 kJ mol<sup>-1</sup>, PMF-NOTT-2: 30.45 ± 0.51 kJ mol<sup>-1</sup>.



**Figure S9.** Variation of isosteric heat of adsorption  $(q^{st})$  with amount of CO<sub>2</sub> adsorbed a) PMF-NOTT-1 and b) PMF-NOTT-2.



**Figure S10.** Adsorption isotherms for  $H_2$  in a) PFM-NOTT-1 and b) PFM-NOTT-2 at 77 and 87 K (closed symbols: adsorption; open symbols: desorption).



**Figure S11.** Virial graphs for equation  $\ln (n/P) = A_0 + A_1 n$  for H<sub>2</sub> adsorption for a) PMF-NOTT-1 (77 K) b) PMF-NOTT-1 (87 K), c) PMF-NOTT-2 (77 K), d) PMF-NOTT-2 (87 K)

a)

The isosteric heat of adsorption at zero coverage  $(q^{st,0})$  was calculated from the gradient of the graph of  $A_0$  against 1/T i.e.  $\partial A_0/\partial (1/T) = q^{st,0}/R$  (R = 8.314 JK<sup>-1</sup>mol<sup>-1</sup>) (for PMF-NOTT-1:  $q^{st,0} = 9.46$  kJ mol<sup>-1</sup>; for PMF-NOTT-2:  $q^{st,0} = 8.85$  kJ mol<sup>-1</sup>).

#### (3) Catalysis Studies

**Table S1.** Data for different runs of the Knoevenagel condensation between aldehydes andmalonitriles using PMF-NOTT-1 and PMF-NOTT-2 catalysts. <sup>a</sup>

| Run | Entry | Aldehyde             | Catalyst                | Time | Conversion     | Selectivity     |
|-----|-------|----------------------|-------------------------|------|----------------|-----------------|
|     |       |                      |                         | (h)  | $(\%)^{\rm b}$ | $(\%)^{\rm b}$  |
| 1   | 7a    | Benzaldehyde         | PMF-NOTT-1              | 54   | 68             | 98              |
| 2   | 7a    | Benzaldehyde         | PMF-NOTT-1 <sup>c</sup> | 54   | 66             | 98              |
| 3   | 7a    | Benzaldehyde         | PMF-NOTT-1 <sup>d</sup> | 54   | 63             | 98              |
| 4   | 7a    | Benzaldehyde         | PMF-NOTT-2              | 54   | 36             | 98              |
| 5   | 7b    | 4-chlorobenzaldehyde | PMF-NOTT-1              | 52   | 64             | 97 <sup>e</sup> |
| 6   | 7c    | 4-cyanobenzaldehyde  | PMF-NOTT-1              | 52   | 54             | 98 <sup>e</sup> |
| 7   | 7d    | 4-methylbenzaldehyde | PMF-NOTT-1              | 52   | 93             | 97 <sup>e</sup> |

<sup>a</sup> Reaction conditions: aldehyde (1 mmol), malonitrile (1 mmol), toluene (4 mL), catalyst (20 mg), 110 °C. <sup>b</sup> Determined by GC. <sup>c</sup>First reuse; <sup>d</sup>Second reuse; <sup>e</sup>2 % of corresponding acid was observed.

## (4) Scanning Electron Micrographs



(PMF-NOTT-1)

(PMF-NOTT-2)

**Figure S12**. SEM images show the spherical morphology of PMF-NOTT-1 and PMF-NOTT-2.