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Highlights 19 

• Faecal microbiota significantly differs between pwCF and healthy controls  20 

• Key SCFA producers contributed to microbiota dissimilarity between groups 21 

• Pulmonary antibiotic treatment heavily impacted gut microbiota  22 

• Intestinal physiology and transit impacted satellite microbiota composition  23 
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Abstract  24 

Background: Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of 25 

gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with 26 

evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to 27 

investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and 28 

health. 29 

 30 

Study Design: Faecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. 31 

Results were combined with clinical metadata and MRI metrics of gut function to investigate relationships. 32 

 33 

Results: pwCF had significantly reduced microbiota diversity compared to controls. Microbiota compositions 34 

were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimilarity between 35 

groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostridium spp., and 36 

Faecalibacterium prausnitzii. The core taxa were explained primarily by CF disease, whilst the satellite taxa 37 

were associated with pulmonary antibiotic usage, CF disease, and gut function metrics. Species-specific 38 

ordination biplots revealed relationships between taxa and the clinical or MRI-based variables observed. 39 

 40 

Conclusions: Alterations in gut function and transit resultant of CF disease are associated with the gut 41 

microbiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the 42 

expansion of satellite taxa resulting in potential downstream consequences for core community function in the 43 

colon.  44 
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1. Introduction  45 

Cystic fibrosis (CF) associated respiratory infections are the major cause of disease morbidity and mortality. 46 

However, a number of gastrointestinal (GI) problems may also arise, limiting the quality of life, including 47 

meconium ileus at birth, distal intestinal obstruction syndrome, small intestinal bacterial overgrowth (SIBO), 48 

increased risk of malignancy, and intestinal inflammation [1,2]. It is therefore unsurprising that people with CF 49 

experience persistent GI symptoms [3,4] with “how can we relieve gastrointestinal symptoms in people with 50 

CF?” a top priority question for research [5]. 51 

 52 

Microbial dysbiosis at the site of the GI tract in CF patients has been described, with changes evident from 53 

birth through to adulthood [6–8]. Moreover, the extent of this divergence from healthy microbiota, initially due 54 

to loss of cystic fibrosis transmembrane conductance regulator (CFTR) function [9], is further compounded by 55 

routine treatment with broad spectrum antibiotics [10]. The reshaping of the gut microbiota may have functional 56 

consequences that could further impact on patients. These include the reduction of taxa associated with the 57 

production of short-chain fatty acids (SCFAs) which play key roles in modulating local inflammatory responses 58 

and promoting gut epithelial barrier integrity [11–13]. Furthermore, studies of microbiota dysbiosis in CF have 59 

demonstrated its relationship with intestinal inflammation [14], intestinal lesions [15], and increased gene 60 

expression relating to intestinal cancers [16]. Whilst many of these clinical parameters have ties to gut 61 

microbiota changes, they remain understudied exclusively past childhood despite advances in less invasive 62 

approaches to investigate CF gut physiology and function [17]. Our group has recently published on the use 63 

of magnetic resonance imaging (MRI) to assess gut transit time, along with other parameters, in adolescents 64 

and adults [18]. 65 

 66 

In this pilot study, we linked those MRI physiology metrics and clinical metadata directly to high-throughput 67 

amplicon sequencing data identifying constituent members of the gut microbiota, to explore the relationships 68 

between microbial dysbiosis, intestinal function and clinical state.  69 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.24.21262265doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.24.21262265
http://creativecommons.org/licenses/by/4.0/


4 
 

2. Materials and methods  70 

2.1. Study participants and design   71 

Twelve people with CF, homozygous for p.Phe508del along with 12 healthy controls, matched by age and 72 

gender, were recruited from Nottingham University Hospitals NHS Trust. Participants were asked to provide 73 

stool samples when attending for MRI scanning, with the study design and MRI protocols described previously 74 

[18]. A patient clinical features were also recorded upon visitation (Table 1), including a three-day food diary 75 

preceding sample collection (Table S1). Further descriptive statistics of the study population can be found in 76 

the Supplementary Materials, including MRI metrics (Table S2), and summary statistics on diet (Tables S3-77 

S6). Faecal samples were only obtained from ten individuals in each group. Written informed consent, or 78 

parental consent and assent for paediatric participants, was obtained from all participants. Study approval was 79 

obtained from the West Midlands Coventry and Warwickshire Research Ethics Committee (18/WM/0242). All 80 

stool samples obtained were immediately stored at -80°C prior to DNA extraction to reduce changes before 81 

downstream community analysis [19]. 82 

 83 

2.2. Targeted amplicon sequencing 84 

DNA from dead or damaged cells, as well as extracellular DNA was excluded from analysis via cross-linking 85 

with propidium monoazide (PMA) prior to DNA extraction, as previously described [20]. Next, cellular pellets 86 

resuspended in PBS were loaded into the ZYMO Quick-DNA Fecal/Soil Microbe Miniprep Kit (Cambridge 87 

Bioscience, Cambridge, UK) as per manufacturer’s instructions, with the following amendments: ZR 88 

BashingBead Lysis Tubes were replaced with standard 1.5 mL Eppendorf tubes loaded with ZYMO Beads for 89 

mechanical homogenisation with the use of a Retsch Mixer Mill MM 400 (Retsch, Haan, Germany). Samples 90 

were homogenised for 2 minutes at 17.5/s frequency. Following DNA extraction, approximately 20 ng of 91 

template DNA was then amplified using Q5 high-fidelity DNA polymerase (New England Biolabs, Hitchin, UK) 92 

using a paired-end sequencing approach targeting the bacterial 16S rRNA gene region (V4-V5). Primers and 93 

PCR conditions can be found in the Supplementary Materials. Pooled barcoded amplicon libraries were 94 

sequenced on the Illumina MiSeq platform (V3 Chemistry). 95 

 96 

2.3. Sequence processing and analysis 97 

Sequence processing and data analysis were initially carried out in R (Version 4.0.1), utilising the package 98 

DADA2 [21]. The full protocol is detailed in the Supplementary Materials. Raw sequence data reported in this 99 
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study has been deposited in the European Nucleotide Archive under the study accession number 100 

PRJEB44071. 101 

 102 

2.4. Faecal Calprotectin  103 

Stool was extracted for downstream assays using the ScheBo® Master Quick-Prep (ScheBo Biotech, Giessen, 104 

Germany), according to the manufacturer instructions. Faecal calprotectin was analysed using the Bühlmann 105 

fCAL ELISA (Bühlmann Laboratories Aktiengesellschaft, Schonenbuch, Switzerland), according to the 106 

manufacturer’s protocol. 107 

 108 

2.5. Statistical Analysis 109 

Regression analysis, including calculated coefficients of determination (r2), degrees of freedom (df), F-statistic 110 

and significance values (P) were calculated using XLSTAT v2021.1.1 (Addinsoft, Paris, France). Fisher’s alpha 111 

index of diversity and the Bray-Curtis index of similarity were calculated using PAST v3.21 [22]. Significant 112 

differences in microbiota diversity were determined using Kruskal-Wallis performed using XLSTAT. Analysis 113 

of similarities (ANOSIM) with Bonferroni correction was used to test for significance in microbiota composition 114 

and was performed in PAST. Similarity of percentages (SIMPER) analysis, to determine which taxa contributed 115 

most to compositional differences between groups, was performed in PAST.  116 

 117 

Redundancy analysis (RDA), was performed in CANOCO v5 [23]. Following the determination of clinical 118 

variables significantly explanatory for microbiome composition, RDA biplots with these variables were plotted 119 

in PAST v3.21. Statistical significance for all tests was deemed at the p ≤ 0.05 level. Supplementary 120 

information, including metadata, are available at figshare.com under 121 

https://doi.org/10.6084/m9.figshare.15073797.v1 and https://doi.org/10.6084/m9.figshare.15073899.v1  122 
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Table 1 Clincial characteristics of study participants. 123 

        Antibiotic Usage 

Study 
I.D 

Sex Age (Years) Group 
Pancreatic 

Status 
Calprotectin 

(µg/g) 
FEV1% BMI P A M β S 

365 M 12-16 CF PI 4.22 87 16.18 - - - + - 
431 M 12-16 HC PS 2.44 - 17.95 - - - - - 
128 M 12-16 CF PI 27.59 97 17.72 + - - - - 
296* M 12-16 HC PS - - 23.44 - - - - - 
643 M 12-16 CF PI 9.77 90 21.83 - - + - - 
159 M 12-16 HC PS 2.72 - 23.49 - - - - - 
297 M 12-16 CF PI 27.61 126 20.83 - - - - - 
947* M 12-16 HC PS - - 20.94 - - - - - 
617 F 12-16 CF PI 21.15 72 18.42 - - + + + 
964 F 12-16 HC PS 12.71 - 19.15 - - - - - 
167 M 17-21 CF PI 7.37 99 20.63 - - - - - 
673 M 17-21 HC PS 0.94 - 20.34 - - - - - 
279 F 17-21 CF PI 27.32 66 20.87 - - + - - 
205 F 17-21 HC PS 3.84 - 31.91 - - - - - 
596 F 17-21 CF PI 14.05 61 21.91 - - + - - 
152 F 17-21 HC PS 4.22 - 21.26 - - - - - 
610* M 23-27 CF PI - 66 18.64 - + + - - 
548 M 23-27 HC PS 3.56 - 24.49 - - - - - 
619* F 23-27 CF PI - 60 19.27 - - - - - 
501 F 23-27 HC PS 7.19 - 28.66 - - - - - 
259 M 28-32 CF PI 28.30 61 20.21 - - + + - 
986 M 28-32 HC PS 4.96 - 22.64 - - - - - 
681 F 33-37 CF PI 11.79 88 21.71 + - + - - 
749 F 33-37 HC PS 3.00 - 19.57 - - - - - 

Subjects marked with an asterisk* indicate those who failed to produce a stool sample for subsequent metagenomic and metabolomic analysis and thus were excluded from downstream analyses. All 124 
participants with CF had the gene mutation p.Phe508del/p.Phe508del, with pancreatic insufficiency but no CF-related diabetes. For antibiotic usage, ‘+’ indicates routine administration of the given antibiotic 125 
class prior to sampling. Abbreviations: FEV1 – Percent predicted forced expiratory volume in 1 second, BMI – Body mass index, P – Polymyxin, A – Aminoglycoside, M – Macrolide, β – β-lactam, S – 126 
Sulfonamide. Asterisks denote participants who did not provide any stool samples upon visitation, and thus were excluded from downstream microbiota analysis.127 
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3. Results 128 

For both healthy control and CF groups, bacterial taxa were partitioned into core or satellite based on their 129 

prevalence and relative abundance as depicted in (Fig. 1). Within the healthy control group, 30 taxa were core 130 

constituting 60.5 % of the total abundance, with the remainder accounted for by 386 satellite taxa. In the CF 131 

group, 22 core taxa represented 34.7 % of the abundance, with 323 satellite taxa constituting the remainder. 132 

Core taxa are listed in Table S7. The whole, core, and satellite microbiota demonstrated similar patterns in 133 

diversity, whereby there was significantly reduced diversity in the CF group (Fig. 2A, Table S8).  134 

                 135 
Figure 1 Distribution and abundance of bacterial taxa across different sample groups. (A) Healthy control. (B) 136 
Cystic fibrosis. Given is the percentage number of patient stool samples each bacterial taxon was observed to 137 
be distributed across, plotted against the mean percentage abundance across those samples. Core taxa are 138 
defined as those that fall within the upper quartile of distribution (orange circles), and satellite taxa (grey circles) 139 
defined as those that do not, separated by the red vertical line at 75% distribution. Distribution-abundance 140 
relationship regression statistics: (a) r2 = 0.50, F1,414 = 407.3, P < 0.0001; (b) r2 = 0.29, F1,343 = 137.3, P < 141 
0.0001. Core taxa are listed in Table S7. 142 
 143 

Within-group core microbiota similarity was higher within the healthy control group, with a mean similarity (± 144 

SD) of 0.60 ± 0.08 compared to 0.40 ± 0.11 for the CF group (Fig. 2B). As expected, satellite taxa similarity 145 

within groups was much lower than for the core but was also significantly reduced in CF compared to controls, 146 

at 0.35 ± 0.08 and 0.21 ± 0.09 for the healthy control and CF group respectively. ANOSIM testing determined 147 

the whole microbiota, core, and satellite taxa of the CF group were significantly different in composition 148 

compared to healthy controls (Fig. 2B, Table S9). SIMPER analysis was implemented to reveal which taxa 149 
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were responsible for driving this dissimilarity (Table 2). Of the taxa contributing to > 50% of the differences 150 

between healthy control and CF groups, those within the genus Bacteroides were represented most. 151 

Escherichia coli contributed most towards the differences between groups, despite satellite status, followed by 152 

Bacteroides sp. (OTU 3), Clostridium sp. (OTU 5), Faecalibacterium prausnitzii, and Bacteroides fragilis. 153 

 154 

Figure 2 Microbiome diversity and similarity compared across healthy controls and cystic fibrosis samples. 155 
Whole microbiota (black plots) and partitioned data into core (orange plots) and satellite taxa (grey plots) are 156 
given. (A) Differences in Fisher’s alpha index of diversity between healthy controls and cystic fibrosis samples. 157 
Black circles indicate individual patient data. Error bars represent 1.5 times inter-quartile range (IQR). Asterisks 158 
between groups denote a significant difference in diversity following use of Kruskal-Wallis tests (P < 0.001). 159 
Summary statistics are provided in Table S8. (B) Microbiome variation measured within and between sampling 160 
groups, utilising the Bray-Curtis index of similarity. Error bars represent standard deviation of the mean. 161 
Asterisks indicate significant differences between sampling groups following the use of one-way ANOSIM 162 
testing (P < 0.001). Summary statistics are provided in Table S9.   163 
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Table 2 Similarity of percentage (SIMPER) analysis of microbiota dissimilarity (Bray-Curtis) between Healthy 164 
Control (HC) and Cystic Fibrosis (CF) stool samples. 165 

 
 

  %Relative abundance           

Taxa Mean HC Mean CF Av. Dissimilarity  % Contribution Cumulative %  

Escherichia coli 1.84 9.54 4.72 6.39 6.39  

Bacteroides 3 3.84 4.69 3.36 4.55 10.94  

Clostridium 5 0.77 6.44 3.09 4.18 15.13  

Faecalibacterium prausnitzii 8.56 2.95 2.99 4.05 19.18  

Bacteroides fragilis 1.02 5.29 2.75 3.73 22.90  

Bacteroides dorei 3.32 4.31 2.52 3.42 26.32  

Eubacterium rectale 5.03 1.35 2.18 2.95 29.27  

Romboutsia timonensis 1.24 3.95 2.15 2.91 32.18  

Bacteroides uniformis 2.72 4.09 1.62 2.20 34.38  

Dialister invisus 1.00 3.45 1.61 2.19 36.57  

Bacteroides vulgatus 2.37 2.14 1.56 2.11 38.68  

Ruminococcus bromii 2.69 0.42 1.24 1.68 40.36  

Alistipes putredinis 2.08 0.06 1.02 1.38 41.74  

Bacteroides coprocola 1.56 0.92 1.01 1.37 43.11  

Fusicatenibacter saccharivorans 2.62 0.8 1.00 1.36 44.47  

Streptococcus 18 0.26 1.95 0.88 1.19 45.66  

Blautia luti 2.93 2.31 0.86 1.16 46.82  

Oscillibacter ruminantium 1.90 0.27 0.84 1.14 47.96  

Clostridium perfringens 0.00 1.58 0.79 1.07 49.03  

Parabacteroides distasonis 1.38 1.85 0.77 1.05 50.08  

Taxa identified as core are highlighted in orange, whereas satellite taxa are highlighted in grey. Mean relative abundance (%) is also 166 
provided for each group. Percentage contribution is the mean contribution divided by the mean dissimilarity across samples (73.79%). 167 
Cumulative percent does not equal 100% as the list is not exhaustive. Given the sequencing length of 16S gene regions, taxon 168 
identification should be considered putative. 169 

 170 

Redundancy analysis (RDA) was used to relate variability in microbiota composition to associated MRI metrics 171 

and clinical factors (Table 3). Pulmonary antibiotics and CF disease significantly explained the most variance 172 

across the whole and satellite microbiota. Measurements of intestinal transit and function contributed to the 173 

whole microbiota variance, albeit to a lesser extent, with variation in OCTT and SWBC also contributing to 174 

satellite taxa variance alongside faecal calprotectin levels. In the core taxa analysis, the presence of CF 175 

disease was the dominant factor in significantly explaining the compositional variability, followed by sex and 176 

body mass index (BMI). 177 

  178 
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Table 3 Redundancy analysis to explain percent variation in whole microbiota, core taxa and satellite taxa between all subjects from significant clinical variables 179 
measured. 180 

Var. Exp (%) represents the percentage of the microbiota variation explained by a given parameter within the redundancy analysis model. P (adj) is the adjusted significance value following false discovery 181 
rate correction. Antibiotics is the presence/absence of recurrent antibiotic regimes for a given patient. BMI – Body mass index, Colon Fasting Vol – Colon volume at baseline corrected for body surface area, 182 
OCTT – Oro-caecal transit time, Antibiotics, SBWC – Small bowel water content corrected for body surface area.  183 

    Microbiota   Core taxa   Satellite taxa 
    Var. Exp (%) pseudo-F P (adj)   Var. Exp (%) pseudo-F P (adj)   Var. Exp (%) pseudo-F P (adj) 

 Antibiotics 21.5 5.4 0.002           27.1 7.3 0.002 
 BMI           7.0 2.0 0.042         
 Calprotectin                 5.9 1.8 0.050 
 CF Disease 10.9 2.2 0.002   28.9 7.3 0.002   10.3 2.1 0.006 
 Colon Fasting Vol. 7.5 2.0 0.016                 
 OCTT   7.4 2.1 0.012           6.7 1.9 0.046 
 SBWC   5.6 1.7 0.048           7.2 2.4 0.048 
 Sex           7.9 2.1 0.010         

Total   52.9       43.8       57.2     
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A species redundancy analysis biplot (RDA) was constructed to investigate how significant clinical variables 184 

from the whole microbiota direct ordination approach explained the relative abundance of taxa from the 185 

SIMPER analysis (Fig. 3). Certain taxa grouped away from many of the significant clinical variables shown in 186 

a similar manner. This effect was most pronounced for F. prausnitzii, Eubacterium rectale and Ruminoccocus 187 

bromii. A combination of clinical factors, including CF disease, increased fasting colonic volume, increased 188 

SBWC and prolonged OCTT, explained the variance observed in relative E. coli abundance, whilst a more 189 

modest effect was observed towards Streptococcus sp. (OTU 18), Dialister invisus, Clostridium perfringens 190 

and Romboutsia timonensis. Species of Bacteroides, which was the most common genus within the top-191 

contributing SIMPER analysis, were explained by the clinical variables to high variability. 192 

           193 

Fig. 3 Redundancy analysis species biplots for whole microbiota. The 20 taxa contributing most to the 194 
dissimilarity (cumulatively > 50%) between healthy and cystic fibrosis groups from the SIMPER analysis (Table 195 
2) are shown independently of the total number of ASVs identified (345). Orange circles represent core taxa 196 
within the CF group, whilst grey circles denote satellite taxa. Biplot lines depict clinical variables that 197 
significantly account for the total variation in taxa relative abundance within the whole microbiota analysis at 198 
the p ≤ 0.05 level as seen in Table 3, with species plots indicating the strength of explanation provided by the 199 
given clinical variables. ‘OCTT’ – Oro-caecal transit time, ‘SBWC’ – Small bowel water content corrected for 200 
body surface area, Colon Fasting Volume corrected for body surface area, CF disease. The percentage of 201 
microbiome variation explained by each axis is given in parentheses.  202 
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4. Discussion 203 

In this pilot study, we investigated the relationships between clinical factors, MRI markers of GI function and 204 

the composition of faecal bacterial microbiota. We have shown that it is possible to partition the gut microbiota 205 

into core and satellite taxa to investigate potential community functions and relationships, with the notion that 206 

the core constituents contribute to the majority of functionality exhibited by the community [20,24]. As to be 207 

expected, the core taxa made up most of the abundance within the healthy control group. Whilst many taxa 208 

were also commonly represented in the CF group, the latter was dominated in abundance by the satellite taxa. 209 

Our findings of reduced diversity across the whole, core, and satellite microbiota are in agreement with 210 

previous findings described within the CF gut [7,8,10]. Along with reduced within group similarity in CF 211 

compared to healthy controls across all microbiota partitions, this suggests a perturbed community harbouring 212 

greater instability, less subsequent resilience, and inherent challenges to the colonisation and establishment 213 

of normal commensals. CF associated factors such as varied antibiotic usage will contribute to this reduced 214 

similarity, further augmented by the wide age range of pwCF within this study and variation across lifestyle 215 

factors. The combination of the aforementioned may elicit stochastic community disruption and increased inter-216 

individual variation as observed across other mammalian microbiomes [25]. 217 

  218 

At the surface, a reduction in the number of taxa labelled as core within the CF group hinted at perturbation 219 

and restructuring, further evidenced by the occurrence of taxa exclusively core to this group. This included 220 

species of Streptococcus, Pseudomonas, Veillonella, and Enterococcus, all of which were significantly more 221 

abundant in the CF group (Table S7), and of which are implicated in both CF lung and gut microbiomes 222 

[8,9,24,26–28]. The concept of the “gut-lung axis” in CF arises from the direct translocation of the respiratory 223 

microbiota from sputum swallowing to the gut [29], but also the emergence of species in the gut prior to the 224 

respiratory environment [27]. This apparent bidirectionality is further supported by the administration of oral 225 

probiotics to decrease pulmonary exacerbations in CF [30]. Aside from sputum swallowing, the increase in 226 

Streptococcus and Veillonella here could reflect an increased availability of simple carbohydrates from the 227 

observed dysmotility of the gut [18]. Streptococci are well equipped with numerous genes for rapid 228 

carbohydrate degradation in an environment usually fluctuating in substrate availability, with fermentation-229 

derived lactic acid supporting the expansion of Veillonella species in the small intestine [31].  230 

E. coli contributed most to the dissimilarity between healthy and CF groups despite maintaining satellite status 231 

throughout both the healthy and CF groups, seemingly resultant of the wide age range of our study participants, 232 

of which the higher relative abundances were observed in the younger adolescent patients (Table 2). In 233 
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childhood studies, a significantly higher relative abundance of Proteobacteria is often reported in relation to 234 

dysbiosis, with E. coli abundance associating with poor growth outcomes and intestinal inflammation [32–34]. 235 

Other notable taxa contributing to the dissimilarity observed between groups encompassed a variety of key 236 

species associated with SCFA production in the colon. This included F. prausnitizii and E. rectale, both of 237 

which were significantly decreased in abundance within the CF group, but also R. bromii and B. luti. These 238 

taxa have all been previously reported to decrease in the CF gut [8,26,35] alongside other inflammatory 239 

conditions [36]. There were also notable contributions to the dissimilarity between groups by Clostridium sp. 240 

(OTU 5) (significant difference in relative abundance) and D. invisus (not significant). Clostridium OTU 5 241 

aligned exclusively with cluster I members at the 97% threshold, of whom demonstrate the capacity to generate 242 

lactate, acetate, propionate, and butyrate via carbohydrate fermentation [37], whilst D. invisus is an 243 

intermediary fermenter capable of both acetate and propionate production. This may lend support to the theory 244 

that alternate species can retain some functional redundancy in the presence of perturbation to the local 245 

community in the CF gut [38]. 246 

 247 

Variance across the whole microbiota and satellite taxa was significantly explained by the use of antibiotics 248 

(Table 3), of which most pwCF are administered on a routine basis to supress lung infection [39]. The 249 

occurrence of both OCTT and SBWC accounting for significant explanation in both the whole microbiota and 250 

satellite, but not core taxa analysis, underpins the strong impact of gut physiology and transit on the microbiota 251 

in CF. Faecal calprotectin also explained the variance across the satellite taxa, and has been associated with 252 

increased abundances of Escherichia, Streptococcus, Staphylococcus and Veillonella, of which contained 253 

satellite species significantly increased in our CF group [26,40]. Acidaminococcus sp. have also associated 254 

with increased faecal calprotectin levels [28], with Acidaminococcus intestinii another constituent of the CF 255 

satellite microbiota that was not present in healthy controls (data not shown). The core taxa was only largely 256 

explained by the presence of CF disease itself, perhaps relating to the direct disruption of CFTR function which 257 

alone can influence changes in the microbiome [40]. 258 

 259 

Perhaps unsurprisingly, the species ordination biplots of the taxa from SIMPER analysis demonstrated 260 

clustering of the key SCFA producers mentioned previously away from the significant disease-associated 261 

clinical factors, with antibiotic usage and transit metrics previously shown to reduce the abundance of such 262 

taxa [14,41]. Similarly affected were taxa from genera that are associated with better outcomes in other 263 
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similarly pro-inflammatory intestinal environments, such as Crohn’s disease or ulcerative colitis , including 264 

Oscillibacter and Fusicanterbacter [42,43].  265 

 266 

C. perfringens has been associated with disease exacerbation in ulcerative colitis [36], SIBO in the CF mouse 267 

small intestine [44] and increased deconjugation of bile salts leading to further fat malabsorption by the host 268 

[45]. Here it was completely absent from our healthy control group, whilst in the CF group was found to 269 

associate with a variety of CF-induced clinical factors as well as OCTT. Also strongly associating with OCTT 270 

and impacted substantially more, was E. coli. Increased bacterial load relates to slower transit within the CF 271 

mouse small intestine [45]. Concurrently with the observed increase in SWBC reported prior [18], this in theory 272 

allows for the expansion of such facultative anaerobes in the small intestine that could potentially affect 273 

downstream community dynamics and functional profiles in the colon, given that PMA treatment was utilised 274 

to select for viable living taxa from faecal sampling. 275 

 276 

Although dietary profiles were similar between groups (Tables S3-6) and did not contribute to significant 277 

variation in the microbiota, increased fat intake to meet energy requirements is a staple of the CF diet [46]. 278 

The infant gut metagenome demonstrates enrichment of fatty acid degradation genes [32] whilst CF-derived 279 

E. coli strains exhibit improved utilisation of exogenous glycerol as a growth source [47]. Finally, the genus 280 

Bacteroides, which has been reported to both increase and decrease within CF disease across different age 281 

groups [8,9,14], displayed high variability within the species ordination biplot (Fig. 3), perhaps resultant of the 282 

varying antimicrobial susceptibility within the genus [48].  283 

 284 

We acknowledge the small sample size of this pilot study limits the power of specific analyses, with the absence 285 

of within-group direct ordination approaches which would have allowed for investigation of CF group antibiotic 286 

usage and extra clinical factors such as lung function. However, the principle strength of this study is the 287 

valuable insight into the relationships between microbiota composition and intestinal physiology and function 288 

in CF. Future studies should encompass larger cohorts in a longitudinal fashion with the combination of both 289 

lung and faecal microbiota data to elucidate such relationships better, including the impact of pulmonary 290 

antibiotic usage on the gut microbiota, and the aptly termed gut-lung axis. Evaluation of associations between 291 

the microbiota, physiology and the immune response would also improve our understanding of the 292 

mechanisms contributing to GI health in CF.  Given their possible beneficial effect on intestinal inflammation 293 

[49], the impact of CFTR modulator therapy will provide further insights. 294 
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5. Conclusion  295 

This cross-sectional pilot study has identified relationships between markers of clinical status, gastrointestinal 296 

function and bacterial dysbiosis in the CF population. By partitioning the community into core and satellite taxa, 297 

we were able to reveal the relative contributions of CF-associated lifestyle factors and elements of intestinal 298 

function to these subcommunity compositions, and how specific taxa were affected by these clinical factors. 299 

Further, as the first study to combine high-throughput gene amplicon sequencing with non-invasive MRI to 300 

assess underlying gut pathologies, we demonstrate the potential for future collaborations between 301 

gastroenterology and microbiology with larger cohort recruitment to investigate these relationships between 302 

gut function and the microbiome further. 303 

 304 
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