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Quintessence and the Swampland: The Numerically
Controlled Regime of Moduli Space

Michele Cicoli, Francesc Cunillera,* Antonio Padilla, and Francisco G. Pedro

We provide a detailed discussion of the main theoretical and
phenomenological challenges of quintessence model building in any
numerically controlled regime of the moduli space of string theory. We argue
that a working quintessence model requires a leading order
non-supersymmetric (near) Minkowski vacuum with an axionic flat direction.
This axion, when lifted by subdominant non-perturbative effects, could drive
hilltop quintessence only for highly tuned initial conditions and a very low
inflationary scale. Our analysis has two important implications. Firstly,
scenarios which are in agreement with the swampland conjectures, such as
those that include runaways, or supersymmetric AdS and Minkowski vacua,
cannot give rise to phenomenologically viable quintessence with full
computational control. This raises doubts on the validity of the swampland dS
conjecture since it would imply a strong tension between quantum gravity
and observations. Secondly, if data should prefer dynamical dark energy, axion
models based on alignment mechanisms look more promising than highly
contrived hilltop scenarios.
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1. Introduction

A wealth of cosmological probes, from
measurements of the cosmic microwave
background radiation[1] to observations
of distant supernova,[2,3] point to a uni-
verse that underwent two phases of ac-
celerated expansion. The first of these
occurred very early on and is often de-
scribed by inflation, with a scalar field in
slow roll along a flat potential. The second
phase of acceleration - dark energy - is
on-going. The simplest empirical model
of dark energy assumes it is driven by
a cosmological constant, or vacuum en-
ergy, although the scale of the observed
vacuum energy is more than 120 orders
of magnitude less than expected from
naturalness considerations.[4–7] Alterna-
tively, dark energy could also be driven
by a quintessence field,[8–10] a scalar
field in slow roll similar to inflation,

albeit at a much lower scale.[11] Even for quintessence, we still
face the question of why the vacuum energy is small and does
not dominate the dynamical potential for dark energy.
Establishing the microscopic origin of both inflation and dark

energy is an important challenge for string theory phenomenol-
ogy. In [12] it has been conjectured that scalar potentials that
can be derived from putative quantum gravity theories obey the
bound

V𝜙 ≥ c
Mp

V , (1.1)

where c is a positive and dimensionless order one constant. If
true, this conjecture has serious implications for inflation in the
early universe and dark energy at present times. The most obvi-
ous consequence is that de Sitter (dS) vacua are forbidden, ruling
out the cosmological constant as the source of dark energy. How-
ever, the bound is also in some tension with the requirement of
slow roll in two derivative scalar actions, both for inflation and
dark energy. While this tension is stronger in the context of in-
flation, it may be acceptable for dark energy models given that
current bounds on 𝜔DE

[1] are more relaxed that those derived
from the scalar spectral tilt, ns, for inflationary models.[13,14] It
was later realised that this bound would rule out the experimen-
tally testedHiggs potential, and would preclude electroweak sym-
metry breaking which requires V𝜙 = 0 for V𝜙𝜙 < 0 and V > 0.[15]

Moreover, it would also rule out supersymmetric AdS vacua that
are accompanied by dS maxima at large field values.[16] This
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unsatisfactory state of affairs prompted the proposal of a refined
conjecture that took the form[17,18]

V𝜙 ≥ c
Mp

V or V𝜙𝜙 ≤ − c′

M2
p

V , (1.2)

where c and c′ are positive and dimensionless order one con-
stants. These conjectures are not based on rigorous proofs and
several counterexamples have been proposed.[19–28] Rather, the
logic behind their formulation is the theoretical difficulty in es-
tablishing the existence of a dS vacuum in a fully convincing
manner, mainly due to the need to break supersymmetry. Strong
evidence in favour of the refined version of the conjecture has
been given in [18] for any parametrically controlled regime of
string theory using a combination of the distance conjecture and
entropy considerations. This is the regime where the semiclassi-
cal approximation can be made arbitrarily good by sending the
parameters that control the string loop and the 𝛼′ expansions
to zero. These are, respectively, the real part of the axio-dilaton
S, which sets the string coupling gs = 1∕Re(S), and the extra-
dimensional volume in string units  which controls the 𝛼′ ex-
pansion since 1∕1∕3 = 𝛼′∕Vol1∕3 (where Vol is the dimensionful
volume). The asymptotic limit where Re(S) → ∞ and → ∞ cor-
responds to the semiclassical approximation with no dS vacua.
However, dS vacua could still exist in the bulk of moduli

space where the quality of the approximations should be care-
fully checked. In particular, a necessary condition to have control
over the effective field theory is the existence of small expansion
parameters such as the flux-generated superpotentialW0 ≪ 1 in
KKLT models[29] and the inverse of the internal volume 1∕ ≪ 1
in LVS vacua.[30–32] Much progress has been made in this di-
rection by determining perturbative[33–39] and non-perturbative
corrections,[40] or by estimating their moduli dependence us-
ing higher dimensional arguments based on symmetries[41] and
geometry.[42] However, it is fair to say that the existence of dS
vacua in the interior of themoduli space has still to be established
in a fully convincing manner and there are a growing number of
no-go theorems explicitly demonstrating their absence in partic-
ular compactifications of string inspired effective theories.[43–51]

Even if they did exist, dS vacua in string theory might well be
short-lived, as suggested by the TCC conjecture.[52] Of course,
this is not a problem for dark energy as observations only require
it to be dominant for a single efolding of accelerated expansion.
This may even be desirable in the context of the cosmological co-
incidence problem.[53–56]

All these considerations show that the existence of dS vacua
in string theory is still an open problem which requires further
scrutiny. It is, therefore, interesting to investigate if the alterna-
tive to a cosmological constant—namely, quintessence— shares
the same technical difficulties. To this end, we shall focus on
the microscopic origin of dark energy as a dynamically evolving
scalar field emerging from a compactification of string theory.
In our companion paper,[57] we have shown that quintessence

cannot be realised in any parametrically controlled regime of
string theory since the dilaton and volumemode runaways in the
asymptotic region of moduli space are too steep to drive an epoch
of accelerated expansion. The obstruction echoes some of the ob-
structions to dS vacua,[18] with related results for quintessence
also being derived in [58–62]. Note that the situation does not im-

prove if one performs amultifield evolution including their corre-
sponding axionic fields. In fact, even if non-geodesic trajectories
on curved field manifolds could, in principle, yield a period of
accelerated expansion for steep potentials,[63,64] this is never the
case for either Re(S) or  .[65]
As a result, quintessence can only be realised in the bulk of

moduli space where it generically shares the same control issues
as dS model building.[66] On top of the technical difficulties in
trusting the effective field theory, quintessence is known to fea-
ture some phenomenological challenges including the ‘light vol-
ume problem’ and the ‘F-term problem’.[67] The ‘light volume
problem’ relates to quintessence driven by a saxion, typically a
volume modulus. To be compatible with the acceleration we see
today, this modulus needs to be extremely light, with its mass
bounded above by the current Hubble scale. As it also couples to
matter with gravitational strength, this would yield an additional
long range scalar force, in violation of fifth force constraints.[68]

The ‘F-term problem’ is associated with radiative corrections in-
volving supersymmetric particles running in loops, producing
contributions to the scalar potential that are much larger than
the dark energy scale. Traditional quintessence, at least in a per-
turbative regime, also has some observational problems, having
been shown to enhance the so-called Hubble tension[69,70] which
is already at 5𝜎 for ΛCDM.[71]

Here we add to the challenges facing quintessence in string
theory. In particular, we show how a version of the so called
‘Kallosh-Linde (KL) problem’[72] drastically constrains the spec-
trum of possibilities. The KL problem is one of runaway be-
haviour in the volumemode during inflation. It is normally used
to constrain the scale of inflation against the gravitino mass. We
use it to constrain the form of the underlying scalar potential re-
sponsible for dark energy, exploiting the huge hierarchy of scales
between the acceleration today and in the early universe. This hi-
erarchy makes it extremely difficult to have a scalar potential that
is compatible with current observations and is protected from the
KL runaway during inflation.
Let us briefly run through the logic. We begin with V0(),

the potential that fixes the volume mode. However, the volume
mode also couples to any source of energy-momentum thanks
to the Weyl rescaling to four-dimensional Einstein frame. As a
result, in Einstein frame, there is a direct coupling between 
and the potentials for both the inflaton 𝜎 and the quintessence
field 𝜙. The total scalar potential describing the dynamics of all
three fields is given by Vtot = V0() + V1(𝜎,) + V2(𝜙,) where
V1(𝜎,) is generated from the inflaton potential and V2(𝜙,)
from the quintessence potential. Recall that there exists an enor-
mous hierarchy between the energy scales of inflation and dark
energy: Vinf ≳ (1MeV)4 ≫ (1meV)4 ∼ VDE.
During inflation, with 𝜎 in slow roll, it follows that

the quintessence field 𝜙 should be frozen, with V1(𝜎,) ≫
V2(𝜙,). Furthermore, in order to avoid destabilising the vol-
ume direction,[72] we need to impose the condition |V0(∗)| ≳
V1(𝜎,) ≫ V2(𝜙,), where ∗ is the value of  controlling the
barrier against decompactification. For Minkowski vacua ∗ =max, the value of  at the top of the barrier, while for AdS vacua
∗ = min, the value of the  at the minimum1. Of course, for

1 For dS vacua the story is slightly different: we need to impose
V1(𝜎,) ≲ (V0(max) − V0(min)), although we shall ignore this case
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AdS vacua inflation is possible only ifV1(𝜎,) acts as an uplifting
term such thatVinf ≃ V0(min) + V1(𝜎,min) > 0. (Herewe are as-
suming that the location of the minimum, min, does not change
significantly in the presence of the uplift.)
After the end of inflation V1(𝜎,) goes to zero and so Vtot ≃

V0(min) + V2(𝜙,min). For the case where V0() admits a (near)
Minkowski vacuum with V0(min) ≃ 0, it follows that Vtot ≃
V2(𝜙,min) ≃ VDE ≲ 10−36Vinf ≲ 10−36V0(max), implying a huge
hierarchy between the energy scales associated with the poten-
tial that stabilises  and the one which drives quintessence.
For the case where V0() admits an AdS vacuum, the hier-
archy of scales ensures that, after inflation, Vtot ≃ V0(min) +
V2(𝜙,min) ≃ V0(min) < 0, implying that quintessence model
building is not possible.
Notice that similar considerations would apply if the vol-

ume also plays the rôle of the inflaton (𝜎 = ), notwithstand-
ing that explicit constructions of volume inflation look rather
contrived.[73] Alternatively, if the volume plays the rôle of
quintessence (𝜙 = ) its potential would, again, be destabilised
by the inflationary energy density. Finally if the volume is every-
thing (𝜎 = 𝜙 = ), we would require the presence of two slow roll
regions at hierarchically different field values. Given that plateau-
like regions can be obtained only by balancing competing terms,
if the quintessence epoch at large field values is under control, the
inflationary era would lie in a region where perturbation theory
would tend to break down. Reheating after the end of inflation
and fifth force constraints would also present additional prob-
lems in this particular case.
These considerations can be combined with implications of

the refined dS conjecture.[18] The refined dS conjecture rules out
quintessence models with a very shallow potential, as in [74],
but allows for quintessence rolling near a hilltop at positive en-
ergy (perhaps in the presence of a global AdS or supersymmet-
ric Minkowski vacuum) or down an exponential potential of the
form V = V0 e

−𝜆𝜙∕Mp . In the latter case, it has been shown that
agreement with data requires 𝜆 ≤ 1.02 at 3𝜎 [75]2. However, our
analysis suggests that these two scenarios are not under better
control than dS vacua.
Exponential potentials arise from no-scale breaking perturba-

tive effects for saxions and are typically not small enough to pro-
duce the required hierarchy in scales between inflation and dark
energy. Therefore, these models are expected to be destabilised
by the inflationary dynamics, as well as suffering from problems
with the light volume and the F-term. The KL problem also ap-
plies to hilltop quintessence near a maximum at positive energy,
with a global AdS minimum. We shall present explicit examples
of these scenarios and elucidate their problems in Section 3.
To avoid the KL problem, we could consider hilltop

quintessence models with a supersymmetric (near) Minkowski
vacuum. However, in these models the gravitino mass would be
of order the dark energy scale resulting in violation of current
bounds.[77–80] Moreover, supersymmetric Minkowski solutions
are highly constrained, requiring a very precise form for the
superpotential W. Therefore, even if the presence of supersym-

since quintessence model building is less well motivated in the pres-
ence of a dS vacuum.

2 A stronger bound of 𝜆 ≤ 0.6 was obtained in [76]. We refer the reader
to [75] for a discussion of the two approaches.

metry might seem a powerful tool to keep computational control
over these solutions, proving their existence in the interior of
the moduli space might still be a challenge. As an illustrative ex-
ample, consider the well-understood type IIB compactifications
with H3 and F3 flux, and a tree-levelW that does not depend on
the complex volume mode T = 𝜏 + i𝜃. In this set-up, any super-
symmetric Minkowski solution at tree-level would necessarily
feature a complex flat direction, given by T . The existence of
a global Minkowski solution with all moduli stabilised would,
therefore, have to rely on the existence of non-perturbative
corrections, which lack a full systematic understanding. They
would also lift 𝜏 and 𝜃 at the same level of approximation,
without generating the right hierarchy between the would-be
quintessence field 𝜃 and the volume mode 𝜏.
In the end, we arrive at a generic picture for building a viable

quintessencemodel in string phenomenology. Let us summarize
the main points:

• At leading order (in either perturbative or non-perturbative ex-
pansions), the scalar potential V0() should feature a (near)
Minkowski vacuumwith a stabilised volumemode. Notice that
non-supersymmetricMinkowski vacua typically require the in-
clusion of uplifting sectors, and so look qualitatively similar
to dS vacua. Although supersymmetric Minkowski solutions
could give better computational control, the subdominant ef-
fects which generate dark energy would also be responsible
for supersymmetry breaking. The gravitino mass (and the soft
terms) would not be decoupled from the dark energy scale, in
strong tension with both particle physics[77–79] and cosmolog-
ical observations.[80] Thus the leading order Minkowski vac-
uum should be non-supersymmetric.

• At the leading order of approximation, the quintessence field
should remain flat in order to be able to create the required
hierarchy between V0(max) and VDE, with the latter generated
by subdominant contributions. The presence of a flat direc-
tion can be guaranteed by shift symmetries which fall into
two categories: (i) non-compact rescaling symmetries for sax-
ions arising from the underlying no-scale structure.[81,82] How-
ever, these are broken by perturbative effects, and so are not
generally efficient enough to provide the required hierarchy;
and (ii) compact shift symmetries for axions which can poten-
tially generate huge hierarchies, being broken only by tiny non-
perturbative effects. Moreover, the smallness of these non-
perturbative corrections ensures that the energy density asso-
ciated with the quintessence potential does not destabilise the
volume minimum.

• Axion quintessence automatically avoids the fifth-force prob-
lem (being driven by a pseudo-scalar) and ensures radiative
stability thanks to the fact that the axionic shift symmetry is
exact at the perturbative level.

• The main problem with axion quintessence is that its poten-
tial is flat enough to drive a period of accelerated expansion
only if the axion decay constant is trans-Planckian. However,
this situation is very difficult to realise since explicit string
constructions with control over the effective field theory tend
to have axions with sub-Planckian decay constants,[83] as also
implied by the weak gravity conjecture.[84] There could be
counter-examples based on alignment mechanisms,[85,86] al-
though their trustability requires further scrutiny.
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• For generic axion potentials with sub-Planckian decay con-
stants, wemight seek quintessence from a hilltopmodel. Even
if this possibility looks attractive from a model building per-
spective, we shall see in Section 4 that, when combined with
quantum diffusion during the inflationary epoch,[87] it relies
on two conditions: (i) very finely tuned initial conditions; and
(ii) an extremely low inflationary scale (Hinf ≲ 1 MeV), at least
for axion decay constants in the regime where the effective
field theory is under control.

In other words, from the point of view of theoretical and phenomeno-
logical control, quintessence model building in string theory is at least
as challenging as the search for dS vacua.

This conclusion raises doubts over the validity of the
swampland dS conjecture. Taken alongside the challenges to
quintessence, it would imply strong tension between quantum
gravity and observation. This might be an indication that phe-
nomenologically relevant solutions to string theory, like dS vacua,
lie in the bulk of the moduli space. In this case, it might still be
true that perturbation theory is a valid approximation but to be
confident of this, we need to refine our technical ability to com-
pute quantum corrections. In the end Nature has already shown
an affinity for couplings (as in standard gauge theories and cos-
mological perturbation theory) that are weak enough to allow us
to describe it to a good approximation, even if they cannot be
made arbitrarily small.
Finally, if data were to prefer dynamical dark energy, our anal-

ysis shows that quintessence models are very unlikely to be ax-
ion hilltops since they require highly tuned initial conditions
and a very low Hubble scale during inflation. In this regard, ax-
ion quintessence models based on alignment mechanisms look
more promising even if they need further studies to be convinc-
ingly established in fully fledged string compactifications with
moduli stabilisation.

2. Old Challenges for Quintessence in String
Theory

2.1. Type IIB Effective Field Theory

We begin with a brief review of the main techniques for deriving
the form of the underlying scalar potential of string compactifi-
cations, with a view to building a robust model of dynamical dark
energy with all moduli suitably stabilised. More detailed reviews
can be found in [66, 88]. We assume that the potential is given by
the F-term expression

V = eK
[
Kij̄DiWDj̄W̄ − 3|W|2], (2.1)

where DiW = (𝜕i + 𝜕iK)W is the Kähler covariant derivative and
Kij̄ is the inverse of the Kähler metric Kij̄ = 𝜕i𝜕j̄K. Our focus will
be on type IIB string compactifications in which the complex
structure moduli and the dilaton are fixed at semiclassical level,
and so 𝜕i denotes partial differentiation with respect to the Kähler
moduli Ti = 𝜏i + i𝜃i. Even though our focus here is on the effec-
tive action of type IIB string theory, our final phenomenological
considerations on quintessence also apply more generally to type
IIA and heterotic setups.

At tree-level, we have a Kähler potential, K = K0 − 2 ln and
a superpotentialW = W0, where  is the volume of the internal
Calabi-Yau. K0 andW0 include the complex structure moduli and
the dilaton that have already been stabilised, and are therefore
assumed to be constant. Because of the ‘no-scale structure’, the
corresponding scalar potential vanishes identically. Therefore, to
generate the appropriate masses for the Kähler moduli, we must
include at least one of the following: (i) perturbative corrections to
the Kähler potential, K → K + 𝛿Kp; (ii) non-perturbative correc-
tions to the superpotential, W → W + 𝛿Wnp; (iii) higher deriva-
tive corrections to the scalar potential, V → V + 𝛿Vhd.
A general formula giving the Kähler moduli dependence of

perturbative and higher derivative corrections at all orders in
𝛼′ and gs has been provided in [42] exploiting a combination of
higher dimensional symmetries such as supersymmetry, scale
invariance and shift symmetry, together with techniques from F-
theory. This formula reproduces several known explicit compu-
tations of quantum corrections. Here we focus on those which
have been used for cosmological applications:

• 𝛼′3 corrections
These are perturbative corrections in 𝓁s = 2𝜋

√
𝛼′ to the Kähler

potential. The leading one arises from (𝛼′3)4 terms in the
ten-dimensional action and looks like[33]

K → K0 − 2 ln
(
 + 𝜉

2

)
, (2.2)

with 𝜉 = − 𝜒()𝜁 (3)

2g3∕2s (2𝜋)3
where 𝜒() is the Euler number of the

Calabi-Yau.
• Open string 1-loop corrections
These are corrections in gs to the Kähler potential, K → K +
𝛿Kgs

, and are conjectured to take the form[36,37]

𝛿Kgs
=
∑
i

gs
Ci(U, Ū)t

⟂
i

 +
∑
i

C̃i(U, Ū)
t∩i  . (2.3)

Here there are two contributions: those of (g2s 𝛼′2) coming
from the tree-level exchange of Kaluza-Klein closed strings,
with t⟂i denoting the 2-cycles perpendicular to the branes; and
those of (g2s 𝛼′4) coming from winding strings, with t∩i denot-
ing the 2-cycles of the intersection among branes. C and C̃
are unknown functions of the complex structure moduli U,
although, as the complex structure sector is fixed at tree-level,
one can consider them to be constants.

• Higher derivative corrections
These are also 𝛼′3 corrections to the scalar potential arising
from the dimensional reduction of ten-dimensional higher
derivative terms of the form 2G4

3, that yield V → V + 𝛿Vhd
with[38]

𝛿Vhd = −g−3∕2s

34𝜆W4
0

4
Πit

i , (2.4)

where 𝜆 is an undetermined combinatorial number and ti

are the 2-cycle volume moduli. Πi are topological quantities

Fortschr. Phys. 2022, 2200008 2200008 (4 of 21) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

defined in terms of the (1,1) forms D̂i as

Πi = ∫
c2 ∧ D̂i , (2.5)

with c2 the second Chern class of . Although these effects
enter at higher F-term order, they can become important and
comparable to string loop corrections.

• Non-perturbative corrections
These are corrections to the superpotential[40]

W → W0 +
∑
i

Ai e
−aiTi , (2.6)

related to the existence of E3-brane instantons (ai = 2𝜋) or
gaugino condensates on D7-branes (ai = 2𝜋∕N, where N
is the rank of the condensing gauge group). Similar non-
perturbative corrections to the Kähler potential are subleading
when compared to perturbative terms, which can arise from
expansions in 𝛼′ or gs, and will thus be unimportant for our
discussion here.

Together these corrections yield a scalar potential:

V = 𝛿V𝛼′ + 𝛿Vgs
+ 𝛿Vhd + 𝛿Vnp (2.7)

where 𝛿Vhd is given by (2.4) and (setting e
K0 = 1)

𝛿V𝛼′ =
3𝜉W2

0

43
(2.8)

𝛿Vgs
=

W2
0

2

∑
i

(
g2s C

2
i K

tree
ii − 2

C̃i

 t∩i

)
(2.9)

𝛿Vnp =
∑
i,j

Kij
treeaiajAiAj

e−aiTi−ajT̄j

2

+
2W0

2

∑
i

Aiai𝜏i
(
e−aiTi + e−aiT̄i

)
(2.10)

K tree
ij is the tree-level contribution to the Kähler metric, and Kij

tree

its inverse. Notice how the Kaluza-Klein contribution to (2.9) en-
ters at second order thanks to the ‘extended no-scale structure’.[37]

All these corrections are under control when the overall volume
is large. In the regime where all 2-cycles scale as t ∼

√
𝜏 ∼ 1∕3,

we have the scaling

𝛿V𝛼′ ∼
W2

0

3
, 𝛿Vgs

∼
W2

0

10∕3 , 𝛿Vnp ∼
4∕3e−2a𝜏 +W02∕3e−a𝜏

2
,

𝛿Vhd ∼
W4

0

11∕3 , (2.11)

wherewe have takenK tree
ij ∼ 1∕4∕3. To generate stable vacua, one

has to find a balance between different terms in the potential.
For example, in KKLT models,[29] W0 is tuned to exponentially
small values,W0 ∼ (a𝜏)e−a𝜏 ≪ 1, so that the two contributions to
𝛿Vnp are comparable in size. This typically yields a supersymmet-
ric AdS vacuum whose depth is parametrised by −W2

0∕2. Upon
uplift the same scale controls the height of the barrier separat-
ing the vacuum from the decompactification limit.[29] A notable

exception to this rule is the racetrack setup which we describe
in Section 3.1,[72,89] where the scale of the vacuum can be made
arbitrarily small thanks to two instanton contributions that are
aligned relative to one another.
Another possible approach is to balance perturbative against

non-perturbative corrections. Generically we expect the latter to
be suppressed, except in the presence of small cycles, as this
raises the size of the instanton correction. This is precisely what

happens in the LVS scenario,[30–32] where 𝛿V𝛼′ ∼
W2

0

3
∼ 𝛿Vnp. This

sets the scale of the potential, controlling both the depth of the
non-supersymmetric AdS vacuum and the height of the barrier
to infinity which develops after uplifting.

2.2. Fifth Forces and Radiative Instability

Some dynamical dark energy models have already been built
within the framework of string compactifications.[74,90–94] Typi-
cally the quintessence field corresponds to the lightest mode and
the other moduli are stabilised at tree-level and by leading or-
der corrections. In this way dynamical dark energy appears as
a next-to-leading order effect, allowing us to retain perturbative
control. It also guarantees that the slow roll of the quintessence
field away from the minimum only displaces the volume mode
from its original vacuum expectation value by a small amount.
However none of the existing quintessence models in the lit-

erature is really satisfactory due to several challenges which were
already highlighted in [66, 67]. These challenges are related to
the phenomenological requirements that a prospective stringy
quintessence field would have to satisfy, namely:

1. A light quintessence modulus 𝜙 withm𝜙 ≲ H0 ∼ 10−60Mp. This
follow directly from requiring that the scalar field 𝜙 is in slow
roll at the current epoch.

2. Heavy superpartners with massesMsoft ≳ 10−15Mp. Supersym-
metric partners must be above the threshold set by the
LHC.[95] This, in turn, yields large perturbative corrections
from loops of visible sector supersymmetric particles.

3. Heavy Kaluza-Klein scale with MKK ≳ 10−30Mp. Sub-
millimetre scale tests of Newtonian gravity put a bound
on the Kaluza-Klein scale.[96]

4. Heavy volume modulus with m ≳ 10−30Mp. Upon compact-
ification, the four-dimensional Ricci scalar gets a prefactor
which depends on the volumemodulus which couples tomat-
ter fields after Weyl rescaling to Einstein frame. There are
stringent bounds on such fifth force effects given by sub-
millimetre experiments.[96–98]

The authors of [67] discuss the implications of these require-
ments for string models of dark energy, with a focus on LVS-
motivated scenarios for concreteness. Two main issues arise.
The light volume problem: The Kaluza-Klein mass is given by

MKK =
Ms

R
∼

Mp

2∕3 ≳ 10−30Mp ⇒  ≲ 1045 , (2.12)

where we have used Ms ≃ Mp −1∕2, the fact that the radius of
the compact space R ∼ 1∕6, and the bound on the Kaluza-Klein
mass given above.
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In the LVS scenario, the mass for the volume modulus is gen-
erated through leading 𝛼′ corrections (2.8), while at subleading
order loop corrections (2.9) lift additional Kähler moduli which
could play the rôle of the quintessence field 𝜙. Using (2.11) and
(2.12), one finds

m𝜙

m
∼

√
𝛿Vgs

𝛿V𝛼′
∼ 1

1∕6 ≳ 10−7 . (2.13)

In [74] loop contributions are suppressed due to low energy su-
persymmetry in the bulk and an anisotropic shape of the extra
dimensions. The quintessence field 𝜙 is instead lifted by poly-
instanton effects which give

m𝜙

m
∼

√
𝛿Vpoly

𝛿V𝛼′
∼ 1√ ≳ 10−22 . (2.14)

However, both (2.13) and (2.14) are in contradiction with the phe-
nomenological bound imposed by fifth force constraints and the
value of H0, i.e.

m𝜙

m
≲ 10−30. A way to avoid this issue is to intro-

duce subleading effects that modify the volume scaling of (2.13)
and (2.14).[99] For example, in the model of [74], 𝜙 does not me-
diate any fifth force since its coupling to Standard Model fields
is weaker than Planckian due to sequestering effects in the extra
dimension (see also [98] for estimates of moduli couplings in se-
questeredmodels with large extra dimensions). Nevertheless, the
volume mode would lead to new long range interactions since,
due to (2.14), it is much lighter than 1 meV and it couples with
ordinary matter with standard Planckian strength (however, see
[100] for a possible screening effect due to the kinetic coupling of
 to its associated axionic field).
The F-term problem: Themass of the superpartners, whichwe

approximate by the gaugino mass, is of the order

Msoft ∼ M1∕2 =
Fi𝜕if
Re(f )

Mp , (2.15)

where f is the gauge kinetic function. If we assume that
supersymmetry breaking is mediated through some higher-
dimensional operator at some scale Mb, for a simple toy model
with a single spurion field X and F-term FX , the contribution to
the scalar potential is

𝛿VX ∼ F2X ∼ M2
bM

2
soft , (2.16)

where Msoft enters the scalar potential after canonical normal-
isation of the spurion term. If we require that supersymmetry
breaking is mediated above the TeV scale, together with the phe-
nomenological constraints on the superpartner masses, we find
𝛿VX ≳ 10−60Mp ≫ H2

0. This contribution would raise the scale of
the potential well beyond the dark energy scale. A loophole is to
consider a new contribution to the scalar potential that would
cancel supersymmetry breaking effects with some fine-tuning, as
in [74], where the additional effect is assumed to come from the
backreaction of non-supersymmetric visible sector branes (see
also [101] for recent developments of quintessencemodels in sce-
narios with non-linearly realised supersymmetry).

The challenges for quintessence outlined in [66, 67] are just the
tip of the iceberg. In the next section, we identify an even bigger
problem: disruption of the energetic dynamics by the inflationary
energy density, resulting in destabilisation of the volume mode
and decompactification.

3. The KL Problem for Quintessence

In [72] Kallosh and Linde argued that the scale of inflation is
bounded from above by the gravitino mass in the standard KKLT
scenario.[29] The constraint arises in order to avoid a runaway in
the volume mode, leading to decompactification at early times.
Similar considerations were used to place limits on thermal cor-
rections to the scalar potential, imposing a maximum tempera-
ture in the four-dimensional effective theory.[102,103] The KL prob-
lem extends beyond KKLT, and has also been shown to affect LVS
models where the constraint turns out to be even stronger.[104]

We begin by reviewing the key aspects of the original argument
of [72]. Later we will show that it has implications also for string
models of dynamical dark energy.

3.1. Review of the KL Problem

Consider a one-instanton KKLT model with superpotential and
𝛼′-corrected Kähler potential given by

W = W0 + A e−aT , K = K0 − 2 ln
(
 + 𝜉

2

)
, (3.1)

where  = (T + T̄)3∕2 is the volume of the internal Calabi-Yau
manifold with T = 𝜏 + i𝜃 the 4-cycle volume modulus. The dy-
namics of the moduli, to leading order in 𝜉, is given by the La-
grangian

 = KTT̄ 𝜕T𝜕T̄ − V(𝜏, 𝜃)

= 3
4𝜏2

(
1 − 5𝜉

27∕2𝜏3∕2

)[
(𝜕𝜏)2 + (𝜕𝜃)2

]
− V(𝜏, 𝜃) , (3.2)

where the F-term potential is

VKKLT(𝜏, 𝜃) =
a2A2e−2a𝜏

6𝜏

(
1 + 3

a𝜏

)
−
aA|W0|e−a𝜏

2𝜏2
cos(a𝜃)

+
3W2

0𝜉

64
√
2𝜏9∕2

, (3.3)

and, without loss of generality, we have assumed W0 to be real
and negative,W0 = −|W0|. It then follows that a supersymmetric
minimum exists at zeroth order in 𝜉, located at 𝜃 = 0 and 𝜏 =
𝜏min, where the latter satisfies the following relation

|W0| = A e−a𝜏min

(
1 + 2

3
a𝜏min

)
≃ 2
3
Aa𝜏min e

−a𝜏min . (3.4)

In this section, we follow[72] and concentrate on the dynamics
close to the minimum, neglecting the subleading effects of 𝜉. Of
course, at large volumes, these 𝛼′3 corrections will induce a max-
imum in the potential as stressed in [16], which will be relevant
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Figure 1. Left: KKLT scalar potential with and without uplift. Right: Uplifted potential with increasing inflationary corrections.

to the discussion in Section 3.4. In the past these very same cor-
rections have been used for uplifting the supersymmetric AdS
minimum to Minkowski,[105] a more extreme regime which we
will not consider here.
It follows that the potential at the minimum is AdS, and given

by

VAdS ≡ VKKLT(𝜏min, 0) = −a2A2e−2a𝜏min

6𝜏min
= −3

(|W0|
min

)2

. (3.5)

The AdS vacuum can be uplifted to a metastable dS vacuum, for
example, using a warped anti-D3 brane, which gives a contribu-
tion to the scalar potential of the form

Vup =
C
𝜏2

. (3.6)

When the axion is at its minimum, the corresponding KKLT po-
tential for the saxion is given by VKKLT′ (𝜏) = VKKLT(𝜏, 0) + Vup(𝜏).
The uplift is tuned so that the new dS minimum, located at 𝜏dS,
is compatible with current bounds on the cosmological constant,
that is VKKLT′ (𝜏dS) = VKKLT(𝜏dS, 0) + Vup(𝜏dS) ≲ 10−120M4

p . For the
instanton expansion to be under control at theminimum, it must
be placed at some large value of 𝜏. As a consequence, the up-
lift does not have a huge effect on its position, and we can take
𝜏dS ≃ 𝜏min. It follows that the scale of the uplift is simply given
by the scale of the AdS vacuum, as one might already have ex-
pected, Vup(𝜏dS) ≈ |VAdS|. Furthermore, since the original scalar
potential decays exponentially quickly in comparison to the uplift
term at large 𝜏, themetastable vacuum is separated from the run-
away region by a barrier whose height is fixed at the same scale,
V∗ ∼ Vup(𝜏dS) ≈ |VAdS|. The generic shape of the potential with
and without uplift is shown in Fig. 1.
With supersymmetry now broken by the anti-D3 brane, the

gravitino acquires a mass at the uplifted minimum, given by

m2
3∕2 =

[
eK |W|2]

𝜏=𝜏dS ,𝜃=0

≈
[
eK |W|2]

𝜏=𝜏min ,𝜃=0
=
(|W0|
min

)2

=
|VAdS|
3

(3.7)

where we have used the fact that DTW = 0 and so VAdS =
−3eK |W|2 for the supersymmetric AdS vacuum.
The KL problem emerges when we consider inflation in this

particular setup. To begin with, one could consider hilltop infla-
tion from the top of the potential barrierV∗. In this case, theHub-
ble parameter during inflation is related to the gravitino mass at
present through

H2
inf ≈

V∗

3
∼

||VAdS
||

3
≈ m2

3∕2 . (3.8)

Another mechanism for inflation could be due to the dynamics
of branes in the compact space.[106] In this case, the inflaton is
some other modulus field 𝜎 controlling the location of the D-
branes in the internal space. The uplifted KKLT potential then
receives a contribution from the inflaton due to the structure of
the supergravity F-term potential. The inflationary potential will
generically take the form

Vinf(𝜏) = VKKLT′ (𝜏) +
V(𝜎)
𝜏3

. (3.9)

As shown in Fig. 1, the inflationary corrections raise the level
of the minimum more than they raise the height of the barrier.
Eventually, if the scale of inflation is high enough, the local min-
imum turns into an inflection point and the barrier disappears
completely. For the volume modulus to stay stabilised during in-
flation, we require that Vinf ≲ V∗ ∼ 3m2

3∕2M
2
p , and again we find

a relation between the value of the Hubble parameter during in-
flation and the gravitino mass today

H2
inf ≈

Vinf

3M2
p

≲ m2
3∕2 . (3.10)

Equations (3.8) and (3.10) are the main results of [72] and show
that, unless one can parametrically decouple the value of the grav-
itinomass from the height of the potential barrier, the scale of in-
flation is bounded from above by the gravitinomass,Hinf ≲ m3∕2.
This presents a problem in that it sets the gravitino mass to be
extremely large, which by proxy sets the scale of supersymme-
try breaking to be much larger than the TeV scale. Notice that
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this is not necessarily a problem for models with a high scale
of supersymmetry breaking. However, to obtain the observed
value of the Higgs mass, these require severe fine tuning or a
sequestered visible sector on D3 branes at singularities where
Msoft ≪ m3∕2.

[107] The tension between low scale supersymmetry
and inflation is even more acute in LVS models since the barrier
is generically not as high, scaling as V∗ ∼ m3

3∕2Mp. Using similar
arguments as above, this constrains the scale of inflation to be

Hinf ≲ m3∕2

√
m3∕2∕Mp.

3.2. Racetrack Solution to the KL Problem

Kallosh and Linde[72] proposed a resolution to this problem
within a racetrack model,[89] where the superpotential receives
a second instanton contribution

W = W0 + A e−aT + B e−bT , (3.11)

as one would expect from gaugino condensation in a theory with
a product gauge group. In particular, for SU(M) × SU(N) we ex-
pect a = 2𝜋∕M and b = 2𝜋∕N. The corresponding F-term poten-
tial is given by

Vrace(𝜏, 𝜃) =
a2A2e−2a𝜏

6𝜏

(
1 + 3

a𝜏

)
+ b2B2e−2b𝜏

6𝜏

(
1 + 3

b𝜏

)
+abABe−(a+b)𝜏

3𝜏

(
1 + 3

2a𝜏
+ 3
2b𝜏

)
cos[(a − b)𝜃]

−
aA|W0|e−a𝜏

2𝜏2
cos(a𝜃) −

bB|W0|e−b𝜏
2𝜏2

cos(b𝜃) . (3.12)

The model admits a supersymmetric Minkowski vacuum for a
critical value ofW0, given by

|W0|crit = A a
b−a + B b

b−a (3.13)

where we assume  = − aA
bB

> 1 and a > b for definiteness. The

minimum is located at 𝜃 = 0 and 𝜏min =
1

(a−b)
ln. The gravitino

mass vanishes at the Minkowski vacuum since supersymmetry
remains unbroken. As such there is no relation between the grav-
itinomass and the height of the potential barrier. The latter scales
as V∗ ≲ (a − b)3A2 2a

b−a , provided we assume (a − b) ≪ 1, so that
the minimum is pushed to a large value of 𝜏. The shape of the
potential for different values ofW0 is shown in Figure 2.

3.3. General Implications for Quintessence

Although[72] were interested in constraining the scale of inflation
and the form of the inflationary potential, similar considerations
can be applied to the low energy potential describing the dynam-
ics of dark energy today. We focus on the dynamics of up to three
moduli: a quintessence field𝜙 describing dark energy, an inflaton
𝜎 and the volume modulus 𝜏. In principle, these could be three
different moduli, or they could overlap - we consider all possibil-
ities.

Figure 2. Racetrack potential at 𝜃 = 0 for parameter choice A = 1, B =
−1, a = 0.1, b = 0.09 and different values ofW0 = Wcrit

0 (1 + 𝛿).

We start by assuming they are all different. In general, the full
scalar potential can be written as

Vtot(𝜙, 𝜎, 𝜏) = V0(𝜏) + V1(𝜎, 𝜏) + V2(𝜙, 𝜏) (3.14)

where V0 is the potential that fixes the volume mode, V1 the
contribution of the inflaton and V2 from quintessence. In this
case, dark energy is assumed to be described by a scalar po-
tential VDE(𝜙, 𝜏) = V0(𝜏) + V2(𝜙, 𝜏) with 𝜙 in slow roll at some
scale 𝜙 ∼ 𝜙0 today and the volume stabilised at some large value
𝜏 = 𝜏0. However, during inflation, we generically expect the full
scalar potential to receive an inflaton-dependent correction as de-
scribed in the original KL scenario.[72] In other words,

Vinf (𝜙, 𝜎, 𝜏) = VDE(𝜙, 𝜏) +
V(𝜎)
𝜏3

. (3.15)

where we have set V1(𝜎, 𝜏) =
V(𝜎)

𝜏3
, as a result of Weyl rescaling.

The inflaton field rolls slowly through at least 50 efoldings of
inflation, starting out at 𝜎inf and ending at 𝜎0, with V(𝜎0) ≈ 0.
The volume modulus and the quintessence field are assumed to
be spectators during inflation, stabilised at 𝜏 ≈ 𝜏inf and 𝜙 ≈ 𝜙inf
respectively. Once inflation has ended, the inflaton dumps en-
ergy into the Standard Model sector. During this phase of reheat-
ing, the volume and quintessence moduli are allowed to move,
if necessary, towards their current values, 𝜏 → 𝜏0, 𝜙 → 𝜙0. How-
ever, in order to avoid potential problems with light element
abundances[108] and the spectrum of the cosmic microwave back-
ground radiation,[1] all threemoduli must remain stabilised from
nucleosynthesis onwards, right up until the current epoch of dark
energy domination, at which point 𝜙 starts to slow roll.
The key observation is that VDE(𝜙0, 𝜏0) ≃ H2

0 ≪ H2
inf ≃

V(𝜎inf)∕𝜏3inf, whereH0 is the current Hubble scale, andHinf is the
scale of inflation. The hierarchy is a considerable one: the scale of
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dark energy isH0 ∼ 10−60Mp, whereas the scale of inflation is as-
sumed to lie somewhere in the range 10−42Mp ≲ Hinf ≲ 10−5Mp.

3

The considerations of [72], now suggest a parametric separation
in the scale of the underlying quintessence potential in the
early universe and at late times. In particular, we can constrain
the scale at early times, given by VDE(𝜙inf, 𝜏inf) by demanding
that the volume modulus remains stabilised during inflation.
Following the same logic as [72], we note that to avoid the
runaway in the volume, the corresponding minimum at 𝜏inf
should be separated from the asymptotic region by a barrier, V∗,
as high as the scale of inflation, V∗ ≳ H2

inf. Given that generically
we expect V∗ ∼ |VDE(𝜙inf, 𝜏inf)|, to avoid a runaway we require|VDE(𝜙inf, 𝜏inf)| ∼ V∗ ≳ H2

inf ≫ H2
0 ≃ VDE(𝜙0, 𝜏0). As we will see

in a moment, it is hard to see how we can achieve this separation
of scales in a controlled setup.
One of the lessons from Section 2 is that, at leading order and

weak coupling, one scale typically controls the scale of the AdS
vacuum and the height of the barrier, both going asWp

0∕q ≪ 1,
for some p, q. If the volume, inflaton and quintessence fields, cor-
respond to three different moduli, we have seen how the consid-
erations of Kallosh and Linde[72] suggest that the barrier height
should be at least as large as the scale of inflation to avoid a run-
away. This fixes the scale of the underlying potential to be far
in excess of the dark energy scale,Wp

0∕q ≳ H2
inf ≫ H2

0. The AdS
vacuum, even if it could be uplifted toMinkowksi by the inflation-
ary energy density, would now be too deep for any next to leading
order correction to be a viable dark energy candidate, where the
potential must be positive.
Although our arguments have focused on the case where the

inflation, the volume and quintessence field are three different
moduli, the situation is not improved whenwe relax this assump-
tion. Let us consider each of the alternatives:

• The volume accounts for dark energy but not for inflation: The in-
flaton is once again assumed to be some other (s)axion orthog-
onal to the volume mode. It is then required that the volume
mode stays stabilised during inflation and finds itself in a gen-
tle slope at late times, giving rise to dynamical dark energy.
However, in order to avoid the runaway during inflation, the
potential must have a large barrier, far in excess of the scale of
the late time potential. This scenario is very similar to the one
we have already described, and as such, suffers from the same
difficulties. Volume driven quintessence will also give rise to
long range forces that violate fifth force constraints (see e.g.
[68]).

• The volume accounts for inflation but not for dark energy: In
this scenario, the potential for the volume contains a high
scale plateau, allowing the volume to roll slowly during infla-
tion. After inflation, the volume should settle into a low scale
Minkowksi vacuum. This could then be stabilised at leading
order, with some next-to-leading effect giving rise to dynami-
cal dark energy through another modulus. In [73, 104] volume
inflation near an inflection point has been realised by consid-
ering different competing contributions: non-perturbative ef-

3 Here, the lower bound comes from the scale of BBN (around MeV),
although the actual temperature of the primordial bath might be
higher, of (GeV).[109] The upper bound comes from constraints on
the tensor-to-scalar ratio.[1]

fects, string loops, higher derivative corrections, anti-branes
and charged hidden matter fields. Besides looking very con-
trived and tuned, these constructions raise doubts as to the
level of perturbative control since the value of the volume dur-
ing inflation is relatively small. Moreover, one should make
sure that the quintessence field away from the minimum does
not result in the volume being destabilised.4

• The volume accounts for everything: In this case, the volume
modulus is responsible for both inflation and dark energy. The
situation is similar to the previous case but now we require a
flat enough plateau later on as well. This seems to require com-
peting terms at both small volumes (during inflation) and large
volumes (during the dark energy period), with a significant hi-
erarchy built in. Such hierarchies would need to be generated
by exponentials, which are generated non-perturbatively. This
suggests the early time behaviour may not be under perturba-
tive control. Furthermore, if inflation ends with the inflaton
rolling in a steep potential, and not approaching a minimum,
reheating would need to be non-standard. Crucially the late
time behaviour would also fall foul of fifth force constraints.

We can try to get around these problems by assuming that the
stabilisation of the volume lies at some low scale, nearMinkowski
vacuum generated at leading order, breaking the connection be-
tween the scale of the vacuum and the height of the barrier. (Re-
call that the barrier height should exceed the scale of inflation
to avoid decompactification.) If this leading order stabilisation
leaves, say, an axionic flat direction which is lifted only at sub-
dominant order by tiny non-perturbative effects, one could repro-
duce the required hierarchy betweenHinf andH0 without induc-
ing any destabilisation of the volumemode. Notice, however, that
generating a supersymmetric Minkowski minimum (W = 0) by
solving the F-terms equations (DiW = 0) requires a finely tuned
cancellation between all contributions to the superpotential, both
at tree and non-perturbative level, as in the racetrack scenario,[89]

which was already identified as a way to skirt around the original
KL problem.[72] Moreover, axion quintessence in agreement with
swampland bounds on the associated decay constant, requires
dynamical dark energy to occur close to the maximum of the ax-
ion potential where the scale of supersymmetry breaking would
be extremely low, set by the scale of dark energy. This leads us
to conclude that non-supersymmetric Minkowski vacua are actu-
ally more appealing, at least if we want to build a viable model of
quintessence in string theory.

3.4. A Closer Look at Quintessence Models with a KL Problem

When we consider quintessence in string theory, commitment to
the refined dS and weak gravity conjectures forbids a dynamical
model of dark energy based on either of the following scenar-
ios:

1. Minkowski vacuum with saxion slow roll down a very shallow
potential[74]

4 Notice that the tension between Hinf and H0 could be relaxed by also
havingW0 evolve from large to small values during inflation, as in the
toy model of [110]. However we are not aware of a robust model that
realises this effect while remaining under computational control.
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2. Minkowski vacuum with axion quintessence with trans-
Planckian decay constant[84]

Whilst this leaves some alternatives, our consideration of the KL
problem in the previous section suggests that most of these are
also ruled out. In particular, the following scenarios

1. Saxion hilltop for a Minkowski or AdS vacuum
2. Axion hilltop for a Minkowski vacuum with no hierarchy
3. Saxion slow roll down a moderate slope, with a runaway or a

Minkowski vacuum

are all compatible with the dS conjecture. Two minor clarifica-
tions are in order here. By ‘hierarchy’ we mean the existence
of an exponential hierarchy of scales between the leading order
potential for the volume and the axion potential responsible for
quintessence. By a ‘moderate slope’ wemean order one in Planck
units, i.e. steep enough to satisfy the refined dS conjecture but
shallow enough to allow for at least one efolding of slow roll.
Each of these three alternatives suffers from the KL problem.

They also suffer from a variety of other problems, not least that of
an unacceptably light volume modulus and a light gravitino. In
this sectionwe study specific examples of each scenario, explicitly
demonstrating how many of these problems emerge.

Saxion Hilltop for a Minkowski or AdS Vacuum

The racetrack scenario has a supersymmetric Minkowski vac-
uum, separated from the runaway regime by a maximum in the
volume mode. We can therefore imagine a dynamical model of
dark energy where the volume mode is rolling close to the hill-
top, and the axion is fixed at its minimum, at 𝜃 = 0. As we saw
previously, the racetrack scenario was proposed as a way around
the original KL problem, since the height of the barrier can be
taken to be higher than the scale of inflation without any conse-
quence on the gravitino mass. However, the height of the barrier
is the height of the maximum in the volume direction (or better,
the height of saddle in the (𝜏, 𝜃)-plane). For hilltop quintessence
driven by the volume mode, this height is now set by the dark
energy scale

H2
0 ∼ Vrace(𝜏max, 0) . (3.16)

Clearly this barrier is too small to protects us from the KL prob-
lem. Indeed, the contribution from inflation, driven by a differ-
ent field 𝜎, couples to the volume mode due to Weyl rescaling.
As expected, it will induce destabilisation of the volume towards
decompactification since

V(𝜎)
𝜏3

∼ H2
inf ≫ H2

0 ∼ Vrace(𝜏max, 0) (3.17)

Of course, similar considerations also apply to saxion hilltops
where the global minimum is supersymmetric AdS. As an exam-
ple, consider KKLT models where a hilltop in the volume modu-
lus is generically present, even in the absence of an anti-D3 brane
uplift, as a consequence of 𝛼′3 corrections to the Kähler potential,
as already stressed in [16]. This model is also tractable enough to
easily demonstrate other issues that can emerge beyond the KL

problem, such as the light volume modulus and the light grav-
itino. Let us run through some of the details.
The KKLT potential was already given in (3.3). If we assume

that the axion 𝜃 is stabilised at its minimum at 𝜃 = 0, the dynam-
ics of the volumemodulus 𝜏 in a neighbourhood of themaximum
is controlled by the last two terms, in other words

VKKLT(𝜏, 0) ≈ −
aA|W0| e−a𝜏

2𝜏2
+

3W2
0𝜉

64
√
2𝜏9∕2

, (3.18)

with |W0| given by (3.4). This simplification allows us to show
that the maximum is located at 𝜏max, defined by the relation

𝜉 =
64
√
2aA𝜏5∕2maxe−a𝜏max (a𝜏max + 2)

27|W0| . (3.19)

Since a𝜏max ≫ 1, the height of the potential at the maximum is

VKKLT(𝜏max, 0) ≈
a2A|W0| e−a𝜏max

9𝜏max
= 4
9
a𝜏min

(
𝜏min

𝜏max

)
e−aΔ𝜏 |VAdS|

(3.20)

where wemade use of (3.4) and the expression for the scale of the
leading order AdSminimum (3.5). Theminimum at 𝜏min and the
maximum at 𝜏max are separated by distanceΔ𝜏 = 𝜏max − 𝜏min > 0.
Clearly the height of the maximium should be fixed by the cur-

rent Hubble scale,H2
0 ∼ VKKLT(𝜏max, 0). By the same reasoning as

for the racetrack scenario, we run into a KL problem. In this sim-
ple model, it is also instructive to demonstrate the smallness of
the mass of the gravitino and the volume modulus explicitly.
Current observational bounds require VKKLT(𝜏max, 0) ∼ 10−120

in Planck units. Such low values can be achieved either by having
𝜏max large or |W0| exponentially small, two requirements that are
not independent in KKLT, as can be seen from (3.4). In order to
estimate the choice of parameters that leads to the correct value
forH0, we use the fact that the maximum and the minimum are
not too far apart, and compute the height of the maximum to
zeroth order in Δ𝜏

VKKLT(𝜏max, 0) ≈
4
9
a𝜏min|VAdS| ≈ 2a3A2

27
e−2a𝜏min (3.21)

where we made use of (3.5). Assuming 2a3A2

27
= (1), matching

the observed value of H0 requires a𝜏min ∼ 140, which through
(3.4) translates as |W0| ∼ 10−59 and a gravitino mass of m3∕2 ∼
10−33 eV. This is unacceptably light.[77,80] The fact that the grav-
itino mass is of order the dark energy scale can be traced back
to the fact that the leading order vacuum is supersymmetric and
very close to Minkowski. Indeed, from equation (3.20), we see
that the scale of the supersymmetric AdS vacuum is bounded
above by the dark energy scale. This failure to decouplem3∕2 and
H0 is clearly typical of any model featuring a leading order super-
symmetric Minkowski, or near Minkowski, vacuum.
To compute the mass of the volume mode, one has first

to switch to a canonical field via 𝜙 =
√

3
2
ln 𝜏 and then com-

pute m2
𝜙
≃ V𝜙𝜙 at the location of the maximum. This yields

m2
𝜙
≃ −3a𝜏maxV0 ≃ −3a𝜏maxm

2
3∕2. Since a𝜏max ≳ a𝜏min ∼ 140, this
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Figure 3. Racetrack potential at different values of the axion 𝜃 for param-
eter choice A = 1, B = −1, a = 0.1, b = 0.09 .

implies that the mass of the volume mode is only one order of
magnitude above the gravitino mass, explicitly showing the exis-
tence of a light volume problem.

Axion Hilltop for a Minkowski Vacuum with No Hierarchy

Let us return to the racetrackmodel and consider using 𝜃, instead
of 𝜏, to drive quintessence. Once again, since the dark energy
scale now sets the scale of the potential, this will immediately
run into a KL problem. As it happens, this model suffers from
another problem, closely related to the KL problem, but applied
only to late time dynamics. Indeed, even if we ignore the contri-
butions from inflation, the volume barrier disappears as soon as
we move the axion sufficiently far away from its minimum. In
other words, in attempting to move the axion to the hilltop, the
volume itself is immediately destabilised.
This is demonstrated numerically in Figure 3. Here we plot the

form of the racetrack potential (3.12) as a function of the volume
modulus 𝜏 for different values of the axion 𝜃. When the axion
lies at its minimum at 𝜃 = 0, we see that the volume is stabilised
at the Minkowski minimum. However, as we increase 𝜃 in units
of the instanton coupling a, the volume barrier begins to shrink,
and eventually disappears completely. At this point the volume
will roll towards the AdS vacuum and any hope of exploiting the
axion as a dynamical dark energy model is lost.
These problems might have been anticipated in the racetrack

scenario, as both the stabilisation of the volume and the dynamics
of the corresponding axion rely on the same non-perturbative cor-
rections to the superpotential. There was always a danger that the
stabilisation would fail the moment the axion began to roll. As al-
ready pointed out, to proceedwith a viablemodel of quintessence,
we need to break the connection between the stabilisation of the

volume and the dynamics of the would-be dark energy field, cre-
ating a hierarchy in mass between these two fields.

Saxion Slow Roll Down a Moderate Slope, with a Runaway or a
Minkowski Vacuum

Let us now focus on a saxion runaway model, where the saxion is
asymptotically rolling slowly down a moderate slope. At leading
order, our example contains a non-supersymmetric Minkowski
vacuum where one of the saxion directions is flat. The saxion
runaway potential is then generated perturbatively, beyond lead-
ing order. However, since it is perturbative, it is not possible
to generate a large enough hierarchy between the leading and
subleading order terms to prevent the KL problem and desta-
bilising the volume. Note that similar considerations would ap-
ply if additional subleading corrections were to generate a global
non-supersymmetric Minkowski minimum, as opposed to a run-
away. As shown in [111], the case with a global supersymmet-
ric Minkowski minimum is actually incompatible with slow roll
down a moderate slope due to the stability condition on the form
of the scalar potential.
Consider a fibred Calabi-Yau whose volume takes the

form[112,113]

 =
√
𝜏1𝜏2 (3.22)

The saxion kinetic terms look like (we ignore the corresponding
axions)

kin =
1
2

[
(𝜕 ln 𝜏2)

2 + 1
2
(𝜕 ln 𝜏1)

2
]

(3.23)

and can be brought into canonical form by the following field
redefinition

𝜏1 = e
√

2
3
𝜒+ 2√

3
𝜙

𝜏2 = e
√

2
3
𝜒− 1√

3
𝜙

(3.24)

Notice that 𝜒 corresponds to the volume mode  , and 𝜙 to the
ratio u = 𝜏1∕𝜏2 since

 =
√
𝜏1𝜏2 = e

√
3
2
𝜒 u =

𝜏1

𝜏2
= e

√
3𝜙 (3.25)

Let us consider an effective field theory defined by the following
Kähler potential and superpotential

K = −2 ln

(
 + 𝜉

2g3∕2s

− 𝛾
√
gs ln

)
− C̃

√𝜏1
W = W0

(3.26)

where 𝜉 controls O(𝛼′3) corrections, while 𝛾 controls brane loop
corrections atO(𝛼′3g2s ).

[39] For ≫ 1 these can naturally compete
with the tree-level O(𝛼′3) term due to the ln enhancement fac-
tor. The term proportional to C̃ represents O(𝛼′4g2s ) string loop
corrections due to exchange of winding modes at the intersec-
tion of D7-branes. This contribution is subleading since it is sup-
pressed by an additional power of 𝛼′ with respect to the terms
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proportional to 𝜉 and 𝛾 . We do not include Kaluza-Klein loop cor-
rection since they would be suppressed with respect to winding
contributions by an additional power of g2s , and, moreover, they
could be absent by construction if all branes intersect each other.
We also neglect higher derivative F4 contributions to the scalar
potential since they would arise with additional volume suppres-
sion factors.
The Kähler potential and superpotential in (3.26) generate the

following scalar potential

V = Vlead() + Vsub( , u) (3.27)

where

Vlead() =
Cup

8∕3 +
3W2

0

43

(
−2𝛾

√
gs ln + 𝜉

g3∕2s

)
(3.28)

and

Vsub( , u) = 2C̃W2
0

10∕3
1

u1∕3
(3.29)

Notice that in Vlead we included also a term proportional
to Cup representing the positive contribution of a T-brane
background[114] which is a generic feature of type IIB compact-
ifications with 3-form fluxes and magnetised D7-branes. In the
limit where the supergravity approximation is under control, i.e.
for  ≫ 1 and gs ≪ 1, Vsub is indeed subdominant with respect
to Vlead since

Vsub

Vlead
∼

g3∕2s

1∕3 =
g2s
1∕3
s

≪ 1 (3.30)

where s = g3∕2s denotes the string frame volume. Thus at lead-
ing order the potential features a flat direction parametrised by
u. At this level of approximation, by a suitable tuning of Cup, Vlead
features a non-supersymmetric Minkowski minimum where the
volume scales as (for k = 𝜉∕𝛾)

min ∼ e
k

g2s ≫ 1 for gs ≪ 1 (3.31)

The subleading contribution Vsub determines just a small shift
of the volume minimum and generates a runaway for u which,
whenwritten in terms of the canonically normalised field𝜙, looks
like

Vsub(𝜙) = V0 e
−𝜆𝜙 with 𝜆 = 1√

3
and V0 =

2C̃W2
0

10∕3
min

(3.32)

This gentle runaway could provide an interesting model of
quintessence in agreement with the refined dS conjecture since
𝜆 ≃ 0.577 is of order unity and it marginally satisfies the bound
𝜆 ≤ 0.6 obtained in [76]. However the requirement to avoid vol-
ume destabilisation due to the inflationary energy implies (sim-
ilar considerations would apply also to the case where (3.32)
describes a quintessence potential with a global Minkowski

minimum)

Vlead =
(
Vlead

Vsub

)
Vsub ∼

1∕3

g3∕2s

H2
0 ≳ H2

inf

⇔
1∕3

g3∕2s

≳

(
Hinf

H0

)2

≳ 10−36 , (3.33)

where we have usedHinf ≳ 10−42Mp as the extreme lower bound
on theHubble scale during inflation to be compatible with a BBN
reheating temperature of at least 1 MeV. Using (3.31) which im-
plies gs ∼ (ln)−1∕2, this bound becomes

1∕3(ln)3∕4 ≳ 1036 ⇔  ≳ 10103 (3.34)

This would yield a string scaleMs well below the TeV scale and a
gravitino mass m3∕2 well below the meV scale since

Ms ≃ g1∕4s

Mp√ ∼
Mp

(ln)1∕8√ ≲ 10−52Mp (3.35)

m3∕2 ≃ g1∕2s

Mp

 ∼
Mp

(ln)1∕4 ≲ 10−104Mp (3.36)

Similar considerations imply that the mass of the volume mode
is also very suppressed with respect to the meV scale. Hence the
hierarchy between Vlead and Vsup is not big enough to prevent the
KL and light volume problems. The reason is that the effective
shift symmetry for u is already broken at perturbative level.

4. Axion Hilltop Quintessence and Initial
Conditions

As explained in the previous section, a viable quintessencemodel
has to feature a leading order non-supersymmetric Minkowski
vacuum with hierarchy, i.e. where, at leading order, the axion is
a flat direction while the saxion (in particular, the volume mode)
is heavy. The axionic flat direction is then lifted by subdominant
instanton effects which can lead to axion hilltop quintessence. In
this section we therefore focus on this model, providing first an
explicit realisation in LVS string models, and then studying the
issue of initial conditions.

4.1. LVS Axion Hilltop Quintessence

The simplest way to realise an axion hilltop quintessence model
in type IIB string theory is through the simplest LVS scenario,
with two Kähler moduli Tb = 𝜏b + i𝜃b and Ts = 𝜏s + i𝜃s, where the
‘big’ modulus 𝜏b turns out to be much larger than the ‘small’
modulus 𝜏s. The important point is that the scalar potential only
depends on the volume axion, 𝜃b, at next to leading order, with-
out affecting the stabilisation of the volume mode which occurs
at leading order. As a result, the volume axion can potentially play
the rôle of quintessencewhen it is rolling near the top of its poten-
tial, without having any of the adverse consequences we saw for
the racetrack scenario.We should, however, bemindful of the fact
that the simplest LVS setup leads to a non-supersymmetric AdS
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vacuumwhich needs to be uplifted toMinkowski by the inclusion
of additional sources of energy like T-branes.[114] Notice that these
positive contributions to the scalar potential are generic features
of consistent type IIB compactifications[20,22,115–117] due to the
presence of hidden sector stacks ofD7-branes (induced byD7 tad-
pole cancellation), 2-form gauge fluxes (induced by Freed-Witten
anomaly cancellation) and 3-form background fluxes (used to
freeze the dilaton and the complex structure moduli). For further
details and a comprehensive discussion of dS model building in
string theory, see [66, 118].
The main ingredients of this model are (𝛼′3) contributions

to the Kähler potential and non-perturbative corrections to the
superpotential of the form

K = −2 ln
(
 + 𝜉

2

)
W = W0 + As e

−asTs + Ab e
−abTb (4.1)

where the internal geometry corresponds to a simple Swiss-
cheese scenario with the volume given by  = 𝜏

3∕2
b − 𝜏

3∕2
s . The

resulting potential looks like

V =
4A2

ba
2
b

3𝜏b
e−2ab𝜏b +

8A2
s a

2
s

√
𝜏s

3𝜏3∕2b

e−2as𝜏s +
3|W0|2𝜉
4𝜏9∕2b

−
4Abab
𝜏2b

|W0| e−ab𝜏b cos(ab𝜃b) − 4Asas𝜏s
𝜏3b

|W0| e−as𝜏s cos(as𝜃s)
+
8AbAsabas𝜏s

𝜏2b

e−(ab𝜏b+as𝜏s) cos
(
ab𝜃b − as𝜃s

)
,

where we have used 𝜏b ≫ 𝜏s, ab𝜏b ≫ 1, as𝜏s ≫ 1 and we have as-
sumed W0 < 0 so that the axions are minimised at 𝜃b = 𝜃s = 0.
With the axions settled at their minima, we consider the stabil-
isation of 𝜏s and 𝜏b. Dropping all terms suppressed by e−ab𝜏b or
more, one finds the well-known LVS results from the variation
with respect to 𝜏s and 𝜏b

 ≃ ⟨𝜏b⟩3∕2 ≃ 3|W0|√⟨𝜏s⟩
4Asas

eas⟨𝜏s⟩

𝜉

2
≃ ⟨𝜏s⟩3∕2 ≃ [

1
as
ln

( |W0|
)]3∕2

(4.2)

The minimum is AdS, breaks supersymmetry and, to leading or-
der, is given by

⟨V⟩ ≃ −
3𝜉|W0|2
8as⟨𝜏s⟩3

. (4.3)

There are several sources of uplifting to Minkowski which can be
expressed as

Vup =
𝜅

𝛼
, (4.4)

where 𝜅 is a positive coefficient and 0 < 𝛼 < 3. For example,
𝛼 = 8∕3 for T-branes while 𝛼 = 4∕3 for an anti D3-brane at the
tip of a warped throat, although the particulars of the uplifting

mechanism are unimportant for the discussion that follows. The
uplift term modifies the second relation in (4.2) as

𝜉

2
= ⟨𝜏s⟩3∕2 − 2𝛼𝜅

9|W0|23−𝛼 , (4.5)

and we will fix 𝜅, to zeroth order in e−ab𝜏b , by demanding that the
uplifted LVS vacuum is Minkowski, i.e.

⟨V⟩ = −
(|W0|2⟨𝜏s⟩3∕2

3
− 𝜅(3 − 𝛼)

3𝛼

)
= 0

⇒ 𝜅 =
3|W0|2⟨𝜏s⟩3∕2
(3 − 𝛼)3−𝛼 . (4.6)

The equations (4.2), (4.5) and (4.6) form a system fixing
(⟨𝜏b⟩, ⟨𝜏s⟩, 𝜅) for a particular choice of (𝜉,W0, As, Ab, as, ab, 𝛼).
Once the Minkowski vacuum is fixed in this way, we focus on 𝜃b
as a dark energy candidate. The hierarchy of scales between eab𝜏b
and eas𝜏s guarantees that shifts in the 𝜃b direction do not desta-
bilise the Minkowski vacuum.
The uplift term can be further adjusted at (e−ab𝜏b ) to guaran-

tee a Minkowski vacuum at 𝜏b = ⟨𝜏b⟩, 𝜏s = ⟨𝜏s⟩ and 𝜃b = 𝜃s = 0.
Releasing the volume axion, 𝜃b, its dynamics is then described by
the following dark energy potential to leading order

VDE =
[
4Abab⟨𝜏b⟩2 |W0| e−ab⟨𝜏b⟩ − 8AbAsabas⟨𝜏s⟩⟨𝜏b⟩2 e−(a⟨𝜏b⟩+as⟨𝜏s⟩)

]
×
(
1 − cos(ab𝜃b)

)
≃
4Abab⟨𝜏b⟩2 |W0| e−ab⟨𝜏b⟩(1 − cos(ab𝜃b)

)
, (4.7)

where we explicitly see the Minkowski minimum at 𝜃b = 0. The
maximum is located at 𝜃b = 𝜋∕a. From the form of the Kähler
metric, the canonically normalised axion and the corresponding
decay constant turn out to be

𝜙 ≃
√

3
2

𝜃b⟨𝜏b⟩ fa =
√

3
2

Mp

ab⟨𝜏b⟩ , (4.8)

so that (4.7) can be rewritten in a more standard way as

VDE = V0

(
1 − cos

𝜙

fa

)
where V0 ≡ 4Abab⟨𝜏b⟩2 |W0| e−ab⟨𝜏b⟩

(4.9)

The 𝜂 parameter at the maximum of the dark energy potential,
where 𝜃b = 𝜋∕ab, becomes

𝜂hilltop =
VDE,𝜙𝜙

VDE

|||||𝜙max

= 2
3
⟨𝜏b⟩2VDE, 𝜃b𝜃b

VDE

|||||𝜃b=𝜋∕ab = −1
3
a2b⟨𝜏b⟩2

(4.10)

To estimate this, notice that the value of the potential at the hill-
top should be (10−120) in Planck units to be compatible with
dark energy at late times. This suggests ab⟨𝜏b⟩ ∼ (100), and so

Fortschr. Phys. 2022, 2200008 2200008 (13 of 21) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

𝜂hilltop ∼ −(3000). Clearly the curvature at the hilltop is compat-
ible with the improved swampland bound of (1.2). However, the
large absolute value of the 𝜂 parameter requires a high degree of
fine tuning of the initial conditions for 𝜃b if it is to give rise to a
viable quintessence model as it rolls away from the maximum,
as we will illustrate in Section 4.2.

Other Approaches to Axion Hilltop Quintessence

Before discussing the issue of initial conditions, let us men-
tion other two possible approaches which can lead to a viable
quintessence models via axion hilltop:

1. Uplifted KKLT with an orientifold-odd axion
The standard uplifted KKLT scenario with a single Käh-
ler modulus T = 𝜏 + i𝜃 features a non-supersymmetric
Minkowski vacuumwith no flat direction. This cannot be used
to drive quintessence since both 𝜏 and 𝜃 are lifted by the same
non-perturbative effect. However, in the presence of an ex-
tra orientifold-odd modulus G = c + Sb (where S is the axio-
dilaton), b would also be lifted by the non-perturbative super-
potential e−aT (with a minimum at b = 0), while the axionic
mode c would remain flat. This axionic direction can, instead,
be lifted at subleading order by the inclusion of fluxed E3-
instanton corrections toW of the form e−a(T+S+iG) ∼ e−aTe−a∕gs
for b = 0.[119] Therefore, for gs ≪ 1, the scale of the poten-
tial for c is exponentially suppressed with respect to the po-
tential for T , providing a promising candidate for a viable
quintessencemodel with decay constant fa ≃

√
gs∕𝜏Mp ≪ Mp

for 𝜏 ≫ 1.[120]

2. Non-geometric fluxes
A second possibility is to consider the effect of non-geometric
fluxes which extend the GVW superpotential to [23, 121–123]

W = P1(U) + SP2(U) +
∑
i

TiP
(i)
3 (U) , (4.11)

where P(i)3 are cubic polynomials of the complex structure sec-
tor U. Combined with the tree-level expression of the Käh-
ler potential, the dependence of W on T generates no-scale
breaking contributions to the scalar potential. With regards to
the previous discussion, if we are able to stabilise all but one
(axionic) modulus at a non-supersymmetric Minkowski vac-
uum (or even a near Minkowski AdS minimum) at tree-level
through an appropriate choice of fluxes, then the hierarchy
between non-perturbative effects and tree-level would guar-
antee that lifting the leftover flat direction would not displace
the heavymoduli from the tree-level minimum. Furthermore,
the leftover axion could be made parametrically light and may
be used to drive quintessence.5

4.2. Constraining Hilltops

Hilltop models are classically unstable. The rate of the instability
is controlled by the 𝜂 parameter, describing the rate of change of

5 Assuming that backreaction effects on the Kähler potential can be kept
under control and the internal volume can be made large enough to
trust the perturbative expansion.

the gradient close to the maximum of the potential. The larger
the 𝜂 parameter, in absolute value, the closer the field needs to
start near the maximum in order to obtain the required period of
acceleration. Fortunately, for quintessence, we only require one
efolding of accelerated expansion (this is in contrast to early uni-
verse inflation which requires at least 50). Nevertheless, in string
theory, the 𝜂 parameter can sometimes be quite large forcing the
field to start very close to the top of the hill. Classically, this is not
problematic if one accepts the inevitable tuning of initial condi-
tions, although as we will see later, quantum diffusion at early
times can push the field away from the sweet spot, spoiling any
realistic chance of late time quintessence.
In this section we will derive the constraints on the parameters

and the initial conditions of a generic model of late time accelera-
tion. As explained in the previous sections, our main interest will
be in axion hilltop models, although we will also generalise our
analysis also to saxion hilltop models which we approximate in a
neighbourhood of the maximum as an inverted quadratic.

Axion Hilltop Quintessence

In the context of late time acceleration, axions are the prototype
of thawing quintessence models[124,125]: models where the field
is frozen due to Hubble friction until the very recent past. These
models are known to be sensitive to the choice of initial con-
ditions and relatively insensitive to the particular form of the
potential. A generic axion potential has the usual trigonometric
form

V = V0

(
1 − cos

𝜙

fa

)
(4.12)

where we have (for simplicity) assumed that the vacuum expecta-
tion value of the axion lies at vanishing potential, consistent with
a Minkowski vacuum. This can lead to accelerated expansion in
two distinct regimes fa > Mp and fa < Mp. For fa > Mp accelera-
tion takes place in the concave region of the potential, whereas if
fa < Mp it happens in the vicinity of the maximum. While mod-
els with super-Planckian decay constants are less sensitive to ini-
tial conditions, getting these large values for fa has proven chal-
lenging from a UV point of view due to the tension with the
weak gravity conjecture[84] and with explicit computations.[83,120]

For example, the LVS axion model presented in Section 4.1 fea-
tures for example a sub-Planckian decay constant since (4.8) gives
fa ≃ Mp∕(ab⟨𝜏b⟩) ∼ 0.01Mp.
Of course, axion hilltop quintessence can take place irrespec-

tive of the value of the decay constant, though it may require
finely tuned initial conditions. In Figure 4 we plot the deviation
from the maximum as a function of the decay constant for a
range of fa that is compatible with swampland constraints. We
see that the range of fa that is more naturally achieved in UV
constructions, fa < MGUT, is also the one that suffers from an ex-
treme sensitivity to the initial position of the field. In the region
fa ∈ [0.02, 0.1]Mp, the curve bounding the viable region can be
approximated by

lnΔmax = c0 + c1 ln fa + c2(ln fa)
2 , (4.13)
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Figure 4. Constraints on initial axion displacement from the maximum
compatible with a viable quintessence hilltop model as a function of the
decay constant fa. For at least one e-fold of accelerated expansion, the ini-
tial value 𝜙in should satisfy |𝜙in − 𝜙max| < Δmax, where 𝜙max is the loca-
tion of the maximum and Δmax is given by the solid blue line. The dashed
line shows the position of the inflection point 𝜙 = 𝜋fa∕2. The blue shaded
region corresponds to fa > Mp which is in tension with the weak gravity
conjecture.

where Δmax denotes the maximum distance from the maximum
compatible with late time acceleration, c0 = −32.6, c1 = −28.977
and c2 = −8.2302 .

Saxion Hilltop Quintessence

For completeness, we now turn our attention to saxion models
of quintessence, which, in the vicinity of the hilltop can approxi-
mated by an inverted quadratic

V = V0 −
1
2
m2 𝜙2. (4.14)

It is useful to define the following parameter

𝜂0 =
V𝜙𝜙M

2
p

V
|||𝜙=0 = −

(
mMp

)2
V0

(4.15)

which describes the curvature of the scalar potential at the origin.
Let us recall that the swampland conjecture (1.2) requires |𝜂0| ≤
c′ ∼ (1).
Hilltop models, no matter how steep the potential (or how

large 𝜂0), classically always lead to extended periods of acceler-
ated expansion, given that at the maximum 𝜖V = 0. This would
allow for a description of the late time acceleration, regardless of
the swampland limits on the slope and curvature of the potential
that can be attained within a UV complete framework. On the
flip-side, this comes at the price of tuning the initial position of
the quintessence field, |𝜙in| < Δmax - the steeper V , the closer 𝜙in
needs to be to the maximum in order to have an extended period
of acceleration. One would think that this problem is slightly less
of an issue in quintessence models which require only (1), in-
stead of (50), efoldings as in inflation. However for large 𝜂0 the
level of tuning is similar.
In Figure 5 we show the maximal allowed initial displacement

from the maximum,Δmax, compatible with late time acceleration
as a function of 𝜂0 for quadratic quintessence models. Each point

Figure 5. Constraints on initial saxion displacement from the maximum
compatible with a viable quintessence hilltop model as a function of 𝜂0.
The grey region corresponds to 𝜂0 > 1 which is tension with the refined
swampland conjecture. The steeper the maximum (larger 𝜂0), the more
fine tuned the initial conditions (smaller Δmax).

corresponds to numerical solutions that start in matter domina-
tion with zero initial velocity and different values for 𝜙in. We see
that the steeper the potential the more tuned is the initial value
of 𝜙. For 𝜂0 ≥ 1 (grey region) 𝜙in must lie within a fraction of
Mp from the top of the hill. In the absence of a dynamical mech-
anism, such initial conditions look rather unnatural. The curve
bounding the viable region can be approximated by

lnΔmax = c1 + c2 𝜂
−p
0 , (4.16)

where c1 = 1.7, c2 = −2.1 and p = 0.44.
Even if one is willing to accept this level of tuning in order to

describe the observed accelerated expansion and be in agreement
with putative bounds from aUV theory, onemust ponder if quan-
tum effects will spoil the required tuning of the initial conditions.
We address this issue in Section 4.3.

4.3. Stochastic Effects and Initial Conditions

In this section we investigate whether the judicious choices of
initial conditions described in the previous section survive the
unavoidable stochastic fluctuations in the early universe. For our
purposes we model inflation as an exact dS background, and
therefore fixHinf to be constant. Generally speaking this approx-
imation is adequate whenHinf varies slowly, like in plateau mod-
els, but needs to be refined in the context of monomial inflation-
ary models as shown in [126]. In the cases of interest, where the
stochastic processes are diffusion dominated and the equilibrium
distribution (if it exists) is of little relevance, the exact dS approx-
imation gives an adequate description of the system.
The quintessence field 𝜙, due to the large hierarchy V(𝜙) ≪

H2
infM

2
p behaves as a spectator during inflation and is, to leading

order in the slow roll expansion, described by the Langevin equa-
tion

𝜕𝜙

𝜕N
= −

V𝜙

3H2
inf

+
Hinf

2𝜋
𝜉 , (4.17)
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whereN denotes the number of efoldings and 𝜉(N) is a stochastic
variable with unit variance ⟨𝜉(N1)𝜉(N2)⟩ = 𝛿(N1 − N2) and zero
mean ⟨𝜉(N)⟩ = 0. The last term in (4.17) describes the backreac-
tion of the short-wavelength modes of 𝜙 onto the homogeneous
mode and turns the deterministic slow roll evolution of 𝜙 into
a stochastic process. The stochastic nature of (4.17) implies that
the system can equivalently be described in terms of the Fokker-
Planck equation for the probability density function P(𝜙,𝜙in, N)

𝜕P
𝜕N

= 1
3H2

inf

𝜕

𝜕𝜙

(
V𝜙P

)
+
H2

inf

8𝜋2
P𝜙𝜙 , (4.18)

where we take 𝜙in to be fixed at the onset of inflation. Once the
solution to (4.18) is known, all relevant moments of the distribu-
tion can be computed:

⟨𝜙n⟩(N) = ∫ d𝜙 𝜙nP(𝜙,𝜙in, N) . (4.19)

In what follows we will be interested in the first two moments:
the mean, ⟨𝜙⟩, and the mean square, ⟨𝜙2⟩, which allow us to de-
termine the variance of the distribution

√⟨𝜙⟩2 − ⟨𝜙2⟩.
Given that the energy scale of quintessence is hierarchically

smaller than the scale of inflation, the quintessence field is clas-
sically frozen during the inflationary epoch. It is only expected
to thaw once the background Hubble parameter drops to around
H ∼ m𝜙, which should happen during thematter phase, after the
Big-Bang. This should hold true regardless of the shape of the
quintessential potential.
The existence of a vast hierarchy between the value of theHub-

ble parameter today and during inflation, H2
0 ≃ V0∕M2

p ≪ H2
inf ,

implies that the quintessence field is a spectator during inflation,
and that it is undergoing pure Brownian motion with (4.17) well
approximated by

𝜙′ =
Hinf

2𝜋
𝜉 ; (4.20)

or equivalently (4.18), by the one-dimensional heat equation

𝜕P
𝜕N

=
H2

inf

8𝜋2
P𝜙𝜙 . (4.21)

This dominance of the stochastic effects over the classical evo-
lution has severe consequences for the retention of memory of
the initial conditions for the quintessence field. Exact solutions
to (4.21) take the form (see e.g. [127])

P =
√

2𝜋
NH2

inf

exp

(
−2𝜋

2

N
(𝜙 − 𝜙in)

2

H2
inf

)
(4.22)

from which one can show that

⟨𝜙⟩ = 𝜙in , (4.23)

Figure 6. Survival probability to remain within a distanceΔ from the initial
condition after N efoldings of inflation, as a function of the ratio Δ∕Hinf .

i.e. the ensemble average is frozen at the specified initial value for
the classical field 𝜙in, in accordance with the fact that classically
the field is frozen by Hubble friction. One can also show that

⟨𝜙2⟩ = (
Hinf

2𝜋

)2

N + 𝜙2
in , (4.24)

which implies

√⟨𝜙2⟩ − ⟨𝜙⟩2 = Hinf

2𝜋

√
N . (4.25)

Therefore in one efolding of inflationary expansion, the specta-
tor field will be kicked on average by Hinf∕(2𝜋). Depending on
the sensitivity of a given hilltop to the choice of initial conditions,
and on the exact value of Hinf , these stochastic effects can push
the field away from the top of the hill, and into a region where it
cannot account for the observed present day accelerated expan-
sion.
From (4.22) we can compute the probability that a given choice

of initial conditions survives the stochastic diffusion during a pe-
riod of inflation. Setting 𝜙in = 0 (assuming that this corresponds
to the location of the maximum) and asking that after N efold-
ings of inflation 𝜙 remains within a distance Δ, we find that the
survival probability is given by

ℙ(|𝜙| ≤ Δ) = ∫
Δ

−Δ
d𝜙P = erf

(√
2𝜋2

N
Δ
Hinf

)
, (4.26)

where erf is the complementary error function. For N ≫ 2( 𝜋Δ
Hinf

)2

we can approximate (4.26) by

ℙ(|𝜙| ≤ Δ) ≃ 2

√
2𝜋
N

Δ
Hinf

. (4.27)

Once again we see that if Hinf ≤ Δ the memory of the choice of
initial conditions is preserved for a long period. In Figure 6 we
plot the survival probability for various choices of Δ∕Hinf .
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Figure 7. Effect of quantum diffusion on the choice of initial conditions
for axion hilltop quintessence models. Stochastic effects do not push the
axion away from the hilltop region which yields late time acceleration only
if Hinf ≲ Δmax(fa).

Axion Hilltop Quintessence

Stochastic effects on axionic hilltop quintessence models were
studied in [87] and were pivotal in making the case for super-
Planckian decay constants. Let us revisit thesemodels in the light
of the formalism reviewed above.
Recall that current bounds on primordial tensor modes imply

that, during inflation, Hinf ≲ 10−5Mp and that stochastic effects
become relevant when the width of the region around the max-
imum of V that gives rise to late time expansion is at, or below,
the inflationary energy: Δmax ≲ Hinf . In Figure 7 we zoom in on
the low fa region of Figure 4 and superimpose the constraints
fromHinf . We are led to the conclusion that axionic quintessence
hilltop models with fa < 0.1Mp are subject to stochastic fluctua-
tions that (depending on the inflationary energy scale) may push
𝜙 > Δmax ruining the late time dynamics of those models. These
estimates are in agreement with those of [87] and provide a worst
case scenario. We note that a sharper statement can only bemade
with the knowledge of the exact energy scale of inflation.
In Figure 8 we plot the solutions to the Langevin and Fokker-

Planck equations for an axionic spectator with Hinf ≃ Δmax,
where it is evident that stochastic effects lead to a loss of memory
of initial conditions after N > (10) efoldings of inflation.
The situation is even worse for Hinf > Δmax since the proba-

bility of lying within a distance Δmax away from the maximum
after N ≃ 50 − 60 efoldings of inflation turns out to be extremely
small, as can be seen from (4.27) with Δ = Δmax(fa):

ℙ(|𝜙| ≤ Δmax(fa)) ≃ 2

√
2𝜋
N

Δmax(fa)
Hinf

, (4.28)

where Δmax depends on the axion decay constant fa (for fa ∈
[0.02, 0.1]Mp,Δmax is very well approximated by (4.13)). For exam-
ple, in the explicit LVS axionmodel of Section 4.1, equations (4.8)
and (4.13) give a decay constant fa ≃ 0.02Mp and a maximum
displacement, Δmax ≃ 2.4 × 10−20Mp. Choosing the largest value
of Hinf compatible with the lack of observation of primordial
gravity waves, Hinf ≃ 2 × 10−5Mp, and N ≃ 50 (4.28) would give
ℙ(|𝜙| ≤ Δmax) ≃ 10−15. Clearly smaller values ofHinf would give a
smaller survival probability. Notice from Figure 4 thatΔmax drops

very quickly for smaller values of fa, reducing the survival proba-
bility even further.
We therefore conclude that a viable axion hilltop quintessence

model requires two crucial conditions: (i) a tuning of initial con-
ditions close to the maximum which becomes more severe for
smaller values of fa; and (ii) Hinf ≲ Δmax, else stochastic effects
will very quickly push the field away from the hilltop region com-
patible with a late time period of accelerated expansion. This sec-
ond constraint turns out to be very strong since explicit compu-
tations of axion decay constants from string theory typically yield
fa ≲ 0.02Mp in the regime where the effective field theory is un-
der control. For these small values of fa, the maximum displace-
ment is bounded asΔmax ≲ 10−20Mp

6. Inserting this into the sec-
ond constraint above, we see that we require a very low scale of in-
flation, Hinf ≲ 10−20Mp. When combined with the observed am-
plitude of scalar perturbations As, this bound onHinf can then be
translated into a severe upper bound on the inflationary slow roll
parameter

𝜖V = 1
8𝜋2As

(
Hinf

Mp

)2

≲ 10−35 . (4.29)

This is in strong tension with the dS swampland conjecture (1.2)
which requires (1) values of 𝜖V (unless inflation is also realised
extremely close to amaximum). Thus we conclude that axion hill-
top quintessence would either be in the swampland or, if we ig-
nore the refined dS swampland conjecture, would require a high
tuning of initial conditions combined with a Hubble scale dur-
ing inflation below (1 − 10) MeV. Because these models are so
contrived, we expect that dynamical dark energy, if supported by
data, will have to be driven by a different mechanism, probably
along the lines of axion alignment.[85]

Saxion Hilltop Quintessence

The effects of diffusion in saxion hilltop models are qualitatively
similar to those of axionicmodels. They will constrain the steeper
hilltops, as these are the ones where the initial conditions are
more severely tuned. From Figure 5 we see that quadratic hill-
tops with 𝜂0 ≳ 70 require Δmax ≲ 10−5Mp rendering them poten-
tially vulnerable to diffusion effects during inflation, as CMB ob-
servations imply Hinf ≲ 10−5Mp. Notice that the results for the
effects of quantum diffusion obtained for the axion case can also
be used for saxion hilltop quintessence as long as we identify|𝜂0| = (Mp∕fa)2.

5. Conclusions

With compelling observational evidence for dark energy,[2,3,128]

we cannot avoid the question of its microscopic origin.

6 Numerically, we did not consider decay constants fa < 0.02Mp since
the high degree of tuning of the initial conditions rapidly brings about
numerical precision issues. This prevent us from explicitly determin-
ing Δmax for such low values of fa, although the result can be obtained
by extrapolating the validity of the formula (4.21). In any event, the pre-
cise estimate is not really needed for drawing our general conclusions.
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Figure 8. Stochastic evolution for an axionic hilltop spectator with fa = 0.09Mp, V0 = 10−120M4
p and 𝜙in = 𝜋fa from 1000 numerical solutions of the

Langevin equation. Left panel:Hinf = 10−5Mp ≃ Δmax, the grey region corresponds to the 1𝜎 band and the grey dashed lines denote the interval around
the hilltop where the field should find itself in the matter phase to be able to drive quintessence. Right panel: standard deviation for (top to bottom)
Hinf = {10−5, 10−10, 10−15}Mp, the black line corresponds to the 1000 realisations of the Langevin equation while the dashed blue line corresponds to
the analytical solution of (4.25).

But should we be looking for a cosmological constant or
quintessence? If the latter, then is it driven by a scalar or pseudo-
scalar, on a shallow potential or at a hilltop? At present all options
are observationally viable, but we can also ask which is easiest to
build into a fundamental theory.
In this paper, we have outlined several challenges facing string

theorymodels of quintessence focusing on effective field theories
where perturbation theory is under numerical control - i.e. where
the dilaton, Re(S) ≫ 1, and the volume mode,  ≫ 1, are large
enough to trust both the string loop and the 𝛼′ expansion. This
is arguably the most interesting region of moduli space since
deep in the bulk, where Re(S) ∼  ∼ (1), one would need a full
knowledge of the whole quantum theory, while at boundary of
the moduli space, where Re(S) → ∞ and  → ∞, there is strong
evidence indicating the absence of both dS vacua[18] and a viable
quintessence dynamics.[57–59,61]

Some of the problems of dynamical dark energy models are
shared with the pure cosmological constant (like the smallness of
H0), while others are particular to quintessence (like constraints
from fifth forces, tuning of initial conditions and radiative stabil-
ity of the mass of the quintessence field). Here we were particu-
larly concerned with the destabilisation of the volume modulus
during inflation (the KL problem applied to quintessence) and
generating the large hierarchy between the scale of the universe
today and during inflation. We have argued that the need to over-
come all of these challenges has singled out a preferred model
building scenario for dynamical dark energy. The leading order
contributions to the scalar potential should yield a vacuum with
the following properties:

1. it should admit a flat direction in order to decouple the dark
energy scale from the inflationary scale;

2. this flat direction should be axionic. This is because saxions
are already lifted at perturbative level without being able to
generate the required hierarchy betweenH0 andHinf . Axions,
in contrast, develop a potential via highly-suppressed non-
perturbative effects;

3. it should be (nearly) Minkowski since otherwise subleading
corrections would not be able to push it up to the positive en-
ergies required to drive an epoch of accelerated expansion;

4. it should break supersymmetry in order to decouple the grav-
itino mass from the dark energy scale.

It is interesting to combine these results with the swamp-
land dS conjecture that would rule out dS vacua. From a model-
building perspective, dS vacua look qualitatively the same as non-
supersymmetric Minkowski, leaving dynamical dark energy as
the only explanation for the present acceleration of the universe.
However we have found that it is extremely hard to realise a work-
ing model of quintessence in any scenario which would be in
agreement with the swampland dS conjecture, like moderately
sloped runaways, or supersymmetric AdS or Minkowski vacua.
This tension raises some doubts on the validity of the swamp-
land dS conjecture since it would imply that quantum gravity is
in contradiction with observations.
At this point it is tempting to favour the humble cosmologi-

cal constant as the simplest empirical model of dark energy: it
fits the available data and avoids the additional complications as-
sociated with quintessence. However, it is important to note that
quintessence can open up opportunities to solve other cosmolog-
ical problems. For example, in [56], it was shown how dynamical
models of quintessence in string theory may shed new light on
the cosmological coincidence problem.[53–55] An evolving scalar
on cosmological scales may also allow for self adjustment mech-
anisms to address the naturalness problems associated with vac-
uum energy (see [129, 130] for relevant no go theorems, and [131]
for a recent way around them). But perhapsmost importantly, fu-
ture observations may rule out the cosmological constant as the
driver of late time acceleration.
If this were indeed the case, our analysis provides guidance for

successful quintessence model building in string theory. In fact,
we studied axion hilltop quintessence in detail since vanilla string
compactifications lead to axion decay constants at least two or-
ders of magnitude below the Planck scale. We found that hilltop
models are rather contrived since, even if the initial conditions
are tuned very close to the maximum, quantum diffusion effects
during inflation would kick the quintessence field away from the
accelerating region close to the maximum, unless the Hubble
scale during inflation is extremely low,Hinf ≲ (1 − 10) MeV. Of
course, one could envisage a scenario where a suitable coupling
between the inflaton and the quintessence field makes the latter
heavy during inflation, thereby suppressing any stochastic effect.
However, after the end of inflation, the inflaton would typically
settle down at the minimum of its potential, reaching its present
day value. Quantum diffusion would then still play an important
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rôle in the reheating phase and after, implying that the results of
Section 4.3 would still hold qualitatively after inflation with Hinf
replaced by the Hubble scale during a given epoch. We conclude
that a more promising avenue to build a working model of dy-
namical dark energy is to rely on alignment mechanisms to ob-
tain an effective axion decay constant which is trans-Planckian.[85]

As stated earlier, for dynamical dark energy, we first seek a sce-
nario where the volume is stabilised at leading order to a vac-
uum that is uplifted to Minkowski. Non-perturbative corrections
can then be exploited to drive dark energy at the correct scale. Al-
though it might seem a little uneconomical to uplift and then do
quintessence, if dark energy turns out to be dynamical both steps
may be necessary to explain the present state of the universe in
the context of string compactifications.
In truth, both the cosmological constant and quintessence face

formidable challenges from the perspective of consistent model
building in string theory, while remaining perfectly compatible
with observational constraints. It behooves us to better under-
stand the limitations imposed by perturbative string theory in
both cases. Indeed, does amicroscopic understanding of dark en-
ergy require input from non-perturbative strings, through string
field theory, orM-theory? Since thismay be a question of properly
understanding the vacuum structure of the theory, this seems
like a reasonable possibility.
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