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Dimer models arise as effective descriptions in a variety of physical contexts, and provide paradigmatic exam-
ples of systems subject to strong local constraints. Here we present a quantum version of the venerable Kasteleyn
model, which has an unusual phase transition from a dimer solid to a U(1) liquid. We show how the phase struc-
ture of the quantum model can be understood in terms of the quantum mechanics of one-dimensional strings and
determine the exact value of the critical coupling. By constructing effective models to describe the properties of
these strings, we calculate properties such as the dimer–dimer correlation function in the neighborhood of the
transition. We also discuss the full phase structure of the model, in the ground state and at nonzero temperature.

I. INTRODUCTION

Dimer models, in which the elementary degrees of freedom
are hard-core objects on the links of a lattice, are examples
of strongly constrained systems showing interesting collective
phenomena. Both classical [1] and quantum [2] dimer mod-
els provide simple examples of systems exhibiting phenom-
ena such as topological order, fractionalization, and unconven-
tional phase transitions.

The statistical mechanics of classical dimers was studied by
Kasteleyn [3] and by Temperley and Fisher [4], who found
exact results for two-dimensional (2D) lattices. Interest in
quantum dimer models was initiated by Anderson’s suggestion
[5], in the context of high-temperature superconductivity, that
frustrated quantum antiferromagnets could exhibit phases in
which nearby pairs of spins form resonating singlets. Rokhsar
and Kivelson [6] subsequently introduced the quantum dimer
model as an effective description, treating the dimers as the
elementary degrees of freedom and writing down the simplest
possible quantum Hamiltonian in terms of them.

Dimer models can exhibit a wide array of different ordered
phases, sometimes referred to as “valence bond solids” [2],
which can be characterized using conventional order param-
eters. They are also known to exhibit more unconventional
“dimer liquid” phases, which arise due to the strong correla-
tions inherent in close-packed dimer configurations (see Sec-
tion IA) and are closely related to classical and quantum spin
liquids in spin models [7]. They include classical dimer mod-
els on bipartite lattices, which host Coulomb phases [1], de-
scribed by effective gauge theories and with monomers, de-
fects in the close-packing constraint, acting as deconfined
charges.

Transitions between these two types of phases differ in vari-
ous ways from conventional phase transitions between ordered
and disordered phases. They include cases where symmetry is
spontaneously broken at the transition [8, 9], which do not fit
into the standard Landau classification, because of the strong
correlations on the liquid side. They also include transitions
where no symmetry is spontaneously broken [10–12], and the
transition is instead characterized through the loss of topolog-
ical order, or, more concretely, by confinement of monomers.

The (classical) Kasteleyn transition [13] is an example of the
latter class, with the unusual property that the model is exactly
solvable. The transition occurs in the classical dimer model on

the honeycomb lattice with a potential-energy term favoring
dimers occupying a particular subset of the links. A direct re-
alization of the Kasteleyn transition has been proposed in spin
ice subject to a field tilted away from the [111] direction [14]
and subsequently studied using neutron scattering [15, 16]. A
related “3/2-order” transition has also been observed in lipid
bilayers [17, 18].
In this work, we introduce a quantum analogue of the Kaste-

leyn model and show that it has a similar transition, but at
zero temperature, driven by quantum fluctuations. Although
we cannot solve the model exactly, we can precisely determine
the location of the transition, because of the particular nature
of the “ordered” phase. This therefore provides a rare of exam-
ple of a quantum phase transition where the critical coupling
can be calculated exactly.
Previous extensions to Kasteleyn’s work include a study

by Bhattacharjee et al. [19] of a related model on a three-
dimensional (3D) analogue of the brick lattice, formed by
deleting alternate vertical bonds of the cubic lattice. A 3D
variant of the Kasteleyn problem has been studied in spin ice
[20, 21], where the constraints on the dimer configurations are
replaced by the “ice rule”. Closely related quantum models
have also been studied, in the context of dimers [22] and quan-
tum spin ice [23], while the possibility of a quantumKasteleyn
transition in quantum spin ice was noted in Ref. [24].
In the remainder of this section, we define the classical and

quantum models. In Section II, we then review the relevant
aspects of the classical Kasteleyn problem, including the ar-
gument that determines its exact critical temperature. Most of
our main results are presented in Section III, where we discuss
the quantum Kasteleyn transition. We briefly discuss the full
phase structure of the model in Section IV before concluding
in Section V.

A. Classical dimer model

In the models we consider, the elementary degrees of free-
dom are dimers on the links of a lattice, with the number of
dimers on each link l restricted to dl = 0, 1. A close-packed
dimer configuration is one where every site of the lattice has
exactly one dimer, i.e., where the number of dimers on links l
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FIG. 1. Honeycomb lattice with horizontal links highlighted (thick
black lines). In the Kasteleyn problem, each occupied horizontal link
contributes energy −u. The x axis is horizontal and the three nearest-
neighbor vectors are ±a(x̂ cos �+ ŷ sin �) for the two sublattices (±),
where a is the nearest-neighbor distance and � = 0, 2�

3
, 4�
3
. The arrow

shows the vector 3
2
ax̂, the horizontal projection of the displacement

between two adjacent columns of horizontal links.

connected to site i,

ni =
∑

l∈i
dl , (1)

is fixed to ni = 1 for each i.
For a classical dimer model, the partition function is given

by

 =
∑

c
e−V ∕T , (2)

where the sum is over all close-packed configurations and V
is the energy assigned to configuration c. (We set kB = 1
throughout.) The classical Kasteleyn problem [13] concerns
dimers on the honeycomb lattice with

V = −uNh , (3)

where Nh is the number of dimers on horizontal links; see
Fig. 1. One can instead think ofNh as the overlap (i.e., number
of coinciding dimers) between each configuration and a fixed
reference configuration, shown in Fig. 2, with all horizontal
links occupied. This is a valid close-packed configuration, and
is hence clearly the unique ground state ofV , with themaximal
valueNh = N , equal to the total number of dimers.

The unusual properties of the Kasteleyn transition result
from the fact that, starting from this reference configuration,
there are no possible local rearrangements that maintain close
packing. Instead, as we describe in Section II, the minimal ex-
citations involve shifting dimers along paths spanning the sys-
tem, and hence cost unbounded energy in the thermodynamic
limit. The problem can be generalized to other lattices, in-
cluding in higher dimensions, by similarly choosing reference

FIG. 2. Classical ground state of the potential illustrated in Fig. 1,
where all horizontal links (and only those links) are occupied. There
are no possible local rearrangements compatible with the close-
packing constraint on the dimers. The dashed vertical lineSx is used
to define the horizontal component of the flux, Φx.

configurations on each, with this same property. For concrete-
ness, we focus here on the honeycomb lattice alongwith the 3D
diamond lattice, illustrated in Fig. 3, with the potential again
applied on horizontal links.
The detailed properties of the model are clearly sensitive to

the boundary conditions, which must be chosen to be compat-
ible both with the close-packing constraint and with the refer-
ence configuration. To simplify the analysis, we choose one of
the periodic lattice vectors along the horizontal direction x̂ and
the others in the plane perpendicular to this. For honeycomb
(resp. diamond), this can be achieved by choosingRh =

3
2aLx̂

(Rh =
4
3aLx̂) as one of the periodic lattice vectors, where a

is the nearest-neighbor distance and L is divisible by 2 (3).
Consider a codimension-1 surfaceSx perpendicular to x̂ that
spans the system and passes through a layer of horizontal links,
such as the dashed line in Fig. 2 or a yz plane in the diamond
lattice. With these definitions, the number of horizontal links
through whichSx passes is given byW⟂ = N∕L.
We note in passing thatNh is related to the horizontal com-

ponentΦx of the flux [25] (or “winding number” [2]). On both
the honeycomb and diamond lattices, this can be defined as

Φx =
∑

l∈Sx

(

dl −
1
z

)

(4)

where the sum is over links passing through the surface Sx
and z is the coordination number (3 for honeycomb, 4 for di-
amond). For close-packed dimer configurations, the value of
Φx is the same for any choice of the horizontal position of the
surface [25]; averaging Eq. (4) over all L such positions gives
Φx =

1
L

(

Nh −
N
z

)

. The reference configuration, which max-
imizes the number of dimers on horizontal links, therefore also
has maximal Φx = Φmax ≡ W⟂

(

1 − 1
z

)

. A state that pre-
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FIG. 3. Diamond lattice, with horizontal links, i.e., those paral-
lel to the x axis, highlighted (thick black lines). The four nearest-
neighbor vectors are ∓ax̂ and ±a( 1

3
x̂ +

√

8
3
ŷ cos � +

√

8
3
ẑ cos �) for

the two sublattices (±), where a is the nearest-neighbor distance and
� = 0, 2�

3
, 4�
3
. The arrow shows the vector 4

3
ax̂, the horizontal pro-

jection of the displacement between two adjacent planes of horizontal
links (compare Fig. 1).

serves rotational symmetry, such as when u = 0 (assuming
no spontaneous symmetry breaking), has Nh =

N
z and hence

Φx = 0.

B. Quantum Kasteleyn model

To construct a quantum dimer model, one defines orthog-
onal basis vectors |c⟩ corresponding to each dimer configura-
tion c, and a Hilbert space spanned by the full set. We also de-
fine (hard-core bosonic) operators bl and b

†
l that, respectively,

annihilate and create a dimer on link l, as well as the dimer
number operator dl = b

†
lbl . One can restrict to close-packed

configurations by projecting into the subspace with eigenvalue
1 for the operator ni, defined by Eq. (1), for each site i. The
operators b(†)l do not commute with this projection, but com-
binations can be constructed that relate different close-packed
configurations and hence do commute with it.

Any such kinetic term involves shifting dimers along closed
paths of even length. The simplest is of the type introduced by
Rokhsar and Kivelson [6], which flips dimers around a plaque-
tte p of the lattice. We denote this p andwrite the Hamiltonian

FIG. 4. Action of the plaquette-flip operator p for the honeycomb
(top) and diamond (bottom) lattices. In both cases, the effect is to
shift three dimers around a hexagonal plaquette (which is nonplanar
in the case of diamond). Note that the number of occupied horizontal
bonds (thick black lines) is equal to 1 before and after the flip, and
hence that p commutes withNh. The light-gray background in both
panels illustrates the path of a string excitation (see Section II), repre-
senting the difference from a reference configuration with all dimers
on horizontal links. Flipping the plaquette causes the string to move,
by exchanging the direction taken by the string on two adjacent steps.

as

 = −uNh − t
∑

p
p , (5)

where the sum is over plaquettes of a certain type, typically
chosen as the smallest plaquettes of even length. For both the
honeycomb and diamond lattices, these are hexagons (nonpla-
nar in the case of diamond), and so the operator p can be
written as

p = bl1b
†
l2
bl3b

†
l4
bl5b

†
l6
+ h.c. , (6)

where l1⋯6 are the six links comprising the plaquette. These
operations are illustrated in Fig. 4. Our main focus will be the
ground-state phase structure of this model, as a function of the
dimensionless parameter t∕u.
By inspection of Fig. 4, it is clear that flipping dimers around

a plaquette conserves the number of occupied horizontal links,
and hence that p commutes with Nh. The same is therefore
true when moving dimers around any closed loop that can be
constructed by combining plaquettes, but not for topologically
nontrivial loops, i.e., those that span the boundaries. Shift-
ing dimers around such loops can change Nh, as illustrated
in Fig. 5. (Since Nh is related to Φx, the conservation of the
number of horizontal dimers under local rearrangements is in
fact a particular instance of the general conservation of flux in
dimer models [2].)

II. CLASSICAL KASTELEYN PROBLEM

Wefirst review the phase structure of the classical Kasteleyn
problem. While Kasteleyn [13] solved the classical model ex-
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FIG. 5. Example of a string on the honeycomb lattice, where a
set of dimers (indicated with a light-gray background) have been
shifted compared to the reference configuration shown in Fig. 2. Such
strings, which span the system in the horizontal direction, are themin-
imal rearrangements compatible with the close-packing constraint.
Note that plaquettes are flippable (marked with a star, ⋆) when two
adjacent steps of the string are in opposite directions.

actly, by expressing the partition function Eq. (2) in terms of
a determinant, it is more instructive for our purposes to argue
from the high- and low-temperature limits.

We start with the high-temperature limit T ∕u = ∞, where
all close-packed dimer configurations have equal weight. Even
in this case, the thermal state is nontrivial, because of the cor-
relations inherent in this set of configurations. The resulting
state, which survives to finite T ∕u, is referred to as a Coulomb
phase [1] and is a “dimer liquid”, in the sense that there is
no spontaneous symmetry breaking but the positions of the
dimers are strongly correlated.

In the opposite limit, T ∕u = 0, the system enters its ground
state, equal to the reference configuration with all dimers hor-
izontal (and hence maximal flux Φx). To determine the effect
of small nonzero temperature, we consider the excitations of
the system. Since, by design, there are no local rearrangements
of the reference configuration that preserve the close-packing
constraint, any excitation that does so must span the bound-
aries. It is easily verified that the minimal excitation in fact in-
volves shifting dimers along a path that spans the system once
in the horizontal direction, moving the dimers from horizontal
links to links in other directions, as illustrated in Figs. 5 and 6.
We refer to such an object as a string.
Each step in the path of a string, from one horizontal link to

the next, involves a horizontal displacement 32a for honeycomb
(see Fig. 1) and 4

3a for diamond (see Fig. 3). A string that spans
the system once in the horizontal direction therefore reduces
Nh by L. We denote the number of strings by ns, and so we
haveNh = N − nsL.
From Eq. (3), introducing a string increases the configura-

tion energy V by +uL. It may nonetheless reduce the free
energy, and hence be thermodynamically favorable, since it

also makes a positive contribution to the entropy. This en-
tropy arises from the multiple possible choices for the di-
rection taken at each step on the path, of which there are
q = z − 1, i.e., q = 2 (up or down) on the honeycomb lat-
tice and q = 3 on the diamond lattice. In both cases, the en-
tropy is ln q per unit length, giving a change in the free en-
ergy of ΔF = (u − T ln q)L. An inserted string reduces the
free energy, and is hence thermodynamically favorable, when
T > TK, where TK = u∕ ln q gives the exact transition tem-
perature for the classical Kasteleyn model on the honeycomb
and diamond lattices. (The same logic can be applied starting
from similar reference configurations on other lattices [19],
although in most cases the different possible choices at each
step are not equivalent, and so the calculation is more involved
[22, 26].)
For finiteL, only strings returning to the same position, i.e.,

with zero net displacement in the transverse directions, are al-
lowed. This restriction reduces the entropy only by an amount
of order lnL, and hence does not affect TK. On the honeycomb
lattice, for example, the vertical displacement follows a bino-
mial distribution, and so the proportion of strings with zero net
displacement is ∝ L−1∕2, giving a reduction of the entropy of
order lnL.
As the temperature increases above TK, string excitations

become thermodynamically favorable, and ns increases from
zero. For ns ≪ W⟂, the total entropy is given by a sum of
single-string contributions, S(ns) ≈ nsL ln q, while for larger
ns steric interactions (i.e., the fact that strings cannot overlap)
reduce the entropy per string.
The energy with ns strings is exactly V = −u(N − nsL) =

−uL(W⟂ − ns), and so the free energy in an ensemble with
fixed string number ns is

F (ns) = −uLW⟂ + uLns − TS(ns) . (7)

In the thermodynamic limit, L,W⟂ → ∞, the string density
�s = ns∕W⟂ takes the value that minimizes F (ns), which is
zero for T < TK and nonzero for T > TK. The value of �s at the
minimum for T > TK is determined by the (positive) higher-
order terms in F (ns) resulting from the entropy reduction due
to interactions.

With a nonzero density of strings, the system is a fluc-
tuating dimer liquid, continuously connected to the point at
T ∕u = +∞, and forming a Coulomb phase in the entire re-
gion T > TK. There is a one-to-one mapping from any con-
figuration of dimers to a collection of (nonoverlapping) strings
superimposed on the reference configuration, as illustrated in
Fig. 7, and so, far from the transition, one can view the sys-
tem as containing a dense set of strings, with �s = 1 −Nh∕N
of order unity. The mean density of strings increases continu-
ously with T ∕u in the Coulomb phase until the proportion of
horizontal dimers reaches Nh∕N = 1∕z (and hence the flux
Φx ∝ Nh −N∕z reaches zero), by symmetry, at T ∕u = +∞.

For large but finite L, one can distinguish the two phases at
T ≷ TK by how the distribution of Nh (or equivalently of ns)
scales withL. Strings are exponentially suppressed withL for
T < TK, where they cost positive free energy scaling linearly
with L. In the Coulomb phase for T > TK, the variance of
Nh scales as Ld [1], as for a typical extensive quantity in the
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FIG. 6. Left: Classical ground state of the potential shown in Fig. 3, with all horizontal links occupied. As in Fig. 2, there are no local
rearrangements of dimers consistent with the close-packing constraint. Right: Example of a string on the diamond lattice, where a set of dimers
have been shifted that spans the system in the horizontal direction, as on the honeycomb lattice, Fig. 5. Two consecutive steps that are in
different directions again produce a flippable plaquette, marked with a star (⋆).

FIG. 7. Example configuration of dimers on the honeycomb lat-
tice, mapped to a set of strings superimposed on the reference con-
figuration. Given a fixed reference configuration, in this case the
one with all dimers horizontal, there is a one-to-one mapping from
close-packed dimer configurations to configurations of zero or more
nonoverlapping strings.

thermodynamic limit. In the thermodynamic limit, there is a
phase transition between these two asymptotic behaviors, but
there is no spontaneous symmetry breaking on either side of
the transition.

A critical theory for the Kasteleyn transition can be found

by mapping the d-dimensional classical system to a (d − 1)-
dimensional quantum system, with the strings becoming the
world lines for bosons [20, 21]. Note that the resulting theory
is not the standard proliferation transition in the inverted-XY
universality class [27, 28], because the strings are directed and
no local closed loops are possible.

III. QUANTUM KASTELEYN PROBLEM

We now turn to the quantum Kasteleyn model at zero tem-
perature. The Hamiltonian  defined in Eq. (5), and indeed
any local Hamiltonian, cannot change the number of strings
ns, because creating or annihilating a string involves shifting
dimers along a path that spans the system. (The string number
is a quantity conserved by a topological constraint, rather than
by a symmetry.) The Hilbert space therefore splits into sectors
of fixed ns, and the ground-state energy Egs(ns) in each will
play the same role as F (ns) in the classical case.
The limit t∕u = 0 coincides with the low-temperature limit

of the classical model; the ground state is given by the refer-
ence configuration with all dimers on horizontal links. This
state has no flippable hexagons, and so the plaquette-flip op-
erator has no effect on this configuration, which remains an
exact eigenstate, with energy Egs(0) = −uLW⟂, for any t.
As in the classical case, introducing a single string into the

system costs potential energy +uL. For nonzero t, it also
causes plaquettes along the length of the string to become flip-
pable, as illustrated in Fig. 5. Flipping these causes the string
to move, deforming along its length; see Fig. 4. The string
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therefore delocalizes, giving a negative contribution to the ki-
netic energy. Since the Hamiltonian is local, the kinetic energy
of an isolated string will generally also be proportional to L in
the thermodynamic limit.

It is therefore possible for the net energy change of intro-
ducing a string into the system to be negative, as long as the
kinetic energy overcomes the potential energy associated with
the string. As in the classical case, the criterion for prolif-
eration of strings, i.e., whether the global ground state of 
occurs for ns = 0 or ns > 0, can be determined by consider-
ing the asymptotic behavior at small ns. We therefore begin by
considering the properties of a single string.

A. Effective single-string Hamiltonian

Because  conserves the number of strings, one can write
an effective Hamiltonian string in the single-string Hilbert
space. For both the honeycomb and diamond lattices, the de-
grees of freedom describing a string are the q possible direc-
tions that it takes at each step, with q = 2 for honeycomb and
q = 3 for diamond. We define |�⟩i, for � = 1, 2,… , q, as a
basis state representing a step in direction � at position i along
the string (with periodic boundary conditions).

The kinetic term in  produces a term that allows the di-
rection on adjacent steps to be swapped provided that they are
different (see Figs. 4 and 5). The single-string Hamiltonian is
therefore

string =
L
∑

i=1

(

u − t string
i,i+1

)

, (8)

where

 string
i,j =

q
∑

�,�=1
�≠�

|�⟩i|�⟩j⟨�|i⟨�|j (9)

is an operator that permutes the flavors at sites i and j, or gives
zero if they are the same.

This model has permutation symmetry under exchange of
any two directions, corresponding to real-space reflections, as
well as U(1)q symmetry under diagonal unitary transforma-
tions, but not full SU(q) symmetry (because � = � is not in-
cluded in the sum).

To apply periodic boundary conditions along the direction
of the string, one should also enforce the constraint that the
total number of steps in each direction is equal, so that the
net transverse displacement is zero. This constraint commutes
withstring, which conserves the total number of each type of
step, and so, provided the ground state does not break permu-
tation symmetry, this constraint has no effect.

1. Honeycomb lattice

For the honeycomb lattice, q = 2, and the single-string
Hamiltonian can be rewritten in terms of Pauli operators �±i =

1
2

(

�xi ± �
y
i
)

, as

string
q=2 =

∑

i

[

u − t
(

�+i �
−
i+1 + �

−
i �

+
i+1

)]

, (10)

where �+i = (�−i )
† = |2⟩i⟨1|i. This is the Hamiltonian for a

spin- 12 XX chain, which can trivially be solved using a Jordan–
Wigner transformation. (An identical effective model was
in fact found to describe strings in quantum spin ice on the
checkerboard lattice [23].)
Defining fermionic operators ci by

�+i = ci
∏

j<i
(1 − 2c†j cj)

�zi = 2c
†
i ci − 1 ,

(11)

the Hamiltonian becomes

string
q=2 =

∑

i

[

u − t
(

c†i+1ci + c
†
i ci+1

)]

. (12)

Transforming to momentum space gives free fermions with
dispersion �k = −2t cos k, where −� < k ≤ � and kL∕�
should be even (odd) when the fermion number is odd (even)
[29].
In the ground state, all L∕2 single-particle states with �k <

0 are occupied, giving total energy

Estring
q=2 = uL − 2t

nF
∑

n=−nF

cos 2�n
L

= uL − 2t
sin �

L

,
(13)

where nF =
L
4 −

1
2 . The net vertical displacement of the string

is
∑

i �
z
i =

∑

i(2c
†
i ci − 1) = 0 in this state, and so the periodic

boundary conditions are satisfied.
Taking the thermodynamic limit gives ground-state energy

per site of

Estring
q=2

L
= u − 2

�
t . (14)

The energetic contribution of a single string is therefore posi-
tive for u > 2

� t, which implies that the vacuum of strings is the
ground state for t∕u < (t∕u)c =

�
2 on the honeycomb lattice.

2. Diamond lattice

For diamond, where q = 3, it is no longer possible to ex-
press the string degrees of freedom in terms of spin- 12 opera-
tors, and hence the Jordan–Wigner transformation cannot be
used to diagonalize the Hamiltonian.
Instead, one can estimate the ground-state energy using

mean-field theory, by taking as the trial state an equal-weight
superposition of all permutations p,

|mf⟩ ∝
∑

p
|p⟩ . (15)
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FIG. 8. Exact-diagonalization results for the ground-state energy per
site of a single string on the diamond lattice, for t = 1 and u = 0, plot-
ted versus inverse system size 1∕L. The solid and dashed lines show
cubic and quadratic fits extrapolated to L = ∞, giving an estimate of
Estring
q=3 ∕L = −0.805(5).

For any p,  string
i,i+1 |p⟩ gives another permutation appearing in

the sum, unless the two directions at i and i + 1 are the
same, in which case it gives zero. The expectation value
⟨mf| string

i,i+1 |mf⟩ is therefore given by the fraction of permu-
tations where the two are different, which is (q − 1)∕q in the
thermodynamic limit. The expectation value is therefore

⟨mf||mf⟩
L

= u −
q − 1
q

t , (16)

which gives an upper bound on the true ground-state energy
per site. For q = 2, Estring

q=2 ∕L ≤ u − 1
2 t, which is consistent

with and gives a reasonable variational estimate to Eq. (14).
For q = 3, the upper bound is

Estring
q=3

L
≤ u − 2

3
t . (17)

Results from exact diagonalization and an extrapolation to
large L are shown in Fig. 8. Expressing the ground-state en-
ergy per site as

Estring
q=3

L
= u − t , (18)

these results give an estimate of  = 0.805(5). The vacuum
of strings is the ground state on the diamond lattice for t∕u <
(t∕u)c = −1.

B. Quantum Kasteleyn transition

The ground-state energy Estring of the single-string Hamil-
tonian gives the difference between the ground-state energies
in the one-string and zero-string sectors, Egs(1) −Egs(0). For
t∕u > (t∕u)c, where this difference is negative, the overall

ground state of must be in a sector with nonzero string num-
ber ns. Since the ground state for t∕u = 0 certainly has ns = 0,
this implies a phase transition at some value of t∕u, between
the string vacuum and a phase with nonzero string density.
If we assume that the effective interactions between strings

are repulsive, at least in the low-density limit, then the terms in
Egs(ns) that are of higher order in ns are positive. (Such an as-
sumption is at least highly plausible, because of the hard-core
repulsion between strings, as in the classical case.) The global
minimum of Egs(ns) then increases continuously from zero as
t∕u increases above (t∕u)c, giving a continuous quantum phase
transition at critical value (t∕u)c.

1. Statistics of string width

For t∕u just above (t∕u)c, we expect the physics to be de-
scribed, at least over certain length scales, by a set of inde-
pendent strings, each in the ground state of string. To deter-
mine the properties of the system, we first use the microscopic
model for the honeycomb lattice, where it is solvable, before
addressing the general case using an effective long-wavelength
description.
In terms of the Pauli operators defined for the honeycomb

lattice in Section III A 1, the net vertical displacement between
horizontal positions i and j (with j > i) is

Yi,j =
j−1
∑

r=i
�zr , (19)

in units of
√

3
2 a. Applying the Jordan–Wigner transformation,

Eq. (11), this is given by Yi,j = j − i − 2Ni,j , where

Ni,j =
j−1
∑

r=i
c†r cr (20)

is the total occupation number on sites r with i ≤ r < j. In the
ground state of string

q=2 , all single-fermion states with �k < 0

are occupied, giving a mean density of 12 , and so ⟨Yi,j⟩ = 0, as
expected by symmetry.
The variance of Yi,j can be calculated using Wick’s theo-

rem, since string
q=2 is quadratic. A standard calculation gives

number–number correlations exhibiting Friedel oscillations
(with 2kF = �),

⟨c†r+xcr+xc
†
r cr⟩ − ⟨c†r+xcr+x⟩⟨c

†
r cr⟩

=

⎧

⎪

⎨

⎪

⎩

1
4 for x = 0
0 for even x ≠ 0
−�−2x−2 for odd x,

(21)

for x ≪ L. Summing over x then gives the result

⟨Y 2i,j⟩ ≈
2
�2
ln(j − i) (22)
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for 1 ≪ j − i ≪ L. This contrasts with the classical case,
where a string behaves as a random walk and the variance
is instead proportional to j − i. (Note that we have ignored
boundary conditions in the transverse directions in this cal-
culations. This is clearly justified, in both the quantum and
classical cases, for an isotropic system with large L.)
Instead of using the microscopic model, it is possible to

write down an effective continuum field theory of a single
string. In 2D, we consider a coarse-grained picture in which
the vertical displacement of the string is given by a real func-
tion ' of the horizontal position x, taken as continuous. This
picture can be generalized to d spatial dimensions by describ-
ing the displacement transverse to the horizontal direction by
a (d − 1)-component vector '�.
Let ��(x) be the conjugate momentum operator, with

canonical commutation relations

[

'�(x), ��(x′)
]

= i����(x − x′) , (23)

where � and � run over the d − 1 directions transverse to the
string. The effective Hamiltonian can then be expressed as

string,eff = ∫ dx
{1
2
�|�(x)|2 + 1

2
�|'′(x)|2

}

, (24)

plus higher-order terms, where � and � are real parameters.
No mass term (i.e., |'(x)|2) is allowed in the string Hamil-

tonian because of translation symmetry in the transverse di-
rections. Similarly, the higher-order terms must be expressed
only in terms of the derivative '′ and the momentum �. This
implies, by power counting, that they are RG-irrelevant at the
Gaussian fixed point represented by Eq. (24), and hence that
the field theory is quadratic in the long-wavelength limit. The
irrelevance of higher-order terms has the effect that there is no
coupling between the different components of ' for d > 2.
In principle, a periodic function of '�(x) could also be

added to string,eff, since the transverse position of the string
takes discrete values in the microscopic model. If such a term
were relevant, which would require sufficiently small �∕�, this
would describe a phase where the string was “flat”. Stabilis-
ing such a phase would require additional terms in the origi-
nal dimer Hamiltonian and would preclude the possibility of a
Kasteleyn transition driven by string kinetic energy.

We therefore work with the free field theory of Eq. (24),
which can be solved by expressing' and � in terms of creation
and annihilation operators for the modes of the string. This
gives for the variance of the displacement

⟨

[

'�(x) − '�(x′)
]2
⟩

≈
√

�
�
1
�
ln|x − x′| , (25)

which is consistent with the microscopic result for d = 2,
Eq. (22). Both expressions are valid only when much smaller
than square of the typical separation between strings, given
by (W⟂∕ns)2∕(d−1), and hence constitute intermediate asymp-
totics [20].

2. Dimer correlations in the single-string limit

At low string density, the properties of the original dimer
model can be expressed in terms of observables for a single
string. As an example, we consider the dimer–dimer equal-
time correlation function.
For simplicity, consider two horizontal links l and l′ on the

honeycomb lattice, separated by displacement 3axx̂+
√

3
2 ayŷ,

where x and y are integers with the same parity. Assuming the
string passes through l, it will pass through l′ if and only if
Yx,0 = y. A horizontal link is occupied unless a string passes
through it, and so the dimer–dimer correlation function obeys

G(x, y) ≡ ⟨(1 − dl)(1 − dl′ )⟩ =
1
W⟂

⟨

�y−Yx,0
⟩

, (26)

where � is the Kronecker delta. On the right-hand side, 1∕W⟂
is the probability that the string passes through l, while the ex-
pectation value is the conditional probability that it also passes
through l′. (Correlation functions of dl for links of other ori-
entations can be expressed similarly.)
Taking the Fourier transform with respect to y gives

G̃(x, ky) ≡
∑

y
e−ikyyG(x, y) = 1

W⟂

⟨

e−ikyY0,x
⟩

. (27)

Again using Wick’s theorem, the expectation value can be
evaluated to give

G̃(x, ky) =
1
W⟂

e−
1
2k
2
y⟨Y

2
0,x⟩ ≈ 1

W⟂
x−k

2
y∕�

2
, (28)

using Eq. (22), so that (again ignoring transverse boundary
conditions) the real-space correlation function is given by

G(x, y) ≈ 1
W⟂

√

�
4 ln x

exp
(

− �2

4 ln x
y2
)

, (29)

a Gaussian in y, of width ∝
√

ln x.
For nonzero but small string number ns ≪ W⟂, one expects

that multiple strings will add incoherently to this correlation
function, replacing the factor 1∕W⟂ by the string density �s =
ns∕W⟂.

IV. DENSE-STRING PHASE

For t∕u > (t∕u)c, the ground state of  is in a sector with
nonzero string density �s. In this case, the properties of the
system (on length scales larger than the typical string sepa-
ration) are dependent on interactions between strings, and so
cannot be inferred directly from the single-string picture of the
previous section. To determine the full phase structure in this
region would require numerical simulations and is beyond the
scope of this work. Instead, we sketch the likely possibilities.
Phases at nonzero string density can be divided into solids

(or “valence bond crystals”), where the dimers form a crys-
talline arrangement, spontaneously breaking spatial symme-
tries, and liquids, where they do not. Quantum dimer liquids,
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as well as their classical analogues [1], can also be character-
ized by phenomena such as deconfinement of monomers and
topological order [2].

In the classical case, the Kasteleyn model has a liquid
(Coulomb) phase for all T > TK [13] and interactions between
dimers are required to produce a solid. In quantum dimer
models, by contrast, quantum fluctuations can, and often do,
select particular ordered structures, leading to dimer solids.
To connect this discussion to more conventional language for
dimer models, note (see Section IA) that the string density
�s is related to the horizontal flux by Φx = Φmax − �sW⟂,
and hence that increasing the string density from zero corre-
sponds to reducing the flux from its maximum. In the limit
t∕u = ∞ the model is rotationally symmetric and so Φx = 0.
For (t∕u)c < t∕u < ∞, we are therefore interested in states
with intermediate flux, 0 < Φx < Φmax.
We first consider the 3D diamond lattice. In this case, we

can derive some insight from quantum Monte Carlo (QMC)
studies of the standard Rokhsar–Kivelson (RK) QDM [6] on
the same lattice by Sikora et al. [30, 31]. Instead of the u term
in the Kasteleyn model, this model has a potential term, with
coefficient �, which counts the number of flippable plaquettes.
For � less than a critical value �c, the ground state was shown
to be a dimer solid, referred to as the “R” state, while for �c <
� < t, it was found to be a quantum dimer liquid. (Here, t
is the coefficient of the kinetic term, and so the solvable “RK
point” is at � = t.)

Significantly, the QMC results give �c∕t = 0.75±0.02 [31],
indicating that at � = 0, where the RK QDM coincides with
the point u = 0 of our model, the system is in a dimer solid
phase. This implies that the quantum Kasteleyn model on the
diamond lattice has a dimer solid phase at t∕u = ∞, and per-
haps also for large finite t∕u. The R state has fixed zero flux,
and so reducing t∕u might be expected to favor other states,
possibly leading to a transition into an intermediate phase (or
phases), before the Kasteleyn transition into the string vacuum
at t∕u = (t∕u)c. These might include a quantum dimer liquid
with continuously varying flux (and string density).

Such a phase would be a deconfined U(1) quantum dimer
liquid, as in the RK QDM at �c < � < t, described by a
gauge field A and exhibiting emergent electrodynamics [30–
32]. While no symmetries are spontaneously broken, the po-
tential term in our original Hamiltonian reduces the spatial
symmetry of the model (for u ≠ 0), leading to an effective
action  , in continuous space r and imaginary time �,

 = 1
2 ∫

d2r∫ d�
(

|)�A|2 + c2xB
2
x + c

2
⟂|B⟂|

2) , (30)

where B = ( × A, with different “speeds of light” cx ≠ c⟂
parallel and perpendicular to the x axis. The “flux density” B
is effectively the string density (with a direction assigned arbi-
trarily along ±x̂) but with the mean string density subtracted
to remove a term linear in Bx.

The possibilities are more limited in 2D because, accord-
ing to an argument by Polyakov [33], U(1) quantum liquids
cannot exist as extended phases. Phases of the 2D RK QDM
with intermediate flux have previously been considered by
Refs. [34, 35], in the case where a nonzero flux occurs sponta-

FIG. 9. Example of the height ℎ for a configuration of the dimer
model on the honeycomb lattice. An integer value ℎ is assigned to
each plaquette such that ℎ increases by 1 when crossing, in the posi-
tive y direction, a horizontal link that is unoccupied or any other link
that is occupied. Strings (see Fig. 7) therefore act as contours for the
height.

neously as a result of symmetric interactions between dimers.
(Their analyses focus on the region near the RK point, � = t,
whereas our model is effectively far from this point, with
� = 0.) Here, we briefly sketch the results as they apply to
the Kasteleyn model.
A similar coarse-grained action to Eq. (30) can be written in

2D, but with the vector field A replaced by a scalar “height” ℎ
[2]. For our purposes, the simplest way to define the height is
to treat each string as a unit step, so that ℎ is defined on plaque-
ttes and monotonically nondecreasing with y, as illustrated in
Fig. 9. (This construction is equivalent to the standard map-
ping from dimers to heights [2], but with the heights in the
fully staggered configuration, Fig. 2, subtracted.) The overall
“tilt” of the height, i.e., the discontinuity when going around
the periodic boundaries in the vertical direction, is given by
the string number ns.
The local gauge redundancy of A is replaced in 2D by a

global redundancy under uniform shifts of ℎ. Besides the
derivative terms analogous to those in Eq. (30), locking terms
of the form cos(2�nℎ), with integer n, are therefore also al-
lowed in the action. These terms always lock the height to cer-
tain (tilted) configurations, each corresponding to a particular
dimer solid. A quantum dimer liquid therefore cannot exist
except possibly at isolated points in the phase diagram, where
the tilt is incommensurate with the lattice [34, 35].

V. CONCLUSIONS

This work has introduced a quantum analogue of the Kaste-
leyn transition in the classical dimer model. As in the classical
case, on the “ordered” side of the transition, the system is fluc-
tuationless (in the thermodynamic limit) as a consequence of
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the strong constraints on fluctuations within the set of close-
packed dimer configurations. Quantum fluctuations, which
play an analogous role to thermal fluctuations in the classical
model, can drive a transition to a state with a nonzero density
of string excitations. The critical value (t∕u)c of the ratio of ki-
netic and potential terms can be calculated exactly on the hon-
eycomb lattice, providing a rare example of a quantum phase
transition whose critical coupling can be determined exactly
[36]. On the diamond lattice, (t∕u)c can be expressed in terms
of the ground-state energy of a particular 1D quantum model.

The analysis here has focused on the ground state of the
quantum Kasteleyn model. At nonzero temperature T , one ex-
pects quantum and thermal fluctuations to act in the same di-
rection, and so (t∕u)c should decrease with T , reaching zero at
the transition temperature TK of the classical Kasteleyn model.
A (classical) dimer liquid is in principle possible at any T > 0

in the quantummodel in 2D and 3D, though the quantum dimer
solids that likely exist at T = 0 would survive up to T of order
of their energy gaps.
While the honeycomb and diamond lattices have been used

here for simplicity, themodel can be extended to other bipartite
lattices by appropriate choice of the potential term, or, equiv-
alently, of the reference configuration. On the square lattice,
for example, an appropriate reference configuration has dimers
in a staggered arrangement, which maximizes the horizontal
component of the flux and hosts analogous string excitations
[22, 26].
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