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1 Introduction

The di±culties involved in forecasting exchange rates have been well-rehearsed. Meese

and Rogo®'s seminal (1983) paper observed that point predictions from a driftless random

walk model were more accurate than those from more sophisticated models. Rossi (2013)

provides a review of the literature describing the subsequent e®orts to improve the point

forecasts of exchange rate models, motivated by choice of di®erent driving variables as

predictors, applying novel time series and panel econometric techniques, using di®erent

forecast evaluation methods, and investigating the exchange rates between di®erent cur-

rencies and over very long and/or speci¯c historical sample periods. Rossi concludes that

Meese and Rogo®'s ¯nding \does not seem to be entirely or convincingly overturned"

noting, like Cheung, Chinn, and Pascual (2005) before her, that none of the predictors,

models or tests she considers are consistently successful across countries or time periods

in terms of their out-of-sample predictive performance.

This conclusion broadly carries over to more sophisticated forecasting exercises in

which exchange rate models are used to produce density forecasts, to predict future events

(such as appreciations or depreciations) or to make portfolio or other investment decisions.

For example, in an analysis of density forecasts using nine exchange rates over the last

thirty years, Abbate and Mercellino (2018) conclude that "there are di±culties in ¯nding

a model that performs uniformly better than the others across forecast periods, horizon

or exchange rate". Similar conclusions are drawn in Gaglianone and Marins (2017) -

"no single model accounts for the entire density properly for all forecast horizons" - and

Cheung at al. (2017) who, based on ¯ve currencies and sample periods including various

changes in the global environment, note that structural models outperform random walk

using direction of change criteria but "the outperformance is not dramatically in excess

of what would be expected on random chance .... as in our previous study, the best

model and speci¯cation tend to be speci¯c to the currency and out-of-sample forecasting

period".1

1More positive results are found in Garratt and Lee (2010) and Cuaresma et al. (2018) where combi-

nations of forecasts from exchange rate models appeared useful in some trading strategies involving the

USD, euro, UKP and Yen.
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Underlying the di±culties in forecasting is an apparent `disconnect' between the ex-

change rate and its fundamental drivers. For example, Engel et al. (2008) describe a

framework in which the fundamentals that explain exchange rates are the set of variables

that account for the behaviour of the interest rate di®erential contemporaneously and into

the future. Time variation in the relationship between the current and future interest rate

di®erentials and their drivers will then appear as a disconnect between the exchange rate

and its fundamentals, appearing as instability in the form of an exchange rate equation.2

Similarly, Bacchetta and Van Wincoop (2004) describe a situation in which di®erences

in the perceived importance of di®erent macro variables across investors can cause di®er-

ent fundamentals to become `scapegoats', each exerting disproportionate in°uence on the

exchange rate at di®erent times.

The complexity introduced through time variation in the relevance of di®erent funda-

mentals is compounded by the observation that di®erent fundamentals may be important

for exchange rate determination over di®erent horizons. For example, Bacchetta and Van

Wincoop (2006) note how di®erent exchange rate risk exposure and di®erential informa-

tion on fundamentals across investors can result in ¯nancial market responses to news

having a dominant short-run e®ect on exchange rate movements at the expense of long-

run fundamentals, depending on the extent to which the news is di®erentiated or common

across investors. Cheung and Chinn (2001) provide straightforward survey evidence on

the di®erent fundamentals relevant at di®erent horizons: conventional macroeconomic

pressures are thought to be important for exchange rate movements by 1% of US foreign

exchange traders at the intraday horizon, by 59% of traders in the medium run (i.e. up to

6 months) and by 88% of traders in the long run (i.e. over six months). They also report

time-variation in the relevance of the fundamentals as the relative importance of variables

at di®erent forecast horizons reported in their most recent survey was very di®erent to

the results of earlier surveys.

There have been a variety of approaches taken in the applied literature to deal with the

structural instabilities in exchange rate models. Changes in the relevance of di®erent sets

2See, for example, Molodtsova and Papell's (2013) discussion of structural instability in the Taylor

rule determinants of interest rates, particularly during the Financial Crisis.
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of fundamentals can be accommodated through Markov-switching models (as in Engel

(1994) or Hauzenberger and Huber (2020), for example) or within a single-equation time-

varying parameter model in which the underlying model encompasses the potentially

relevant sets of fundamentals.3 Alternatively, time variation in the in°uence of di®erent

sets of fundamentals can be accommodated through model averaging, where a number of

structural models are estimated - recursively or with a rolling window - and then combined

with time-varying weights. This can be approached as a Bayesian exercise - as in Wright

(2008), Byrne et al. (2017) or Aastveit et al. (2017) for example - with the weights

de¯ned by an estimated posterior probability that the model holds true, or following a

more standard forecast-combination approach in which, at each time, all models are given

equal weight or a weight based on `out-of-sample' performance in a recent training period;

see, for example, Sarno and Valente (2009).4 This latter paper explicitly addresses the

extent to which changes in the relevance of di®erent sets of fundamentals impacts on

exchange rate forecasting performance. They report that, if an investor could select the

appropriate model quarter-by-quarter, then economic fundamentals can explain future

exchange rates `with a remarkable degree of accuracy'. But they also note that it is

not straightforward to select the appropriate model in each quarter on the basis of the

information available at the time, and that conventional model selection criteria fail to

detect the frequent shifts in the appropriate model which would be necessary to capture

the evolving dynamics between exchange rates and their fundamentals.

In this paper, we adopt a model averaging approach to deal with the inherent structural

instability in exchange rate models, but we pay particular attention to ¯nding the time

frame for which a given set of fundamentals might be relevant and to the model selection

criterion that provides weights to the alternative models. Speci¯cally, on the timing

and duration of di®erent exchange rate regimes, we follow the suggestion of Pesaran and

3In practice, time-varying-parameter models have tended to focus on a speci¯c set of fundamentals;

see Wol® (1987), Schinasi and Swamy (1989) or Rossi (2006), for example. The inclusion of alternative

sets of fundamentals will encounter degreees of freedom problems without strong restrictions on the form

of the time-variation of parameters.
4See also Kouwenberg et al. (2017) for a related approach employing a backward-elimination-of-

regressors method for model selection.
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Timmermann (2007) to apply model averaging techniques to alternative models estimated

over di®erent estimation windows.5 The approach recognises that, when it is uncertain

whether or when a break has occurred in a relationship, there is a trade-o® between using

short samples and long samples of data in a rolling estimation exercise. This is because

longer samples improve the precision of parameter estimates and forecasts in the absence

of breaks but are corrupted for longer in the presence of breaks. We allow for uncertainty

across model fundamentals as in the literature then, but we also pay explicit attention

to the duration of the period over which the di®erent fundamentals are relevant. We use

the term `meta modelling' to highlight our emphasis on regime uncertainty compared to

more usual model averaging exercise.6

On the model selection criterion, we introduce a novel approach to constructing the

time-varying weights in our meta model based on non-nested hypothesis-testing (NNT)

methods.7 Here, the weight on a particular set of fundamentals remains with that set as

the sample extends until there is evidence to reject it in favour of a shorter model with

the same fundamentals or with an alternative set of fundamentals. Non-nested testing

methods are involved in the latter case because neither model is nested within the other.8

The approach builds in a degree of stability in the characterisation of exchange rates

over time by taking the pro¯le of weights on the di®erent models at any point in time

as the maintained hypothesis and makes changes in the next period only if this pro¯le is

5Clark and McCracken (2009) demonstrate that forecasting gains can arise from the use of recursive

or rolling window schemes, or indeed a combination of the two, in this way. The bene¯ts are illus-

trated in Pesaran et al.'s (2009) global VAR analysis, and in Clark and McCracken's (2010) study of US

macroeconomic variables, for example.
6Lee et al. (2013, 2015) describe estimated \meta-Taylor rules" for the UK and US, obtained using

similar methods to those of this paper, to characterise the di®erent monetary policy regimes observed in

those countries since the mid-seventies.
7See Timmermann (2006) and Aiol¯ et al. (2011) for discussion of the alternative approaches taken

to model averaging in the forecasting context.
8The approach is related to Hansen et al.'s (2011) idea of a Model Con¯dence Set (MCS) in which a

test is applied to a set of competing models and models are eliminated if they peform poorly by some

user-speci¯ed criterion. The MCS is the set of models which are not rejected as statistically inferior. In

this paper, as we move through the sample, the weight from each model characterising exchange rate

determination in one period is transferred to the models in its MCS in the next period.
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rejected by the data. The pro¯le of weights are more stable over time than those obtained

by Bayesian updating or based on forecast performance over the recent past. But they

can still accommodate the possibility of slowly-evolving or abruptly-changing regimes too,

either based on the same set of fundamentals but taking into account a break or based on

a separate set of fundamentals.

In the next section, we brie°y comment on some traditional models of exchange rate

determination to motivate the use of di®erent fundamentals in di®erent models and our

characterisation of these as re°ecting policy or ¯nancial market responses to news or equi-

librating macroeconomic pressures. Section 3 elaborates on the model averaging approach

that we adopt to construct our meta model. The methods are applied to monthly data

for the exchange rates of ¯ve currencies against the US dollar spanning over the last forty

or ¯fty years in Section 4. Exchange rate determination in the countries is characterised

here according to a series of phases in which there is an ebb and °ow between the pres-

sures on the exchange rate from policy and ¯nancial market responses to news and those

from longer-term macroeconomic adjustments. The meta model's °exibility in capturing

the timing of regime change is crucial in capturing, and helping explain, this aspect of

exchange rate determination. The section then provides evidence of the meta models' pre-

dictive power in a multi-step forecasting exercise focusing on density forecasts, associated

event probability forecasts and the use of forecasts in a simple investment strategy. We

¯nd that it is important to take account of changing regimes, although a rolling window

is as good as using the meta approach as far as forecasting is concerned. The ability

to switch between fundamentals turns out to be very important though and the choice

of weights through our NNT procedure is found to be very successful at long forecast

horizons. Section 5 provides concluding remarks.

2 Exchange Rate Fundamentals and Structural Uncertainty

Our approach to modelling is based on the idea that di®erent fundamentals, or a combi-

nation of fundamentals, could be more or less relevant for the determination of exchange

rates in di®erent circumstances. The meta modelling approach deals with this uncertainty

through model averaging but emphasises the uncertainty over the duration of any partic-

[5]



ular characterisation of exchange rate determination by considering models over di®erent

sample sizes as well as with the di®erent fundamentals. So, at time  , there might be

 £ models that can potentially be used to characterise recent changes in the exchange

rate, described by

 :  ¡ ¡1 = ®X +   = 1   ;  = min  max;  =  ¡   

(2.1)

where  = max ¡ min + 1. Here, model  is assumed to explain the change in the

exchange rate over the period  ¡    , and allowing  to vary means we contemplate

models that might be relevant only for the very recent past or back to max periods in

the past. The model involves X which is the 
 set of  alternative sets of explanatory

variables driving the exchange rate and  are associated random innovations.

In considering the potential drivers of the exchange rate, Engel et al. (2008) note

that many familiar exchange rate models can be motivated by the Uncovered Interest

Rate Parity ( ) relationship which captures the equilibrium outcome of the arbitrage

process between holding domestic and foreign bonds. Here, any di®erential in interest

rates across countries must be o®set by expected exchange rate changes to eliminate the

scope for arbitrage. The UIP relationship in log-linear form is

 = +1 ¡ ( ¡ ¤ ) (2.2)

where  is the nominal exchange rate at , de¯ned as a home price of a unit of foreign

currency,  and ¤ are the nominal interest rates paid on domestic and foreign assets

during period  respectively, the `' superscript indicates expectations (formed at time t)

and lower case variables denote logarithms. Iterating forwards and taking expectations,

the exchange rate depends on the entire future time path of interest rates

 =
1X

=0

h
(+ ¡ ¤+)

i
 (2.3)

Various models explaining exchange rate determination can be obtained from (2.2) and

(2.3) depending on the choice of the fundamentals driving the interest rates and the time

frame over which we want to consider their future path. For example, using (2.2), one
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might focus on the changes in the interest rate initiated by policy responses or ¯nancial

market responses to news - `news pressures' - during short periods of economic turbulence.

Or, using (2.3), the choice might focus on the longer-term during periods of stability when

the future path of interest rates might re°ect broader macroeconomic conditions. These

conditions de¯ne equilibrium interest rates and the path taken towards them and are

mirrored in turn by the path taken by the exchange rate to its corresponding equilibrium.

This idea is captured by Mark's (1995) approach to modelling the exchange rate in which

deviations of the nominal exchange rate from its equilibrium are persistent but gradually

eliminated over time according to

 ¡ ¡1 =  (¡1 ¡ ¡1) (2.4)

where  ¡  is the deviation of the time- equilibrium exchange rate, , from the actual

rate. These alternative models motivate the choice of variables X in (2.1) and below

we brie°y outline four models frequently found in the literature to specify this choice;

Rossi (2013) provides more detailed descriptions of the models and the empirical evidence

relating to them.

Interest rate parity fundamentals (IRP). In the case where `news' pressures domi-

nate, one possibility for modelling exchange rates is to focus directly on recent interest rate

movements. Recognising that the presence of transactions costs, risk premia and specu-

lative e®ects provide for the possibility of permanent deviations from  and assuming

that the expected future interest rate di®erential follows a simple () speci¯cation, we

can use (2.2) to write

 ¡ ¡1 = +
X

=0

(¡ ¡ ¤¡) +  (2.5)

where the 's are parameters and  consists of expectational error and any random

variation in transactions costs, risk premia or speculative e®ects.

Taylor rule fundamentals (TR). The simple time series representation for the in-

terest rate di®erential embedded within (2.5) can be replaced by a more forward-looking

approach based on the determinants of the interest rate as expressed in the Taylor rule,
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specifying the central bank's policy rule as setting interest rates with reference to in°a-

tion, the output gap and, potentially, the real exchange rate. If a corresponding policy

rule holds in the foreign country, then interest rate di®erentials will depend on in°ation

rates and gap measures at home and abroad and the real exchange rate so that, again

using (2.2), we might write

 ¡ ¡1 =  +  ¡1 ¡ ¤ 
¤
¡1 + ¢ ¢ ¡ ¢¤ ¢

¤
 +   ¡ ¤ 

¤
 +   + 

(2.6)

where ¢ is the in°ation rate,  is the output gap,  =  + ¤ ¡  is the log of the

real exchange rate, and where the 's are parameters  again consists of expectational

errors and the e®ects of risk premia, speculation and other ¯nancial market e®ects that

are assumed to be random.9

Purchasing power parity fundamentals (PPP). The PPP hypothesis provides a

candidate for the equilibrium level of the exchange rate in the longer horizon perspective

captured by (2.4). In PPP, the equilibrium exchange rate is based on the idea that the

price of a good would be the same in two countries when quoted in a common currency.

Information disparities, transportation costs or the e®ects of tari® and non-tari® barriers

are likely to create deviations from (absolute) PPP in the short run but, if these in°uences

are constant over time, then the (weaker) concept of `relative PPP' holds and we can write

 ¡ ¡1 = + (¡1 ¡ ¤¡1 ¡ ¡1) +  (2.7)

where  again re°ects stationary innovations (assuming no permanent changes in

transportation costs, etc.).

Monetary model fundamentals (MON). The monetary model of the exchange rate

provides an alternative characterisation of the equilibrium exchange rate based on the

idea that the equilibrium nominal exchange rate is the relative price of two currencies

and is determined by relative money supplies, relative income levels and the interest rate

di®erential. Using the UIP assumption in (2.2) to eliminate the interest rate di®erential,

9See Engel and West (2006) and Molodtsova and Papell (2009) for exmaples of this approach.
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an operational model for exchange rate determination is obtained assuming a simple

autoregressive speci¯cation for each of the relative money supplies and relative outputs

and inserting this into the dynamic speci¯cation at (2.4). If these relative magnitudes

follow a random walk with drift, for example, we have

 ¡ ¡1 = 0 + 

" X

=0

(¡1¡ ¡¤
¡1¡) +

X

=0

(¡1¡ ¡ ¤¡1¡)¡ ¡1

#

+ 

(2.8)

3 The Meta-NNT Model

The  £  di®erent models explaining the exchange rate at time  in (2.1) can be com-

bined in a weighted average to obtain a meta model similar to a typical model average

but also taking account of changes in the relevant sample length at each point in time.

The weights can change over time and can accommodate gradual shifts (as transporta-

tion costs gradually decline, say) or very abrupt shifts (in response to a sudden change

in macroeconomic policy for example). As mentioned earlier, the advantages of model

averaging in forecasting are now well documented, but the practice is much less widely

employed in structural modelling even though the statistical arguments to support the

approach are equally valid in inference and prediction.

The meta-modelling approach. The basis of the meta modelling approach is the

Bayesian Model Averaging (BMA) formula (see Hoeting et al., 1999):

Pr(µ j Z ) =
X

=1

maxX

=min

Pr(µ j Z ,  )£ Pr( j Z ) (3.9)

where Z = (z1 z ) represents the data available at  , with z = ( , X 8 ), and

µ = ( 8  ) represents the the unknown parameters capturing the in°uence of

all the fundamentals under consideration. The Pr(µ j Z ) describes our understanding

of the parameters of interest and  represent the various models described at (2.1).

The BMA formula deals with the uncertainties accommodated within Pr(µ j Z ) by

decomposing it into a weighted average of the conditional distributions, Pr(µ j  ,

Z ), using as weights the model probabilities Pr( j Z ) to accommodate uncertainty

over the nature of the fundamentals and regime uncertainty.
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As discussed in Garratt et al. (2003), one can adopt a classical stance within this

Bayesian framework if the conditional distribution Pr (µ j Z  ) is assumed to be

described by

µ j Z 

» (bµ cV )

where bµ is the familiar maximum likelihood estimate of the parameters under  , and

cV is the asymptotic covariance matrix of bµ . This assumption treats µ as a random

variable at the inference stage so that Pr(µ j Z ,  ) in (3.9) is approximated by

(bµ cV ) and standard inference can be carried out for each model in turn.

The NNT weights. In practice, there is a wide choice of model weights Pr( j Z )

that can be used to obtain the meta model.10 In the `meta-NNT' model, we propose a

novel and pragmatic approach to deriving model weights where we allow them to evolve

over time, updating the weights in each period to re°ect new evidence on whether the

previously-held view continues to be valid or whether an alternative new-born model is now

appropriate. Since the new-born model could involve an entirely di®erent set of fundamen-

tals to those of the previously-held model, the evidence involves non-nested hypothesis-

testing methods which are relevant when one model cannot be obtained from the other

by imposition of parameter restrictions or through a limiting process. The approach can

be formalised by writing, for any  and for all  = 1  and  = min  max ¡ 1,

Pr(¡1 j Z¡1) !

8
>>>>>>>><

>>>>>>>>:

Pr(+1 j Z )
if the null +1 is not rejected in favour of 

for  = min,..., and  = 1  

Pr( j Z )
if the null +1 is rejected in favour of 

for  = min,..., and  = 1  
(3.10

so that the weight assigned at time  ¡ 1 to the model containing the  fundamentals

and based on data  ¡ 1 ¡  to  ¡ 1 is either transferred to the model with the same

fundamentals based on one additional observation - i.e. data  ¡ 1¡  to  - or to a new

model based on the shorter sample of data  ¡ to  containing any one of the alternative

sets of fundamentals based on a non-nested test. If a model is rejected in favour of more

10See Steele (2020) for a comprehensive review.
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than one alternative, the weight can be split equally among the alternative models. In

transferring the weights, the tests should be conducted comparing the null to successively

shorter samples so the weights can be shifted down sequentially where the evidence is that

a model based on a shorter sample outperforms a model based on a longer one. This will

happen when there is a change in economic behaviour, but this sequencing of the transfer

of weights allows for some ambiguity on the timing of the change and the length of the

new short sample. The updated weights provide a summary of the probabilistic relevance

of the potential determinants of the exchange rate at each point in time.

In transferring weights, our interest is whether the most recent observation con¯rms, or

°ags shortcomings on, our currently-held characterisation of the data. A natural statistic

on which to base the test between the models is the ratio of the squared residuals obtained

for the ¯nal observation of the two competing models, denoted  say. Here, a large

(absolute) value of the residual from the null model casts doubt on its continued relevance,

but this is judged relative to the performance of the realistic alternative models. In the

case where the alternative is the same behavioural model but with changed parameters

based on a shorter sample period, the alternative is nested within the null and the statistic

provides a standard F-test of structural instability, itself a likelihood ratio test under

the assumption of normally-distributed errors. But, more generally, neither model is

nested within the other and non-nested testing procedures are required. The `Cox test'

of two competing non-nested models involves modifying the likelihood ratio test statistic

to obtain a statistic with known asymptotic distribution.11 The modi¯cation is required

because, taking one model as the null, the alternative is misspeci¯ed and its estimated

likelihood will depend on the parameters of the null model. Pesaran (1974) describes the

modi¯cation required to take into account the misspeci¯cation in the case of two non-

nested linear regression models estimated over a common sample and derives a statistic

which is asymptotically normally distributed with zero mean and calculable ¯nite variance.

However, in most cases, the required modi¯cation renders the distribution of the statistic

analytically intractable so that simulation methods are required.

11See Pesaran and Weeks (2003) for a useful review of the non-nested testing literature.
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The simulation exercise involved here is computationally demanding but relatively

straightforward. Here the previously-held model has a clear status as the null and so

can be used to simulate  arti¯cial samples of the exchange rate, 
()
 ,  = 1  , for

 =  ¡    using the estimated parameters of model and making random draws

from a Normal distribution with mean zero and variance equal to that estimated under

 . For each arti¯cial sample, the models  and  can be estimated and

the ratio of the squared residuals obtained for the ¯nal observation of the two competing

models, 
()
 , can be calculated. The set of simulated 

()
 statistics provides the

appropriate distribution against which to compare the observed  under the null

that model  is true. Finding that the observed value lies in the upper 5%, say, of

the simulated distribution provides signi¯cant evidence to reject the model in favour of

the new alternative. Carrying out this exercise at each point in time, holding in turn each

model with non-zero probability as the null and comparing it to all realistic alternative

models, provides the means to update the weights over time.

A strength of the meta-NNT approach. Models can be judged according to their

relevance to the task at hand, their consistency with applicable theory and real-world

institutions, and their statistical adequacy.12 Even if a model is designed speci¯cally

to deliver exchange rate forecasts and achieves this satisfactorily (so it is relevant and

adequate), consistency with theory and real world experience is important for con¯dence

in the model and for the results to be integrated into our understanding of exchange rate

determination. The meta-NNT model provides a useful vehicle for capturing the various

theories put forward to explain the exchange rate `disconnect' described in the introduction

and will re°ect the true data generating process (dgp) if, for example, exchange rate

decisions are made by di®erent groups - each focused on di®erent fundamentals - and the

weights capture the proportions of individuals in the respective groups as these change

over time. Moreover, the meta modelling approach is consistent with our understanding

of exchange rate determination even if the true dgp is distinct from all of the underlying

structural models considered. Here, the weights just convey the real-time adequacy of the

12See Pesaran and Smith's (1995) discussion on the evaluation of macroeconometric models.
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underlying structural models in characterising recent exchange rate movements; but the

characterisation still contains useful insights on the underlying theory even in this case.

4 The Meta-NNT Models for Five Exchange Rates

We apply the meta-NNT modelling approach in forecasting exercises for ¯ve exchange

rates over the last forty or ¯fty years; namely, the U.S. dollar exchange rates for the

Canadian dollar, Danish krone, Japanese yen, Swedish krona and British pound. The

data we use are measured monthly and the early part of the data, to 2010 : 6, are as

provided in Rossi (2013), with the series' sample start dates varying across countries - as

provided in column (1) of Table 1. These data are derived originally from Datastream

but were collated by Rossi to provide a set of variables that are reasonably comparable

across countries. We have then extended the series to 2019 : 12 based on the Rossi data

de¯nitions. The choice of our ¯ve rates was based on the availability of a long run of data,

and the results for these rates presented by Rossi provide a useful setting from which to

judge our own results.

To be clear on de¯nitions, the data for nominal exchange rates  are the end-of-month

observations of the rate expressed as the price of one US dollar. Interest rates  are three-

month Treasury Bill rates, output  is measured by monthly industrial production ¯gures

and the output gap  is calculated as the percentage deviations of actual industrial

production from the trend de¯ned by applying the HP ¯lter to a forecast-augmented

industrial output series.13 Prices  are measured by CPI and we use relatively liquid

measures of the money supply  in each country (e.g. M1 data for the US). Series are

seasonally-adjusted using one-sided moving averages with equal weights over the previous

twelve months.

Table 1 provides some summary statistics to provide an overview of the time series

properties of the ¯ve exchange rates and their determinants. Column (2) reports the

simple correlations between  and  ¡ , and between ¢ and  ¡  for each

13Speci¯cally, at each period  , forecasts of future industrial production are obtained using a simple

AR(2) model and trend output is identi¯ed as the time- value of the HP ¯lter applied to the extended

series. See Garratt et al. (2008) for details.
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currency. The former correlations range between -0.43 and -0.90, averaging -0.69 across

the ¯ve countries, re°ecting very similar patterns in the movements of the exchange rate

and relative prices in every country considered over the forty- or ¯fty-year time frame of

our samples of data. The large correlations re°ect the fact that, across all ¯ve countries,

the exchange rate is high (relative to its sample mean) at times when domestic prices are

low compared to US prices (again relative to the sample mean), and the exchange rate

is low when the domestic to US price level is high. Figure 1(a) illustrates this pattern

in the case of Canada.14 This supports the view embedded in the PPP and monetary

models that price pressures are important for exchange rate determination over relatively

long horizons. However, the relationships are not one-for-one and divergencies in the

movements between the two series persist: simple ADF tests applied to the entire sample

of data show, for all ¯ve countries, that the nominal exchange rate and relative price series

are both I(1) and, importantly, that the real exchange rate  =  +  ¡  is also I(1).

Of course ADF tests have relatively low power but, as shown in column (3) of Table 1,

the unit root tests statistics are not close to rejection (apart from the UK). In short, price

pressures appear to impact on the exchange rate but, given the periodic and permanent

shifts in the series, exchange rate determination will not be fully captured by a stable

PPP or monetary model.

Column (4) of Table 1 shows that, despite the long run relationships that exist between

the exchange rate and relative prices, the relationship over the short run is much less clear

with exchange rate movements being much more volatile than those of relative prices. On

the other hand, the ratio of the variance of ¢ to the variance of  ¡  is in the range

0.76 - 1.70 across the ¯ve countries so that the volatility of exchange rates is very much

in line with the volatility of the interest rate di®erentials.15 These patterns are again

illustrated in the case of Canada in Figure 1(b), showing exchange rate and interest rate

volatility to be of similar order of magnitude and much larger than relative price volatility

for most of the sample. However, the diagram also demonstrates the importance of regime

14For brevity, we illustrate our results with reference to Canada here and subsequently; comparable

¯gures for the other countries are provided in an Annex.
15The correlations of column (2) show that there is no discernable relationship between the levels of

¢ and  ¡ ¤
 over the sample as a whole.
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change as exchange rate volatility rises considerably at the end of the sample, after the

Global Financial Crisis, while interest rate volatility falls to re°ect the zero lower bound

constraints faced by countries' monetary policy makers.

An intuitively reasonable account that is consistent with the statistics of Table 1 is

that there are equilibrating macroeconomic pressures to move exchange rates towards es-

tablishing PPP over long horizons but that there are also factors (some periodic, some

more continuous) that change the relationship between exchange rates and relative prices

permanently. The monetary model of the exchange rate might capture these permanent

shifts to the extent that the factors are re°ected in productivity and money growth dif-

ference between countries but it is likely that these factors will cause structural breaks in

estimated relations. At the same time, overlaying these forces are the jumps and volatile

movements in the exchange rates arising in response to news from global markets, the

nature of which determines whether the pressures are best represented by a simple IRP

relationship or a more forward-looking Taylor Rule. The relative strengths of these vari-

ous pressures varies over time, with macroeconomic pressures likely to show most clearly

at times of stability and the `news' pressures likely to dominate at times of economic

turbulence. No single linear equation is likely to be able to capture all these in°uences.

But the meta-NNT model allows them all to have an e®ect with individual models having

non-zero weight while their in°uence remains apparent in the data.

4.1 Estimated Models of Exchange Rate Determination

Our modelling work begins by estimating ¯ve models for each country using data running

over the ¯rst three years of their respective samples; e.g. the 36 observations between

1963 : 3 ¡ 1966 : 2 for Canada. The ¯ve models include each of our four fundamental

models plus a random walk with drift. We then considered twelve alternative sample sizes,

dropping one month from the beginning of the sample each time, until each model was

estimated using only the 24 most recent observations; e.g. 1964 : 3¡ 1966 : 2 for Canada.

This provides estimates of  for  =    , for  = 24  35 and

 = 1966 : 2 then and, in this ¯rst iteration of the modelling, we assign equal weights to
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all 5£ 12 = 60 models obtained for each country.16 The data window was then extended

to cover one extra observation, to 1966 : 3 for Canada, and, in this second iteration,

5£ 13 = 65 models were estimated for each country. The weights assigned to each model

were determined in this case following the procedure in (3.10). Speci¯cally, each model

was held in turn as the null and compared to all of the models of shorter length in turn

through a set of non-nested tests. The weights were transferred to the alternative if the

null was rejected but remained with the null model otherwise.17 This iterated procedure

then continued for every  up to 2019 : 12, extending the range of sample lengths at each

iteration. The estimated models and model weights obtained in this way provided the

estimated `meta-NNT model' for each country.

Tables 2 and 3 provide statistics to give a sense of the outcome of this modelling

strategy set alongside the outcome of two alternative modelling strategies: a `meta-Most

Recent Best (MRB)' strategy and a `Fixed Window (FW)-NNT' strategy. The meta-

MRB strategy continues to roll through the data considering models distinguished by

their choice of fundamental and their choice of sample length. Here, however, weights are

updated at each point according to the models' abilities to explain the ¯nal observation

in the current sample. Speci¯cally, time- weights are updated at  + 1 according to the

probability of observing the time  + 1 outcome based on the time- model, where this

latter probability is assumed proportional to the squared estimated residual at the end

of the sample. This approach, explained in detail in Lee et al. (2015), is similar to the

approach often adopted in the forecast-combination literature where weights are based on

the historical forecasting performance of the alternative models, although the meta-MRB

approach builds in a degree of stability in model weights by updating rather than using

the probabilities themselves. As a second point of comparison, the FW-NNT strategy

updates model weights according to the NNT procedure, as in the meta-NNT model, but

16The four behavioural models take the form in (2.5)-(2.8) with  = 2. For , to conserve degreees of

freedom for the small sample regressions, we impose equal and opposite signs on the domestic and foreign

variables and apply Taylor's original assumption that
¢


= 15

05 .
17Our modelling also involves a speci¯cation search rule in which the individual models are checked

for dynamic stability. In the case that a model becomes dynamically unstable (so that its forecasts are

unreliable), its associated weight is reallocated across all other models with non-zero weights.
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abstracts from the choice of sample length by using a ¯xed rolling window of ¯ve years.

Table 2 reports the 2 statistics associated with the estimated models, calculated as

the ratio of the `explained' to `total' sum of squares, where the `explained' sum of squares

is based on the weighted average of the ¯tted values from each of the models estimated at

each point in the sample. The statistics demonstrate the importance of taking account of

variable-length regimes with the 2's of the meta models averaging 0091, around twice as

high as the Fixed Window models across all countries. As illustrated in Figure 2 for the

meta-NNTmodel for Canada, there are typically some prolonged periods of stability - with

the weighted sample length ,  =
P



P
 ( £ ), rising above four years on a couple

of occasions - but there are also frequent drops in the sample length re°ecting regular

breaks among the models. De¯ning a `substantial break' to occur when the weighted

average of the sample length drops into the region [24 29] months, Canada experiences a

substantial break every 12 months on average according to the meta-NNT model, and this

sort of experience is mirrored in all countries (with an average period between substantial

breaks of 16 months across the ¯ve countries). There is a corresponding consistency across

countries in the length of time between substantial breaks according to the meta-MRB

model, although the average period here is just 7 months, providing even stronger evidence

in favour of accommodating frequent changes of regimes of varying duration in modelling

exchange rates.

Table 2 also notes the contributions of the di®erent fundamental models to the overall

model ¯t. Again, there is a degree of consistency across countries (and indeed across

all three modelling strategies) with the greatest contribution to the overall ¯t coming

from the PPP and the Taylor Rule models respectively and with the IRP and Monetary

models typically making a smaller contribution. The results from the two meta models

are again broadly similar in this respect (with the contribution from the PPP model

averaging 30% across the countries' meta-NNT models and 33% in the meta-MRB, for

example) and are distinct from with the Fixed Window model (with an average PPP

contribution at 40% for example). Figure 2 shows, for each country, the time variation in

the weights allocated to models with di®erent fundamentals, tracing out the sum of the

weights allocated to the PPP and Monetary models. The typical pattern observed across
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countries shows considerable variation over time, with the weights ranging between 02¡

08, sometimes rising or falling slowly over time, sometimes more abruptly,18 and re°ecting

phases during which exchange rate determination is dominated by the macroeconomic

pressures of PPP+MON rather than the news and ¯nancial market pressures captured by

IRP+TR, and phases where the dominance is reversed.

The statistics of Table 3 report the correlations between the weights on the models

observed over time across the three modelling strategies and show that there is degree of

agreement on the timing of the phases between the meta-NNT and Meta-MRB models but

much less agreement between the Meta-NNT and FW-NNT models. This again supports

the view that a rolling ¯xed window model misses important features of the data and

that it is important to accommodate frequent changes of regimes of varying duration in

modelling exchange rates. Calculation of the corresponding correlations across countries

shows little commonality in the timing of the various phases of dominance. Of course,

all of these exchange rates are with respect to USD so one might expect some features

of the exchange rate movements to show in all the currencies. But the lack of alignment

demonstrates that the timing and nature of the phases are complex and country-speci¯c,

re°ecting the particular circumstances of each country.19

In summary:

1. the fundamentals that determine exchange rates di®er across countries and across

time;

2. exchange rates are in°uenced both by the macro pressures underlying the Purchasing

18The volatility in the weights on the fundamentals is noticably less than that of the weighted sample

lengths, indicating that many of the observed breaks relate to the same fundamental model but estimated

over shorter samples.
19The meta analysis of the Taylor rules in UK and US provided in Lee et al. (2013, 2015) illustrates the

detailed and country-speci¯c timing of changes in monetary policy in the two countries. If the exchange

rate is in°uenced by IRP or TR models, this will translate into country-speci¯c regime change in the

exchange rate equations too. Similar comments apply to the timing of changes in the risks associated

with countries' assets - as discussed, for example, in Ismailov and Rossi (2018) - and countries' trade

arrangements and transportation costs which in°uence the PPP and Monetary drivers of its exchange

rate.
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Power Parity and Monetary models and by the news and ¯nancial market pressures

underlying the Taylor Rule and IRP models, and can be characterised by phases

during which the two sets of pressures are more or less important;

3. the timing of changes in regimes is di®erent across countries; and

4. regime duration varies over time and across countries, although there are similarities

in the frequency of substantial breaks across countries (occuring every16 months on

average)

4.2 The Models' Forecasting Performance

Tables 4-6 provide details of the forecasting performance of the models discussed above.

The focus of attention is on forecasting exercises in which the models are used to produce

density forecasts, to predict future events (such as appreciations or depreciations) and

to make portfolio decisions. This requires stochastic simulation methods in which the

estimated models  obtained at  are used to generate a range of potential future

values of the exchange rate for  + , for  = 1 3 6 9 12 18 24 36, and the forecast

densities, event probabilities and portfolio returns are derived from this generated range.

Speci¯cally, having obtained the estimates of ® in (2.1) for each of the  at  , we

simulate the future values of 
()
+ using the model recursively, where the superscript `'

refers to the  replication of the simulation. In each simulation, we take lagged values

of the variables and the future values of the fundamentals as given,20 and we incorporate

stochastic variation by drawing errors 
()
+ from a Normal distribution with variance

equal to the estimated equation's error variance. If there is only one model involved,

repeating this for  = 1   provides the forecast density at each horizon for the model;

calculating the proportion of replications in which an event occurs (e.g. "the exchange rate

appreciates over the 12 month forecast horizon") provides the event probability forecast;

20Rossi (2013) describes this as the `contemporaneous, realised fundamental' model speci¯cation and

contrasts it with the `contemporaneous, forecasted fundamental' and `lagged fundamental' models. Sum-

marising the empirical evidence, she concludes that it is the choice of fundamentals that matters in

determining the strength of the predictability of a model rather than the speci¯cation.
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and maximising the expected gain from applying an investment strategy to the simulated

series provides a decision-based forecast outcome for the model. If more than one model

is involved, the various forecasts are obtained by pooling the simulated futures from the

di®erent models choosing the number of replications of each model in proportion to the

weights  .
21

Table 4 compares the density forecast performance of the various models, using the

¯rst 60 months of each countries' sample as a `training' period and the subsequent months

as the `out-of-sample' forecast evaluation period. The table reports the average log score

obtained over the evaluation period based on the meta-NNT model expressed as a ratio

to the average log-score based on alternative models.22 Numbers in excess of unity indi-

cate that the meta-NNT provides a better density forecast therefore. The corresponding

Diebold-Mariano tests, calculated using these log scores, are also reported to test the null

of equal forecast performance.

The ¯rst panel of the Table compares the meta-NNT model with a simple random walk

model.23 The results show that the uncertainty surrounding the random walk forecasts

are relatively poorly calibrated and that the meta-NNT's forecasts are signi¯cantly and

comprehensively superior to the random walk model in all countries and at all forecast

horizons.24 The meta-NNT's density forecast performance is also superior to that of the

¯xed window random-walk-with-drift model in the second panel. The extent of the over-

performance is much reduced compared to the straight RW model but remains clear,

especially at longer horizons (e.g. 70% of the reported statistics are signi¯cant at  ¸

9). In contrast, the third panel reports that the meta-NNT and FW-NNT models have

21The forecasts obtained in this way take into account stochastic and model uncertainty but not the

parameter uncertainty that surrounds the estimated ® . In principle, this could be accommodated

though an additional simulation stage generating arti¯cial `histories' but it is not possible in practice

given the heavy computational demands of the meta-NNT model estimation.
22If the time- forecast density function of the -period-ahead forecast is denoted b(), the `log score'

is the log of the value of the density evaluated at the outcome ¡ log
h
b(+)

i
.

23The time- measure of the variance used for simulating density forecasts from the RW model is

( ¡ ¡1)
2.

24Neither model - or any of the other models considered - outperforms the other in terms of point

forecasts, con¯rming the standard Meese and Rogo® ¯nding.
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comparable forecast performance, with neither signi¯cantly better or worse than the other.

This indicates that the strength of the meta-NNT forecast performance in the second panel

derives from its ability to switch between model fundamentals then rather than its ability

to choose regimes of di®erent lengths. Finally, in the fourth panel, the ratios show that

the meta-MRB performs signi¯cantly better than meta-NNT at the shortest  = 1 forecast

horizon, but that the meta-NNT forecast performance improves relative to meta-MRB at

longer horizons and is signi¯cantly better in 75% of the reported results at  ¸ 18.

Table 5 and 6 focus on particular aspects of the density forecasts capturing more

`economic' forecast evaluation criteria. Table 5 reports on the models' abilities to forecast

the direction of change (i.e. overall appreciation or depreciation) over the various forecast

horizons; and Table 6 reports on the outcomes of an investment strategy which, each

month, buys (or sells) one unit of the foreign currency when the model predicts the

currency will appreciate (or depreciate) over the forecast horizon. Here, the evaluation

of the models' forecasting performance depends not only on the accuracy and degree of

certainty surrounding the forecasts but also on the relevance of the ¢ = 0 threshold in

Table 5 and, additionally, on the size of the pay-o® (= ¢+) in Table 6.

Table 5 shows the ratio of correctly-forecasted direction of change from the pairs of

models described in Table 4, with a value in excess of unity again indicating that the

meta-NNT provides a better forecast than the comparator models. A large majority of

the reported results are greater than unity in the comparisons with the RW and FW-RWD,

con¯rming the superiority of the meta-NNT model in these cases, although the size and

signi¯cance of the ratios are typically less than in Table 4. As in Table 4, there is relatively

little to choose between the meta-NNT and FW-NNT models according to this criterion,

although there is some evidence of dominance of the meta-NNT model at longer horizons.

And the comparisons between the meta-NNT and meta-MRB models also re°ects the

¯ndings in Table 4 that the meta-MRB is found to have superior forecasting power at

shorter horizons, but the meta-NNT model performs better at the longer horizons. Similar

conclusions are drawn from Table 6, which reports the net gains from the investments

recommended by the model pairs (so that a positive statistic indicates that the meta-

NNT model provides the most pro¯table forecasts).
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Taken together, the results provide some useful insights for exchange rate forecasting

(and exchange rate modelling more generally):

1. Structural models involving model averaging deliver exchange rate density forecasts

which are signi¯cantly better than those of simple random-walk or random-walk-

with-drift models, both based on statistical log-score criteria and the speci¯c eco-

nomic criteria considered. This superiority is based on the appropriateness of the

uncertainty/con¯dence with which they make their forecasts rather than the accu-

racy of the point forecasts.

2. As far as forecasting is concerned, the gains from model averaging arise from the

models' ability to switch between fundamentals rather than from their ability to

accommodate the establishment of new regimes of varying length. Having said that,

in terms of the models' in-sample ¯t, the meta models perform considerably better

than the corresponding rolling ¯xed window models so that they are more consistent

with real world experience and can be better integrated into our understanding of

exchange rate determination.

3. The NNT procedure for allocating model weights delivers models that perform rel-

atively well at long forecast horizons while the MRB procedure performs better at

very short horizons. While it might be a statement of the obvious, di®erent models

will be relevant for di®erent tasks and it is entirely reasonable that the relatively

rapid regime changes associated with MRB are found to be useful for short term

forecasting while the longer-lived phases associated with NNT produce better longer-

term forecasts. Having said that, there is some commonality between the regimes

picked out by the meta-NNT and meta-MRB models in estimation and this re°ects

a useful consistency with real world experience from both models.

4. The use of a variety of forecast evaluation criteria helps judge models' forecasting

performances from di®erent perspectives (sometimes helping to hone in on a par-

ticular model, sometimes exposing that no model can provide useful guidance to

decision-makers). The `economic' evaluation criteria we consider here are heavily
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in°uenced by the location of the forecast densities, and the improvements in den-

sity forecasting - and potentially complicated multi-modal shapes of the densities -

obtained through model averaging play only a minor role in forecast performance in

this context.

5 Conclusion

There is inherent instability over time in the process determining exchange rates and

it is not surprising that explaining exchange rate movements and forecasting them is

di±cult in these circumstances. The model averaging underlying the meta model of this

paper provides a very °exible approach to dealing with this inherent instability in real

time. The approach accommodates regime uncertainty as well as the uncertainty over the

fundamentals driving the exchange rate, doing this in a way that can account for periods

of stability, periods in which the emergence of new regimes takes place gradually over time

and episodes of abrupt changes in regime. The novel NNT approach to allocating weights

introduced in the paper matches well the way in which an observer of the exchange rate

market might characterise how the market behaves. This consistency with real world

experience is a strength of the modelling when compared to the more data-driven meta-

MRB (or related Bayesian) models. The results of the paper show that, for the ¯ve

currencies considered, the meta models provide sensible characterisations of exchange rate

movements over the last 40-50 years, re°ecting the ebb and °ow of macroeconomic and

`news' pressures on exchange rates. The timing of the phases of the di®erent pressures are

country-speci¯c, re°ecting countries' individual experiences. But, for the meta models,

there is a similarity in the frequency of structural breaks and choice of drivers that gives

some con¯dence in the validity of the estimated models. The meta models are able to

exploit relevant economic information and provide a systematic improvement in density

forecasting performance over random walk models, whether judged by purely statistical

criteria or in a more economically-meaningful context, with the precise choice of the

approach for choosing weights (NNT or MRB) depending on the forecast horizon.
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Table 1: Summary Statistics

(1)

Sample
(n)

(2)

Corr(s, pUS-p)

Corr(Δs, r-rUS)

(3)

ADF(s)

ADF(s+pUS-p)

(4)

V(Δs)/V(Δ(pUS-p))

V(Δs)/V(r-rUS)

Canada 1964m4 – 2019m12
(669)

-0.75***

0.01
0.36
0.66

5.50
0.76

Denmark 1975m3 – 2019m12
(538)

-0.61***

-0.10
0.22
0.18

11.07
1.26

Japan 1965m3 – 2019m12
(658)

-0.90***

-0.08
0.51
0.71

11.02
1.48

Sweden 1976m2 – 2019m12
(527)

-0.75***

-0.05
0.28
0.42

10.63
0.91

UK 1974m6 – 2019m12
(547)

-0.43***

-0.08
0.06*

0.36
8.94
1.70

Notes: Column (2) gives the correlation between the two variables in parentheses; Column (3) gives the p-value of the ADF test
applied to the variable with a constant in the underlying ADF regression and the extent of augmentation chosen by the Akaike
Information Criterion with a maximum lag of 12; V(.) in Column (4) refers to the variance of the variable. . *, **, and *** indicate
significance at 10%, 5% and at the 1% level, respectively.

Table 2: Properties of Models

R-squared Percentage of R-squared statistic due to: Av Duration
between
Breaks

PPP IRP TR MON RW&Drift

CANADA
Meta-NNT 0.093 35% 19% 22% 14% 10% 12 months
FW-NNT 0.057 48% 12% 20% 10% 11% -
Meta-MRB 0.101 32% 19% 15% 27% 7% 6 months

DENMARK
Meta-NNT 0.078 32% 18% 24% 13% 12% 14 months
FW-NNT 0.046 37% 21% 16% 15% 10% -
Meta-MRB 0.088 38% 20% 17% 16% 9% 7 months

JAPAN
Meta-NNT 0.085 25% 13% 24% 20% 18% 29 months
FW-NNT 0.049 39% 12% 18% 20% 11% -
Meta-MRB 0.088 32% 9% 24% 22% 12% 8 months

SWEDEN
Meta-NNT 0.093 32% 13% 23% 20% 13% 11 months
FW-NNT 0.052 38% 17% 15% 14% 15% -
Meta-MRB 0.095 33% 14% 19% 23% 11% 7 months

UK
Meta-NNT 0.098 27% 16% 27% 21% 8% 16 months
FW-NNT 0.055 40% 17% 26% 10% 7% -
Meta-MRB 0.101 33% 18% 24% 19% 6% 7 months

Notes: ‘Duration between breaks’ refers here to the period between occasions in which the weighted average sample size drops
below 29 months.



Table 3: Correlations of Structural Models across Models

Corr(Meta-NNT, FW-NNT) Corr(Meta-NNT, Meta-MRB)

PPP+MON IRP+TR PPP+MON IRP+TR

CANADA 0.118*** 0.156*** 0.332*** 0.422***

DENMARK 0.542*** 0.440*** 0.429*** 0.436***

JAPAN 0.221*** 0.186*** 0.312*** 0.281***

SWEDEN 0.014 0.188*** 0.108** 0.219***

UK 0.138*** 0.145*** 0.235*** 0.277***

Notes: This table presents the correlations of the sum of the probability weights attached to the PPP and MON models
together, and the IRP and TR models together, between the Meta-NNT and the FW-NNT models, and the Meta-NNT
and the Meta-MRB models, respectively for each country. *, **, and *** indicate significance at 10%, 5% and at the 1% level,

respectively.

Table 4: Forecasting Performance: Ratio of Average Log Scores

Meta-NNT vs RW Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 1.310*** 1.281*** 1.282*** 1.306*** 1.324*** 1.318*** 1.265*** 1.164***

DENMARK 1.055*** 1.033*** 1.025*** 1.040*** 1.050*** 1.042*** 1.036*** 1.036***

JAPAN 1.309*** 1.257*** 1.239*** 1.269*** 1.280*** 1.250*** 1.214*** 1.133***

SWEDEN 1.307*** 1.273*** 1.260*** 1.264*** 1.266*** 1.267*** 1.227*** 1.190***

UK 1.305*** 1.275*** 1.283*** 1.307*** 1.325*** 1.331*** 1.305*** 1.276***

Meta-NNT vs FW-RWD Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 1.007** 1.012** 1.011 1.020* 1.031** 1.051** 1.061** 1.107***

DENMARK 1.002 1.004 1.000 1.003 1.007 0.995 1.028 1.103***

JAPAN 1.002 1.005 1.008 1.035** 1.032* 1.045* 1.062** 1.075**

SWEDEN 1.001 0.999 0.996 0.999 1.000 1.008 1.015 1.052***

UK 1.001 1.010* 1.021** 1.033*** 1.056*** 1.085*** 1.130*** 1.148***

1.007** 1.012** 1.011 1.020* 1.031** 1.051** 1.061** 1.107***

Meta-NNT vs FW-NNT Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 1.002 1.007 1.006 1.011 1.014 1.013 1.006 1.009
DENMARK 0.998 0.994 0.982 0.974 0.967 0.955 0.968 0.807
JAPAN 1.002 0.994 0.993 1.014 1.005 0.999 1.001 0.980
SWEDEN 0.998 0.996 0.992 0.991 0.984 0.996 0.992 1.023
UK 0.998 1.001 1.005 1.017 1.019 1.020 1.029* 1.011

Meta-NNT vs Meta-MRB Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 0.993** 1.004 1.015* 1.021** 1.016*** 1.016 1.032** 1.050*

DENMARK 0.994** 0.995 0.993 0.993 1.000 0.998 1.015** 0.817***

JAPAN 0.992*** 0.996 0.999 1.005 1.003 1.016 1.045** 1.074***

SWEDEN 0.996 0.999 1.007 1.011 1.018 1.035** 1.047** 1.043**

UK 0.994** 1.011** 1.029*** 1.026** 1.030*** 1.034** 1.032** 1.026

Notes: This table presents the ratio of the average log scores of the meta-NNT model relative to the FW-NNT, meta-MRB, FW-
RWD and the RW models, for various respective forecast horizons. Ratios larger than one indicate that the meta-NNT model
outperforms the respective models. The table also presents the results from the Diebold and Mariano (DM) test of equal
forecasting performance where *, **, and *** indicate significance at 10%, 5% and at the 1% level, respectively.



Table 5: Forecasting Direction of Change in st: Ratio of Proportion of Correct Signs

Meta-NNT vs RW Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 1.060 1.033 1.074** 1.133*** 1.105*** 1.118*** 1.160*** 1.150***

DENMARK 1.020 1.084* 1.090** 1.142*** 1.099** 1.069 1.066 1.143***

JAPAN 1.020 1.060 1.046 1.032 1.015 0.969 0.946 0.871***

SWEDEN 0.972 1.017 1.054 1.037 1.019 0.980 0.956 0.996
UK 1.050 1.053 1.104** 1.058 1.056 0.985 1.004 0.988

Meta-NNT vs FW-RWD Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 0.967 0.972 0.965 0.959 0.921 0.905** 1.019*** 0.973
DENMARK 1.022 1.111** 1.078* 1.123*** 1.099** 1.126*** 1.166*** 1.143***

JAPAN 0.988 1.074* 1.036 1.009 1.000 0.948 0.940 0.844***

SWEDEN 0.981 1.027 1.022 1.000 1.023 1.096** 1.081 1.047
UK 1.063 1.163*** 1.252*** 1.315*** 1.382*** 1.529*** 1.448*** 1.518***

Meta-NNT vs FW-NNT Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 1.029 1.030 1.056 1.107 1.103*** 1.141*** 1.285*** 1.314***

DENMARK 0.996 0.990 0.986 1.007 0.963 0.949 0.948 1.104**

JAPAN 0.965 1.021 1.040 1.050 1.101* 1.165*** 1.224*** 1.148***

SWEDEN 0.941 0.993 0.986 0.964 0.989 1.020 1.076 1.458***

UK 0.990 1.044 1.057 1.105** 1.048 0.929 0.868*** 0.940

Meta-NNT vs Meta-MRB Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 0.839*** 0.915** 0.960 1.030 1.008 1.011 1.054 1.061*

DENMARK 0.843** 0.960 0.927** 0.959 0.912** 1.045 0.993 1.000
JAPAN 0.817*** 0.923** 0.927** 0.889*** 0.899*** 0.901*** 0.938 1.004
SWEDEN 0.771*** 0.893*** 0.986 0.978 0.992 1.008 1.008 1.134***

UK 0.831*** 1.040 1.080* 1.084* 1.011 0.977 0.953 0.992

Notes: This table presents the ratios between the proportion of correctly predicted changes in the direction of st of the meta-NNT
model relative to the FW-NNT, meta-MRB, FW-RWD and the RW models, for the various respective forecast horizons. Ratios larger
than one indicate that the meta-NNT model outperforms the respective models. The table also presents the results from the
Pesaran-Timmerman (PT) test of the ability of the meta-NNT to forecast the direction of change correctly relative to each of the
respective models where *, **, and *** indicate significance at 10%, 5% and at the 1% level, respectively.



Table 6: Relative Net Gains of Alternative Investment Strategies

Meta-NNT vs RW Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 0.246 0.661 -0.488 0.233 -0.214 0.681 0.837 1.088**

DENMARK 0.864 1.440* 1.485* 0.947 0.685 0.374 0.580 0.511
JAPAN -0.098 -0.081 -0.174 -0.007 -0.523 0.326 1.143* -0.854
SWEDEN -0.525 0.605 0.596 0.921 -0.511 -0.225 0.336 -1.453
UK 0.944 1.938** 1.884** 1.560 1.787* 0.513 2.028*** -0.142

Meta-NNT vs FW-RWD Forecast Horizon
1 3 6 9 12 18 24 36

CANADA -0.401 0.541 -0.471 0.016 -0.486 0.306 0.810 0.763*

DENMARK 1.200* 0.909 1.529* 1.291* 1.079 -0.269 0.759 0.075
JAPAN 0.510 0.290 0.162 0.153 0.176 -0.842 -1.245 -0.230
SWEDEN 0.192 1.055 0.417 1.148 -0.075 -0.182 -0.379 -1.257
UK 0.977 2.417** 2.896*** 1.924* 2.064** 0.916 1.115 -0.305

Meta-NNT vs FW-NNT Forecast Horizon
1 3 6 9 12 18 24 36

CANADA 0.223 0.722 0.146 0.333 -0.231 0.284 -0.088 0.222
DENMARK 0.302 -0.355 -0.249 -0.548 0.606 -0.644 0.564 1.385**

JAPAN 0.173 0.031 0.909 0.634 0.264 -0.737 -0.582 -0.453
SWEDEN -0.033 0.977 0.011 -0.487 -0.954 -0.185 0.125 0.906
UK 0.207 1.227* 0.438 1.339 0.403 0.003 0.097 -0.337

Meta-NNT vs Meta-MRB Forecast Horizon
1 3 6 9 12 18 24 36

CANADA -1.308** 0.356 -0.313 -0.158 -0.808** 0.036 -0.065 0.053
DENMARK -1.769** -0.451 0.542 0.319 -0.178 0.042 -0.225 0.006
JAPAN -2.048*** -1.037 -1.310* -0.680* -1.238** 0.393 0.975 0.034
SWEDEN -2.556*** -0.291 0.585 -0.305 -0.421 -1.456 -0.120** -0.915
UK -1.802*** 2.130** 0.427 0.473 0.381 -0.953* -0.369 -0.359

Notes: This table presents the net gains of the investment strategy outlined in the text of the meta-NNT model relative to the
FW-NNT, meta-MRB, FW-RWD and the RW models, for the various respective forecast horizons. The table also presents the
results from the Diebold and Mariano (DM) test of equal forecasting performance where *, **, and *** indicate significance at
10%, 5% and at the 1% level, respectively.
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s p*-p r-r*

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

19
64

M
4

19
65

M
4

19
66

M
4

19
67

M
4

19
68

M
4

19
69

M
4

19
70

M
4

19
71

M
4

19
72

M
4

19
73

M
4

19
74

M
4

19
75

M
4

19
76

M
4

19
77

M
4

19
78

M
4

19
79

M
4

19
80

M
4

19
81

M
4

19
82

M
4

19
83

M
4

19
84

M
4

19
85

M
4

19
86

M
4

19
87

M
4

19
88

M
4

19
89

M
4

19
90

M
4

19
91

M
4

19
92

M
4

19
93

M
4

19
94

M
4

19
95

M
4

19
96

M
4

19
97

M
4

19
98

M
4

19
99

M
4

20
00

M
4

20
01

M
4

20
02

M
4

20
03

M
4

20
04

M
4

20
05

M
4

20
06

M
4

20
07

M
4

20
08

M
4

20
09

M
4

20
10

M
4

20
11

M
4

20
12

-0
4

20
13

-0
4

20
14

-0
4

20
15

-0
4

20
16

-0
4

20
17

-0
4

20
18

-0
4

20
19

-0
4

Figure 1b: Variation in Dollar Exchange Rate, Price Differential and Interest Rate for Canada

ds d(p*-p) r - r*



24

29

34

39

44

49

54

59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

19
66

M
2

19
67

M
2

19
68

M
2

19
69

M
2

19
70

M
2

19
71

M
2

19
72

M
2

19
73

M
2

19
74

M
2

19
75

M
2

19
76

M
2

19
77

M
2

19
78

M
2

19
79

M
2

19
80

M
2

19
81

M
2

19
82

M
2

19
83

M
2

19
84

M
2

19
85

M
2

19
86

M
2

19
87

M
2

19
88

M
2

19
89

M
2

19
90

M
2

19
91

M
2

19
92

M
2

19
93

M
2

19
94

M
2

19
95

M
2

19
96

M
2

19
97

M
2

19
98

M
2

19
99

M
2

20
00

M
2

20
01

M
2

20
02

M
2

20
03

M
2

20
04

M
2

20
05

M
2

20
06

M
2

20
07

M
2

20
08

M
2

20
09

M
2

20
10

M
2

20
11

M
2

20
12

M
2

20
13

M
2

20
14

M
2

20
15

M
2

20
16

M
2

20
17

M
2

20
18

M
2

20
19

M
2

Fig. 2: Meta‐NNT: Smoothed Sum of Weights for PPP and Monetary Models and Weighted Average 
Sample Size: Canada: 1966m2‐ 2019m12

24m Backward Average PPP+MON Weights (left axis) Weighted Average Sample Size (right axis) 24m Backward Weighted Average Sample Size (right axis)



24

29

34

39

44

49

54

59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

19
77

M
1

19
78

M
1

19
79

M
1

19
80

M
1

19
81

M
1

19
82

M
1

19
83

M
1

19
84

M
1

19
85

M
1

19
86

M
1

19
87

M
1

19
88

M
1

19
89

M
1

19
90

M
1

19
91

M
1

19
92

M
1

19
93

M
1

19
94

M
1

19
95

M
1

19
96

M
1

19
97

M
1

19
98

M
1

19
99

M
1

20
00

M
1

20
01

M
1

20
02

M
1

20
03

M
1

20
04

M
1

20
05

M
1

20
06

M
1

20
07

M
1

20
08

M
1

20
09

M
1

20
10

M
1

20
11

M
1

20
12

M
1

20
13

M
1

20
14

M
1

20
15

M
1

20
16

M
1

20
17

M
1

20
18

M
1

20
19

M
1

Fig. 2: Meta‐NNT: Smoothed Sum of Weights for PPP and Monetary Models and Weighted Average 
Sample Size: Denmark: 1977m1‐ 2019m12
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Fig. 2: Meta‐NNT: Smoothed Sum of Weights for PPP and Monetary Models and Weighted Average 
Sample Size: Japan: 1967m1‐ 2019m12
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Fig. 2: Meta‐NNT: Smoothed Sum of Weights for PPP and Monetary Models and Weighted Average 
Sample Size: Sweden: 1977m12 ‐ 2019m12
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Fig. 2: Meta‐NNT: Smoothed Sum of Weights for PPP and Monetary Models and Weighted Average 
Sample Size: UK: 1976m4 ‐ 2019m12
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