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We study the ground-state entanglement entropy of a finite subsystem of size L of an infinite
system of noninteracting fermions scattered by a potential of finite range a. We derive a gen-
eral relation between the scattering matrix and the overlap matrix and use it to prove that for a
one-dimensional symmetric potential the von Neumann entropy, the Rényi entropies, and the full
counting statistics are robust against potential scattering, provided that L/a � 1. The results of
numerical calculations support the validity of this conclusion for a generic potential.
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I. INTRODUCTION

The ground state of free fermions is not robust against
a perturbation by an external potential. As shown in the
seminal Letter by Anderson [1], the overlap between the
ground states of a system of noninteracting fermions in
a box of size L in the presence of a finite range potential
|ΨV 〉 and without a potential |Ψ0〉 vanishes in the limit
kFL→∞,

〈ΨV |Ψ0〉 ∼ (kFL)−η, (1)

where kF is the Fermi wave vector and η can be expressed
in terms of the scattering phase shifts created by the
potential. This result implies that the new ground state
is orthogonal to the initial one, but it does not provide
any information on how the internal properties of the
ground states, such as quantum correlations, are affected
by an external potential.

We address here this question investigating the bipar-
tite entanglement of the ground states. Entanglement
has recently come to be viewed as a unique feature of
quantum mechanics which reveals connections between
concepts of quantum information, quantum field theory,
and many-body physics. In the context of condensed
matter physics, entanglement entropies have been stud-
ied intensively as a measure of quantum correlations in
many-body systems [2]. In particular, a lot of works have
been devoted to investigation of the ground-state entan-
glement entropy between a finite subsystem of size L and
the rest of an infinite system [3, 4]. Such bipartite entan-
glement entropies can be calculated from the spectrum of
the reduced density matrix of a subsystem, which in turn
can be constructed from the ground state wave function.

For noninteracting fermions the ground state wave
function is given by the Slater determinant made up of
the single particle wave functions. Thus the knowledge
of the single particle states is in principle sufficient for
constructing of the reduced density matrix and, hence,
for computing of the entanglement entropy. More specif-
ically, one can first introduce the overlap matrix Anm
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built up from the single particle wave functions ψn(x)
corresponding to the lowest N energy levels of an infinite
system [5, 6]

Anm =
∫ L/2

−L/2
dx ψ?n(x)ψm(x), n,m = 1, . . . , N. (2)

The finite range of integration here is due to the projec-
tion of the wave functions onto a finite subsystem, for
which the entanglement entropy is calculated. Then the
entanglement entropy S of the ground state, in which
the lowest N energy levels are filled, can be expressed in
terms of the eigenvalues λi of Anm

S = −
N∑
i=1

(λi lnλi + (1− λi) ln(1− λi)). (3)

In practice, the problem of analytical calculation of the
entanglement entropy is nontrivial even in the simplest
case of one-dimensional free fermions in the absence of
any scattering potential. In this case, the asymptotic
scaling behavior of the von Neumann entanglement en-
tropy in the limit kFL→∞ is given by [5–9]

S =
1
3

ln(2kFL) + Υ + o(1), (4)

where the constant Υ is defined by Eq.(14). The appear-
ance of the logarithmic dependence in this expression is
due to the sharpness of the Fermi surface. Mathemati-
cally, the derivation of Eq.(4) is based either on asymp-
totics of the determinants of the Toeplitz matrix Anm for
one-dimensional fermions [5, 8, 11] or on the Widom con-
jecture for its higher dimensional generalizations [9, 12].
The translational invariance of the free fermion system is
essential for application of both methods.

In this work we study the entanglement entropies of
noninteracting fermions in the presence of a finite range
scattering potential. The presence of a potential breaks
the translational invariance of the system and therefore
makes it impossible to apply straightforwardly the tech-
niques used in the derivation of Eq.(4).

Moreover the single particle wave functions are not
known explicitly for an arbitrary potential and there-
fore the overlap matrix Anm cannot be constructed di-
rectly. In order to overcome this problem, we derive first
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a general relation between Anm and the scattering states,
showing that the scattering matrix contains all informa-
tion about the entanglement of noninteracting fermions.

We focus then on the case of a one-dimensional sym-
metric potential of finite range a, for which the overlap
matrix takes the form of a generalized sine kernel de-
fined in terms of the scattering phase shifts. Using the
asymptotic result for the determinant of such a kernel,
we are able to prove that the entanglement entropy in
the limit kFL→∞ has the same asymptotic form as for
free fermions Eq.(4). This conclusion is remarkable tak-
ing into account the fact that the nonzero phase shifts are
responsible for orthogonality of the modified ground state
[1], they also enter explicitly into the expression for the
determinant of the overlap matrix, but at the same time
they do not alter its spectral density. Furthermore, we
show that not only the von Neumann entropy, but also
the Rényi entropies and the full counting statistics are
not affected by a finite range scattering potential. The
robustness of the entanglement is an important result, in
particular, in view of the potential use of entanglement
as a fundamental resource for quantum information.

The outline of this Letter is as follows. In Sec. II,
a general relation between the overlap matrix and the
scattering matrix is established for an arbitrary scatter-
ing potential. The relation is then used in Sec. III in the
case of a one-dimensional symmetric potential, in order
to calculate analytically the spectral density of the over-
lap matrix, the entanglement, and the Rényi entropies,
and the full counting statistics. In Sec. IV, the entangle-
ment entropy is computed numerically for a finite range
disordered potential and its scaling is compared with the
results for free fermions. Finally, our main conclusions
are summarized in Sec. V.

II. THE OVERLAP MATRIX AND THE
SCATTERING STATES

We consider two solutions ψk(r) and ψk′(r) of the d-
dimensional Schrödinger equation corresponding to two
different energies ~2k2/2m and ~2k′2/2m(

−∆ +
2m
~2

V (r)
)
ψk(r) = k2ψk(r),(

−∆ +
2m
~2

V (r)
)
ψk′(r) = k′2ψk′(r), (5)

where ∆ is the d-dimensional Laplace operator and V (r)
is an arbitrary potential of finite range a. In order to
calculate the corresponding matrix element Akk′ of the
overlap matrix, we multiply the complex conjugate of
the first equation by ψk′(r) and the second equation by
ψ?k(r). Subtracting one resulting equation from the other
and integrating we obtain∫
BL

dr (ψk′∆ψ?k − ψ?k∆ψk′) = (k′2− k2)
∫
BL

dr ψ?kψk′ . (6)

The domain of integration BL corresponds to a finite
subsystem, which we are interested in, and can be cho-
sen for example as a ball of radius L/2. Applying
the Green’s second identity to the left-hand side, we
derive the following expression for the overlap matrix
Akk′ =

∫
BL

dr ψ?kψk′ :

Akk′ =
1

k′2 − k2

∫
SL

dΩ
(
ψk′

∂ψ?k
∂r
− ψ?k

∂ψk′

∂r

)
, (7)

where SL is a sphere of radius L/2 and the derivatives
on the right-hand side are in the direction of the out-
ward normal to the sphere. This formula shows that the
knowledge of the wave functions and their derivatives at
the boundary of a subsystem is sufficient for the con-
structing of the overlap matrix. In particular, for L > a
the right-hand side of Eq.(7) can be expressed in terms
of the scattering states and thus it provides a relation
between the overlap matrix and the S matrix.

To be more specific we focus now on a one-dimensional
scattering potential centered at the origin, which does
not support any bound states. Each energy level E =
~2k2/2m is then twofold degenerate and there is a free-
dom of choosing two orthonormal states ψ1

k and ψ2
k for

construction of the overlap matrix. The most convenient
way to do it is to use the eigenvectors fαk = (aαk , b

α
k )T

and the eigenvalues e2iδ
α
k of the S matrix:

ψαk (x) =
{
bαk cos(kx− δαk ), x < −a/2
aαk cos(kx+ δαk ), x > a/2

α = 1, 2. (8)

The overlap matrix Aαβkk′ acquires a 2× 2 block structure
and its matrix elements can be calculated using Eq.(7)

Aαβkk′ = (fαk , f
β
k′)
(
Mαβ−
kk′ +Mαβ+

kk′

)
, 0 ≤ k ≤ kF ,

Mαβ±
kk′ =

sin
(

(k ± k′)L/2 + δαk ± δ
β
k′

)
π(k ± k′)

. (9)

The matrix Mαβ−
kk′ has the form of a generalized sine ker-

nel [3] and it reduces to the standard sine kernel, if the
scattering phases δαk = 0. In that case Mαβ−

kk′ is a Toeplitz
matrix and Mαβ+

kk′ is its Hankel counterpart. Then the
standard techniques can be used to calculate the density
of the eigenvalues of A asymptotically as kFL→∞ and
the free fermion result (4) can be reproduced.

Equation (9) provides a general relation between the
overlap matrix and the scattering matrix for an arbitrary
scattering potential, allowing us to compute the entan-
glement entropy if the eigenvalues and the eigenvectors
of the S matrix are known explicitly. This relation can
be easily generalized to higher dimensions. If one is inter-
ested in the scaling of the entanglement entropy without
specifying the details of the S matrix, then one needs to
use asymptotic results for a kernel given by a sum of a
generalized sine kernel and its Hankel counterpart. We
are not aware of such results in a generic case, but the
results for a generalized sine kernel alone do exist in the
literature [3, 14, 15] and are employed in the next section.
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III. SYMMETRIC POTENTIAL

For a one-dimensional symmetric potential V (x) =
V (−x) the eigenfunctions of the Hamiltonian are also the
eigenfunctions of the parity operator (P̂ψ)(x) = ψ(−x)
and therefore they are odd and even functions of x. As
a result, the eigenvectors of the S matrix become k in-
dependent and are given by f1 = (1/

√
2, 1/
√

2)T and
f2 = (1/

√
2,−1/

√
2)T . The overlap matrix in this case

takes a block diagonal form with only two nonzero blocks
Aααkk′ = Mαα−

kk′ +Mαα+
kk′ , which correspond to even eigen-

states for α = 1 and odd eigenstates for α = 2. In the
absence of scattering, the corresponding phases δ1k = 0
and δ2k = π/2, as it follows from Eq.(8). It is more con-
venient to express them in terms of the scattering phase
shifts defined as δ+k = δ1k and δ−k = δ2k − π/2.

The entanglement entropy, introduced in Eq.(3), can
be calculated as

S =
∫ 1

0

dλ ρ(λ)s(λ), ρ(λ) =
∑
n

δ(λ− λn), (10)

where s(λ) = −λ lnλ− (1− λ) ln(1− λ) and ρ(λ) is the
spectral density of the overlap matrix. As shown in detail
in the Supplemental Material [16] the spectral density
can be written as

ρ(λ) =
1
2

(ρ+(λ) + ρ−(λ)), (11)

where ρ±(λ) is the spectral density of the integral oper-
ators M̂± with the kernels

M±(k, k′) =
sin
(
(k − k′)L/2 + δ±k − δ

±
k′

)
π(k − k′)

. (12)

As shown further in [16] the spectral density of M̂±

can be calculated using the determinants det
[
1 + γM̂±

]
with some parameter γ. The expression for ρ(λ) in the
limit kFL → ∞ and kFa = const is then given by
Eq.(S12) in [16]:

ρ(λ) =
ln(2kFL)− Re ψ

(
1
2 + i

2π ln 1−λ
λ

)
π2λ(1− λ)

+ o(1), (13)

where ψ(z) denotes the digamma function. Although
the scattering phase shifts enter into the expression for
det
[
1 + γM̂±

]
, they do not affect ρ(λ) and therefore this

formula coincides exactly with the corresponding result
for free fermions in the absence of scattering [5, 6].

Substituting ρ(λ) into Eq.(10), we reproduce the result
for the entanglement entropy of free fermions:

S =
1
3

ln(2kFL) + Υ + o(1),

Υ =
2
π2

∫ 1

0

dλ
lnλ

1− λ
g(λ) ≈ 0.495018, (14)

where g(λ) = Re ψ
(

1
2 + i

2π ln
(

1−λ
λ

))
. This shows that

Eq.(4) is universal and not affected by the Anderson or-
thogonality catastrophe.

The knowledge of the spectral density allows us also to
calculate the Rényi entropies:

Sα =
1

1− α

∫ 1

0

dλ ρ(λ) ln (λα + (1− λ)α)

=
1 + α

6α
ln(2kFL) + Υα + o(1),

Υα =
∫ 1

0

dλ
ln (λα + (1− λ)α) g(λ)
π2(1− α)λ(1− λ)

. (15)

Comparing these results with ones available in the liter-
ature for free fermions [5, 6, 8], we reveal again the same
degree of the universality of the Rényi entropies.

Furthermore, the full counting statistics of the num-
ber of particles in a subsystem can be calculated using
the expression for det

[
1 + γM̂±

]
. The cumulants κm of

the particle distribution function can be found from the
cumulants generating function [20, 21]:

κm = (−i)m ∂mF (µ)
∂µm

∣∣∣∣
µ=0

,

F (µ) = ln det
[
1 + (eiµ − 1)Â

]
. (16)

Using Eq.(S8) and Eq.(S9) in the Supplemental Material
[16], one arrives at the following result

F (µ) =
iµ

π
(kFL+ δ+kF + δ−kF )− µ2

2π2
ln(2kFL)

+ 2 ln
(
G
(

1 +
µ

2π

)
G
(

1− µ

2π

))
+ o(1),(17)

where G(z) denotes the Barnes G-function. The average
number of particles in the subsystem is then given by

κ1 =
kFL

π
+

1
π

(δ+kF + δ−kF ). (18)

The first term in this expression corresponds to the free
fermion case, while the second one describes the change of
the average number of particles due to scattering, which
is nothing else than the Friedel sum rule. Equation (17)
shows that all higher order cumulants κm, m > 1, are
not modified by scattering and thus they are the same as
in the free fermion case [20].

IV. FINITE RANGE DISORDERED
POTENTIAL

In order to check that the symmetry of a potential is
not essential for our conclusions, we compute numerically
the entanglement entropy of one-dimensional noninter-
acting fermions in the presence of a finite range disor-
dered potential. We consider fermions on a lattice:

−ψn+1 − ψn−1 + (2 + Vn)ψn = Eψn, n = 1, . . . ,M,
(19)
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FIG. 1: Numerical results for the lattice model (19) with
M = 3000, a = 10, Lmin = 50 and Lmax = 300. Different
symbols correspond to different values of the disorder strength
W , each time S is computed for a single disorder realization.
The dashed line is the analytical prediction (20).

where ψ0 = ψM+1 = 0 and Vn are independent random
variables uniformly distributed on [−W/2,W/2] for n ∈
[(M − a)/2 + 1, (M + a)/2] and Vn = 0, otherwise.

For a disorder-free infinite lattice the counterpart of
Eq.(4) reads [8]

S =
1
3

ln(2L| sin kF |) + Υ + o(1), (20)

where kF satisfies E = 2(1− cos kF ). This asymptotic is
applicable for a finite lattice provided that L�M .

Finding the eigenvectors of the Hamiltonian (19) nu-
merically, we compute S for different values of L and dif-
ferent disorder realizations. The results shown in Fig. 1
clearly demonstrate that the asymptotic behavior of the
entanglement entropy is not influenced by a finite range
disordered potential, even if the wave functions in the
scattering region are localized.

V. CONCLUSIONS

In this work we have investigated how a scattering po-
tential of finite range a influences the quantum correla-
tions in the ground state of a Fermi gas. The quantity of
primary interest is the entanglement entropy between a
finite subsystem of size L, which includes the scattering
region, and the rest of an infinite system. It can be calcu-
lated from the spectral density of the overlap matrix. A

general expression for the overlap matrix in terms of the
scattering states is derived first in arbitrary dimensions
(7) and then elaborated in the one-dimensional case (9).
Applied to a symmetric potential, centered at the origin,
it enables us to find analytically the asymptotic behavior
of the spectral density in the limit L/a→∞. Addition-
ally, we compute the entanglement entropy numerically
for a generic scattering potential on a lattice.

Our main conclusion is that the spectral density of the
overlap matrix and hence the von Neumann entropy, the
Rényi entropies and the full counting statistics are robust
against potential scattering in the bulk of a subsystem,
provided that L/a � 1. Similar universality in the full
counting statistics has been reported recently for a Fermi
gas confined by a trapping potential [22]. We note that
the scattering at the interface of a subsystem modifies
the scaling of the entanglement entropy [23–25]. It would
be interesting to use our approach to generalize results
obtained for that case.

Another interesting variation of the problem consid-
ered in this work would be an investigation of the
time evolution of the entanglement entropy after a local
quench induced by the scattering potential [26]. We ex-
pect that in this case the Anderson orthogonality catas-
trophe must have a strong impact on the time depen-
dence of the entanglement entropy similar to other man-
ifestations of the Anderson orthogonality catastrophe in
time dependent quenches of Fermi systems such as the
Fermi edge singularities.

Finally, we would like to comment on possible exper-
imental verification of our results. The experimental
measurement of the entanglement entropy in many-body
systems remains an open and very challenging problem.
However, there have been several proposals recently sug-
gesting how it can, in principle, be measured [27–29]. All
of them require preparing n copies of an original system
in order to measure the Rényi entropy Sn. One of the
most promising candidates for such experiments would
be a one-dimensional ultracold atomic gas coupled to a
two-level atom [28]. Remarkably, the same setup has
been proposed recently for an experimental investigation
of the Anderson orthogonality catastrophe [30, 31]. Thus,
if the experimental realizations of these ideas become fea-
sible, the robustness of the Rényi entropies can be tested.
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Supplemental Material: Entanglement entropy in Fermi gases and Anderson’s
orthogonality catastrophe

I. EVEN AND ODD EIGENFUNCTIONS AND
CORRESPONDING EIGENVALUES

We consider an integral operator Â with a kernel
A(k, k′) = A(k′, k) = A(−k,−k′) defined on the inter-
val [−kF , kF ]

(Âf)(k) =

kF∫
−kF

dk′A(k, k′)f(k′), k ∈ [−kF , kF ]. (S1)

The operator Â commutes with the parity operator
(P̂ f)(k) = f(−k) and hence its eigenfunctions are either
even or odd functions. We will prove that there is one-to-
one correspondence between even (odd) eigenfunctions of
Â and eigenfunctions of Â+ (Â−) defined on the interval
[0, kF ] as

(Â±f)(k) =

kF∫
0

dk′ (A(k, k′)±A(k,−k′)) f(k′), (S2)

and the corresponding eigenfunctions have the same
eigenvalues.

Let fn(k) be an eigenfunction of Â with an eigenvalue
λn:

kF∫
−kF

dk′A(k, k′)fn(k′) = λnfn(k). (S3)

Splitting the integral from −kF to kF into two integrals
from −kF to 0 and from 0 to kF , and changing the inte-
gration variable k′ by −k′ in the first of these integrals,
we obtain

λnfn(k) =

kF∫
0

dk′(A(k, k′)fn(k′) +A(k,−k′)fn(−k′)).

(S4)
Using that fn(−k′) = ±fn(k′) for an even (odd) eigen-
function we conclude that an even (odd) eigenfunction of
Â is an eigenfunction of Â+ (Â−) with the same eigen-
value λn.

To prove the converse statement, we take an eigenfunc-
tion fn(k) of Â+ (Â−)

kF∫
0

dk′ (A(k, k′)±A(k,−k′)) fn(k′) = λnfn(k). (S5)

The expression on left hand side can be used to define
fn(k) for any k ∈ [−kF , kF ]. The functions constructed

in this way are even (odd)

λnfn(−k) =

kF∫
0

dk′ (A(−k, k′)±A(−k,−k′)) fn(k′) =

kF∫
0

dk′ (A(k,−k′)±A(k, k′)) fn(k′) = ±λnfn(k). (S6)

Performing all the transformations that lead from
Eq.(S3) to Eq.(S4) in the reverse order, one can see that
fn(k) is an eigenstate of Â with the same eigenvalue λn.

Now we can apply this statement to the overlap matrix
in the case of a symmetric potential. Its eigenvalues λ±n
and the corresponding eigenfunctions f±n (k) are solutions
of the integral equation

kF∫
0

dk′(M±(k, k′)±M±(k,−k′))fn(k′) = λ±n f
±
n (k),

M±(k, k′) =
sin
(
(k − k′)L/2 + δ±k − δ

±
k′

)
π(k − k′)

, (S7)

where the property of the phase shifts δ±−k = −δ±k was
used [1]. The kernels M±(k, k′) satisfy the condition
M±(k, k′) = M±(k′, k) = M±(−k,−k′) and hence, as
it follows from the above statement, the solutions of
Eq.(S7) are in one-to-one correspondence with the eigen-
values and the even or the odd eigenfunctions of the inte-
gral operator M̂± with the kernel M±(k, k′) defined on
the interval [−kF , kF ].

The generalized sine kernels M±(k, k′) can be contin-
uously deformed to the standard sine kernel by replacing
the phase shifts δ±k → ηδ±k and changing the parameter η
from 1 to 0. It is known that the spectrum of the integral
operator corresponding to the standard sine kernel is dis-
crete and the densities of its even and odd eigenvalues are
the same [2]. Assuming that the eigenfunctions change
continuously under such deformation, we conclude that
the same statement must be correct for M̂± and therefore

ρ(λ) =
1
2

(ρ+(λ) + ρ−(λ)), (S8)

where ρ±(λ) is the spectral density of M̂±.

II. SPECTRAL DENSITY OF THE
GENERALIZED SINE KERNEL

In order to calculate the spectral density of the oper-
ators M̂±, it is convenient to scale the variable k = kF q
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and to consider the operator K̂ with the kernel

K(q, q′, δ) =
sin ((q − q′)x+ δkF q − δkF q′)

π(q − q′)
, (S9)

where q, q′ ∈ [−1, 1] and x = kFL/2. The spectrum of K̂
for δkF q = δ±kF q is the same as for M̂±.

The spectral density of K̂ can be calculated using the
corresponding Green’s function, which in turn can be ex-
tracted from a quotient of two determinants:

ρ(λ) = − 1
π

Im
∂

∂j
ln det

[
1− 1

λ− iε− j
K̂

]∣∣∣∣
j=0

, (S10)

where ε > 0 is an infinitesimal imaginary shift in λ and
we assume that 0 < λ < 1. An asymptotic behavior of
such determinants was calculated in Ref.[3] in the limit
x→∞, provided that δ is x independent. Therefore we
consider the limit kFL → ∞ assuming that kFa is held
constant.

Applying the main result of Ref.[3] to the kernel (S9),

we obtain

ln det
[
1 + γK̂

]
= −4iν(x+ δkF )− 2ν2 ln 4x

+2 ln (G(1 + ν)G(1− ν)) + o(1), (S11)

where γ = −1/(λ− iε− j), ν = (−1/2πi) ln(1 + γ) and
G(z) denotes the Barnes G-function. Then the spectral
density can be calculated from this expression following
Eq.(S10). One can notice that the only term, which de-
pends on the scattering phase shift, −4iνδkF , gives no
contribution to ρ(λ), as the imaginary part of its deriva-
tive vanishes in the limit ε → 0 [4]. As a result, the
expression for the density of states, that we derive,

ρ(λ) =
ln 4x− Re ψ

(
1
2 + i

2π ln 1−λ
λ

)
π2λ(1− λ)

+ o(1) (S12)

coincides with the corresponding result for free fermions
in the absence of scattering [5, 6]. The function ψ(z) in
the equation above denotes the digamma function.
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