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Abstract: We investigate a two-level Unruh-DeWitt detector coupled to a massless scalar

field or its proper time derivative in (1 + 1)-dimensional Minkowski spacetime, in a quan-

tum state whose correlation structure across the Rindler horizon mimics the stationary

aspects of a firewall that Almheiri et al. have argued to ensue in an evaporating black hole

spacetime. Within first-order perturbation theory, we show that the detector’s response on

falling through the horizon is sudden but finite. The difference from the Minkowski vacuum

response is proportional to ω−2 ln(|ω|) for the non-derivative detector and to ln(|ω|) for the

derivative-coupling detector, both in the limit of a large energy gap ω and in the limit of

adiabatic switching. Adding to the quantum state high Rindler temperature excitations

behind the horizon increases the detector’s response proportionally to the temperature;

this situation has been suggested to model the energetic curtain proposal of Braunstein

et al. We speculate that the (1 + 1)-dimensional derivative-coupling detector may be a

good model for a non-derivative detector that crosses a firewall in 3 + 1 dimensions.
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1 Introduction

If black hole evaporation is assumed to preserve unitarity, a range of arguments based

on quantum correlations [1–3] suggest that physics at the slowly-shrinking horizon may

differ significantly from the innocuous picture that underlies Hawking’s original derivation

of black hole radiation within curved spacetime quantum field theory [4]. In particular,

Almheiri et al. [3] have argued that the horizon will be replaced by a region of high curva-

ture, a “firewall”, which will destroy any observer who attempts to fall into the black hole.

Reviews with extensive references can be found in [5–7].

A key element in the firewall argument as formulated in [3] is that the conventional

quantum field theory picture of black hole evaporation involves strong quantum correlations

between the black hole interior and exterior, and the assumption of unitary evolution of
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the full system turns out to preclude such correlations. In this paper we examine the

consequences of severing closely similar correlations across a Killing horizon in a system in

which the requisite quantum state can be readily written down: a conformal scalar field in

1 + 1 spacetime dimensions. For concreteness, we take the spacetime to be Minkowski, so

that the sense of thermality is that of the Unruh effect of uniform acceleration [8, 9], and

we induce a firewall by breaking the correlations across the Rindler horizon. The Killing

horizon in (1 + 1)-dimensional black hole spacetimes with a Kruskal-like global structure

could be treated in the same manner, with similar conclusions.

We shall not attempt to examine how the spacetime geometry might react to the

firewall singularity of the scalar field on the Rindler horizon, but we shall examine how

the singularity of the scalar field affects a particle detector that falls through the horizon.

We consider a two-level Unruh-DeWitt (UDW) detector that couples linearly to the scalar

field [8, 10–12], and its modification that couples linearly to the proper time derivative of the

field [13–18]. The reasons to consider the derivative-coupling detector are twofold. First,

for quantum states that are regular in the Hadamard sense [19], the derivative-coupling

detector is insensitive to the infrared ambiguity in the Wightman function of the (1 + 1)-

dimensional conformal field. Second, the short-distance behaviour of the (1+1)-dimensional

derivative-coupling UDW detector is similar to that of the (3+1)-dimensional UDW detec-

tor with a non-derivative coupling [18, 20–22]. We may hence expect a derivative-coupling

detector in 1 + 1 dimensions to be a good model for a non-derivative detector that crosses

a (3 + 1)-dimensional firewall. We recall that the non-derivative UDW detector in (3 + 1)

dimensions models the p ·A term by which an atomic electron couples to the quantised

electromagnetic field when there is no angular momentum exchange [23, 24].

We shall show that crossing the Rindler firewall has a nonzero and sudden but finite

effect on the detector’s transition probability, within first-order perturbation theory. In

terms of the detector’s energy gap ω, the difference from the Minkowski vacuum transition

probability is proportional to ω−2 ln(|ω|) for the non-derivative detector and to ln(|ω|) for

the derivative-coupling detector both in the limit of a large energy gap and in the limit of

adiabatic switching.

We consider also a generalisation to a quantum state in which Rindler excitations

are added behind the Rindler horizon in a way that has been suggested [25] to model

the “energetic curtain” of [1] in a black hole spacetime. We show that in this state the

response across the horizon is again finite but can be made arbitrarily large by increasing

the temperature parameter that characterises the added excitations.

We begin by reviewing in sections 2 and 3 the two-level UDW detector and its de-

rivative-coupling generalisation, coupled to a massless scalar field in (1 + 1)-dimensional

Minkowski spacetime. The Rindler firewall quantum state is constructed in section 4, and

we discuss the sense in which it models the stationary aspects of the black hole firewall

of [3]. The response of an inertial detector that crosses the Rindler horizon in this state is

analysed in section 5, deferring technical steps to two appendices. Section 6 addresses the

generalisation to a state in which excitations have been added behind the Rindler horizon.

Section 7 presents a summary and concluding remarks, including a discussion of detectors

with multiple levels.
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We use metric signature (−+) in which a timelike vector has negative norm squared,

and we set c = ~ = 1. Spacetime points are denoted by Sans Serif letters (x) and complex

conjugation is denoted by an overline.

2 Two-level UDW detector

We consider a pointlike two-state UDW detector, moving in a relativistic spacetime on

a smooth timelike worldline x(τ) parametrised by the proper time τ . The detector’s or-

thonormal energy eigenstates are |0〉D and |ω〉D, with the respective eigenenergies 0 and ω,

where ω is a real-valued parameter. |0〉D is the ground state when ω > 0 and the excited

state when ω < 0. We refer to the detector as a two-level detector. The analysis will cover

also the special case ω = 0 in which the two states are degenerate in their energy. We start

with arbitrary spacetime dimension but will shortly specify to 1 + 1.

We couple the detector to a real scalar field φ via the interaction Hamiltonian

H
(p)
int = cχ(τ)µ(τ)

dp

dτp
φ
(
x(τ)

)
, (2.1)

where c is a coupling constant, µ is the detector’s monopole moment operator, the param-

eter p is a non-negative integer, and the switching function χ specifies how the interaction

is switched on an off. We assume χ to be take non-negative real values and to be smooth

with compact support. For p = 0 the detector couples to the value of the field at the

detector’s location, and for p > 0 the detector couples to the pth-order proper time deriva-

tive of the field at the detector’s location. For the reasons discussed in section 1 we shall

mainly be interested in the cases p = 0, which is the usual UDW detector [8, 10–12], and

p = 1 [13–18], but we shall keep the value of p general until it needs to be specified.

Taking the detector to be initially in the state |0〉D and the field to be in a (for the

moment pure) state |ψ〉, and working in first-order perturbation theory in c, the probability

for the detector to have made a transition to the state |ω〉D after the interaction has ceased

can be written for all p by a straightforward adaptation of the p = 0 analysis [8, 10–12].

The outcome is

P (p)(ω) = c2|D〈0|µ(0)|ω〉D|2F (p)(ω) , (2.2)

where the response function F (p) is given by

F (p)(ω) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′ e−iω(τ ′−τ ′′) χ(τ ′)χ(τ ′′) ∂pτ ′∂
p
τ ′′W(τ ′, τ ′′) , (2.3)

and the correlation function W is the pull-back of the Wightman function in the state |ψ〉
to the detector’s worldline,

W(τ ′, τ ′′) := 〈ψ|φ
(
x(τ ′)

)
φ
(
x(τ ′′)

)
|ψ〉 . (2.4)

The integrals in (2.3) are understood in the distributional sense, and they are well defined

whenever |ψ〉 is Hadamard [26–29], which we shall assume until this needs to be relaxed

in sections 5 and 6. For mixed states (2.4) is replaced by the pull-back of the mixed state
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Wightman function. From now on we drop the factor c2|D〈0|µ(0)|ω〉D|2 and refer to F (p)

as the transition probability, or as the response.

We now specialise to two spacetime dimensions. Using W(τ ′, τ ′′) =W(τ ′′, τ ′), we may

write F (0) as

F (0)(ω) = 2

∫ ∞
−∞

du

∫ ∞
0

dsχ(u)χ(u− s) Re
[
e−iωsW(u, u− s)

]
, (2.5)

where s = 0 does not require distributional treatment since in two dimensions the short dis-

tance singularity of the Wightman function is merely logarithmic [19] and hence integrable.

A corresponding expression for F (1) is [18]

F (1)(ω) = −ωΘ(−ω)

∫ ∞
−∞

du [χ(u)]2 +
1

π

∫ ∞
0

ds
cos(ωs)

s2

∫ ∞
−∞

duχ(u)[χ(u)− χ(u− s)]

+ 2

∫ ∞
−∞

du

∫ ∞
0

dsχ(u)χ(u− s) Re

[
e−iωs

(
A(u, u− s) +

1

2πs2

)]
, (2.6)

where Θ is the Heaviside step function and

A(τ ′, τ ′′) := ∂τ ′∂τ ′′W(τ ′, τ ′′) . (2.7)

The last term in (2.6) does not require a distributional treatment at s = 0 because of the

subtraction (2πs2)
−1

. The price for this subtraction is the emergence of the first two terms

in (2.6), neither of which depends on the quantum state of the field or on the detector’s

motion.

For F (p) with p > 1, expressions similar to (2.5) and (2.6) can be obtained by the

techniques of [22]. We shall consider only F (0) and F (1).

3 Inertial detector in 1 + 1 Minkowski

Let M denote two-dimensional Minkowski spacetime, with the metric ds2 = −dt2 + dx2

in standard global Minkowski coordinates (t, x). We may alternatively use the global null

coordinates u := t− x and v := t+ x, in which ds2 = −du dv.

We consider a massless scalar field. The Wightman function in the usual Minkowski

vacuum |0M 〉 is

〈0M |φ(x)φ(x′)|0M 〉 = −(4π)−1 ln[m0(ε+ i∆u)]− (4π)−1 ln[m0(ε+ i∆v)] , (3.1)

where ∆u = u − u′, ∆v = v − v′, m0 is a positive constant of dimension inverse length,

the logarithms have their principal branch, and the distributional sense is that of ε→ 0+.

Because the field is massless, the right-moving and left-moving parts decouple: the ∆u-

dependent term in (3.1) comes from the right-movers and the ∆v-dependent term comes

from the left-movers.

The constant m0 can be understood as an infrared frequency cutoff, and its presence

renders the Wightman function ambiguous by an additive real-valued constant. From (2.3)

it is seen that F (0) in |0M 〉 depends on m0 via the additive term

− ln(m0)

π

∫ ∞
0

ds cos(ωs)

∫ ∞
−∞

duχ(u)χ(u− s) , (3.2)
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and the response of the p = 0 detector is hence infrared ambiguous. The response of each

of the p > 0 detectors is however infrared unambiguous since the additive constant in the

Wightman function drops out on taking the derivatives in (2.3).

For an inertial trajectory, we haveW(τ ′, τ ′′) = −(2π)−1 ln
[
m0

(
ε+i(τ ′−τ ′′)

)]
, and (2.5)

and (2.6) give

inF (0)
|0M 〉(ω) = −

∫ ∞
0

ds

[
1

2
sin(ωs) + π−1 cos(ωs) ln(m0s)

] ∫ ∞
−∞

duχ(u)χ(u− s) , (3.3a)

inF (1)
|0M 〉(ω) = −ωΘ(−ω)

∫ ∞
−∞

du [χ(u)]2

+
1

π

∫ ∞
0

ds
cos(ωs)

s2

∫ ∞
−∞

duχ(u)[χ(u)− χ(u− s)] , (3.3b)

where the left superscript in indicates that the trajectory is inertial. At a large energy gap,

|ω| → ∞, we show in appendix A that

inF (0)
|0M 〉(ω) = −Θ(−ω)

ω

[ ∫ ∞
−∞

du [χ(u)]2 +
1

ω2

∫ ∞
−∞

du
[
χ′(u)

]2
+ · · ·+ 1

ω2k

∫ ∞
−∞

du
[
χ(k)(u)

]2]
+O

(
1

ω2k+3

)
, (3.4a)

inF (1)
|0M 〉(ω) = −ωΘ(−ω)

∫ ∞
−∞

du [χ(u)]2 +O

(
1

ω2k

)
, (3.4b)

for all positive integers k. The infrared ambiguity of F (0)
|0M 〉 does not show up in the large

|ω| form (3.4a) because the ambiguous contribution (3.2) falls off faster than any inverse

power of ω.

We are also interested in the adiabatic limit of slow switching and long detection. We

implement this by writing χ(τ) = g(ατ) where α is a positive parameter, g is a fixed

switching function, and the limit of interest is α→ 0+. Changing integration variables by

u = v/α and s = r/α, comparing with (3.4), and assuming ω 6= 0, we see that

inF (0)
|0M 〉(ω) = −Θ(−ω)

ω

[
α−1

∫ ∞
−∞

dv [g(v)]2 +
α

ω2

∫ ∞
−∞

dv
[
g′(v)

]2
+ · · ·+ α2k−1

ω2k

∫ ∞
−∞

dv
[
g(k)(v)

]2]
+O

(
α2k+1

)
, (3.5a)

inF (1)
|0M 〉(ω) = −ωΘ(−ω)α−1

∫ ∞
−∞

dv [g(v)]2 +O
(
α2k
)
, (3.5b)

for all positive integers k. The probability of an excitation hence vanishes in the adiabatic

limit, while the probablity of a de-exitation is proportional to α−1, that is, proportional to

the total detection time.

4 A Rindler firewall state ρ̂FW

We continue to consider a massless scalar field φ on two-dimensional Minkowski space-

time M , in the notation of section 3. In this section we construct a mixed state ρ̂FW in

– 5 –
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Quadrant Range in (t, x) Range in (u, v)

F: future t > |x| u > 0, v > 0

P: past t < −|x| u < 0, v < 0

R: right x > |t| u < 0, v > 0

L: left x < −|t| u > 0, v < 0

Table 1. The four open quadrants of two-dimensional Minkowski spacetime.

F

R

Detector

u v

Detector

t

x

P

L

Figure 1. (1 + 1)-dimensional Minkowski spacetime. The dashed (red) lines show the Rindler

horizon t2 − x2 = 0, which separates the four quadrants F, P, R and L as summarised in table 1.

Also shown are the worldlines (green) of two inertial detectors, each of which operates for a finite

interval of time and crosses during that interval exactly one branch of the Rindler horizon.

which correlations that are present in |0M 〉 have been severed across the Rindler horizon.

We discuss the sense in which ρ̂FW models the stationary aspects of a similar severing that

has been argued in [3] to ensue dynamically in an evaporating black hole spacetime.

4.1 Definition of ρ̂FW

Recall that the Rindler horizon in M is at t2 − x2 = 0, or in terms of the null coordinates,

at uv = 0. We denote the future, past, right and left open quadrants separated by the

Rindler horizon by respectively F, P, R and L, as summarised in table 1 and shown in

figure 1.

Recall also that the restriction of |0M 〉 to R is a mixed state whose density matrix ρR
is thermal in temperature (2π)−1 with respect to the boost Killing vector ξ := x∂t + t∂x =

−u∂u+v∂v, which is timelike and future-pointing in R [8, 11, 12]. Similarly, the restriction

of |0M 〉 to L is a mixed state whose density matrix ρL is thermal in temperature (2π)−1

with respect to the boost Killing vector −ξ, which is timelike and future-pointing in L.

– 6 –
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Quadrant pairs Tr
(
φ(x)φ(x′)ρ̃FW

)
P and R

−(4π)−1 ln[m0(ε+ i∆u)]
L and F

P and L
−(4π)−1 ln[m0(ε+ i∆v)]

R and F

R and L
0

P and F

Table 2. The table shows Tr
(
φ(x)φ(x′)ρ̃FW

)
when x and x′ are in distinct quadrants of F∪P∪R∪L.

In the pairs (P,R) and (L,F), the two quadrants are causally correlated for right-movers and

Tr
(
φ(x)φ(x′)ρ̃FW

)
contains only the right-mover contribution to 〈0M |φ(x)φ(x′)|0M 〉. In the pairs

(P,L) and (R,F), the two quadrants are causally correlated for left-movers and Tr
(
φ(x)φ(x′)ρ̃FW

)
contains only the left-mover contribution to 〈0M |φ(x)φ(x′)|0M 〉. In the pairs (R,L) and (P,F), the

two quadrants have no causal correlation and Tr
(
φ(x)φ(x′)ρ̃FW

)
vanishes. When x and x′ are in

the same quadrant, Tr
(
φ(x)φ(x′)ρ̃FW

)
= 〈0M |φ(x)φ(x′)|0M 〉.

Now, consider on R∪L the mixed state whose density matrix is ρFW := ρR⊗ ρL. For

any observable whose support is contained in R, the expectation value in ρFW is identical to

the expectation value in |0M 〉, and similarly for any observable whose support is contained

in L. However, ρFW contains no correlations between R and L: all the correlations between

R and L that are present in |0M 〉 [8, 11, 12, 30] have been severed in ρFW.

We wish to extend ρFW beyond R∪L. There exists a unique extension to F∪P∪R∪L:

because the field is massless, the left-moving part of the field propagates into F only from

R and into P only from L, while the right-moving part of the field propagates into F

only from L and into P only from R. We denote this extension by ρ̃FW. The Wightman

function in ρ̃FW, given by Tr
(
φ(x)φ(x′)ρ̃FW

)
, is equal to 〈0M |φ(x)φ(x′)|0M 〉 when x and x′

are in the same quadrant, but not when x and x′ are in distinct quadrants, as collected in

table 2.

Extending Tr
(
φ(x)φ(x′)ρ̃FW

)
from F∪P∪R∪L to all of Minkowski requires additional

input on the Rindler horizon. We adopt the extension that is minimal in the sense that it

has no distributional support at the Rindler horizon. This extension is unique: we denote

it by Tr
(
φ(x)φ(x′)ρ̂FW

)
, and we interpret it as the Wightman function of a mixed state

whose density matrix we denote by ρ̂FW.

4.2 Properties of ρ̂FW

By construction, ρ̂FW is indistinguishable from |0M 〉 for any operator whose support is

contained in any one of the four quadrants F, P, R, and L. In particular, the restriction

of ρ̂FW to any one of the quadrants is Hadamard and has a vanishing stress-energy tensor.

The restriction of ρ̂FW to any one of the quadrants is also invariant under the Lorentz

boosts generated by the Killing vector ξ. The restrictions of ρ̂FW to R and L are hence

stationary with respect to Rindler time translations, and observers on the uniformly-

accelerated world lines x2− t2 = a−2, where the positive constant a is the acceleration, will

experience the usual Unruh effect, in temperature a/(2π) [8, 9]. The restrictions of ρ̂FW

– 7 –
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to R and L are also invariant with respect to Minkowski time translations in a local sense,

but not globally, since Minkowski time translations necessarily map R and L to regions

that intersect the Rindler horizons.

The Wightman function of ρ̂FW is by construction a well-defined distribution every-

where, including the Rindler horizon. The response of a horizon-crossing detector in the

state ρ̂FW is hence well defined by (2.3). As the Wightman function is not invariant under

Lorentz boosts generated by ξ when the two arguments are in distinct quadrants of the

pairs (P,R), (P,L), (R,F) or (L,F), we may expect Lorentz-noninvariance in the response

of a detector that crosses exactly one branch of the Rindler horizon, and we may expect

this noninvariance to be associated with the infrared cutoff m0: this is what will be found

in section 5.

The Wightman function of ρ̂FW is not Hadamard at the Rindler horizon. We shall not

attempt to examine in which sense ρ̂FW may be definable on the Rindler horizon beyond its

Wightman function, and in particlar we shall not attempt to define a stress-energy tensor

for ρ̂FW on the Rindler horizon. We shall return to this point in section 7.

4.3 ρ̂FW as a firewall model

ρ̂FW contains by construction no correlations between the spacetime regions R and L. We

may view ρ̂FW as the minimal modification of |0M 〉 in which the correlations between R

and L [8, 11, 12, 30] have been fully severed. The severing has made ρ̂FW singular on the

Rindler horizon, but with a Wightman function that is still a well-defined distribution.

In the spacetime of an evaporating black hole, the conventional quantum field theory

picture implies that the field develops strong correlations between the interior and exterior

of the hole, closely similar to the correlations in |0M 〉 across the Rindler horizon [4, 8, 11, 12].

It is argued in [3] that these correlations cannot be maintained if the quantum evolution of

the full system is assumed unitary. It is further argued in [3] that breaking the correlations

will replace the horizon by a firewall, a region of high curvature, which will destroy any

observer who attempts to fall into the black hole. Our state ρ̂FW models within Minkowski

spacetime quantum field theory the severed quantum correlations across the firewall of [3].

A detector crossing the Rindler horizon from R or L to F, in the state ρ̂FW, models a

detector crossing the firewall of [3] as long as the shrinking black hole horizon has not

yet become gravitationally singular due to any back-reaction from the stress-energy of the

firewall quantum state.

In summary, ρ̂FW models the stationary aspects of the black hole firewall of [3]. The

relevant sense of stationarity in ρ̂FW is with respect to Lorentz boosts. The Lorentz-

nonivariance of ρ̂FW means that the modelling will not be fully stationary, but this non-

stationarity is associated with the infrared cutoff m0 and we will see that it will not be

significant for the conclusions.

We emphasise that we shall not attempt to model how the severing of the quantum

correlations in the firewall state of [3] may arise through the evolution of the full quantum

system, nor shall we attempt to model how the spacetime reacts to the singularity in the

firewall state. Also, we shall not attempt to discuss in detail the near-horizon phenomena

– 8 –
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proposed in [1, 2], but we shall consider in section 6 a generalisation of ρ̂FW that has been

suggested [25] to model the energetic curtain of [1].

We refer to ρ̂FW as a Rindler firewall state.

5 Response of an inertial detector in ρ̂FW

In this section we examine the response of the two-level detector of section 2 when it

crosses the Rindler horizon and the field is in the Rindler firewall state ρ̂FW. We take

the detector to be inertial and to cross the horizon exactly once during the time that it

operates. Subsection 5.1 considers the generic case, shown in figure 1, in which the horizon-

crossing occurs away from the bifurcation point (t, x) = (0, 0). Crossing from R or L to

F models crossing the black hole firewall of [3], but we shall see that crossing from P to

R or L yields an identical response. The special case of a detector that goes through the

bifurcation point is treated in subsection 5.2.

5.1 Generic horizon-crossing

In this subsection we consider an inertial detector that crosses exactly one branch of the

horizon during the time that it operates, as shown in figure 1. We introduce the parameter

η that takes the value 1 if this this branch is the left-going branch, v = 0, and the value

−1 if this branch is the right-going branch, u = 0. We write the detector’s velocity vector

as cosh(β)∂t + sinh(β)∂x, where β ∈ R is the rapidity with respect to the Lorentz-frame

(t, x), and we parametrise the trajectory so that the horizon-crossing occurs at τ = 0.

Let inF (p)
|0M 〉 and inF (p)

FW denote the response of the inertial detector in the respective

states |0M 〉 and ρ̂FW. Using (2.3), and the Wightman functions given in (3.1) and in

table 2, we see that the difference ∆F (p) := inF (p)
FW − inF (p)

|0M 〉 is given by

∆F (p)(ω) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′ e−iω(τ ′−τ ′′) χ(τ ′)χ(τ ′′) ∂pτ ′∂
p
τ ′′∆W(τ ′, τ ′′) , (5.1)

where

∆W(τ ′, τ ′′) =


(4π)−1 ln[m0e

ηβ(τ ′ − τ ′′)] + 1
8 i for τ ′ > 0 > τ ′′ ,

(4π)−1 ln[m0e
ηβ(τ ′′ − τ ′)]− 1

8 i for τ ′′ > 0 > τ ′ ,

0 otherwise .

(5.2)

∆F (p) is well defined and finite for each p: the derivatives in (5.1) are distributional but

the integrals exist and are finite since χ is by assumption smooth and of compact support.
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We now specialise to p = 0 and p = 1. It is shown in appendix B that

∆F (0)(ω) =

∫ ∞
0
ds

[
1

4
sin(ωs) + (2π)−1 cos(ωs) ln(m0e

ηβs)

] ∫ s

0
duχ(u)χ(u− s) , (5.3a)

∆F (1)(ω) =
[χ(0)]2

2π
ln
(
|ω|eγ−1e−ηβ/m0

)
+

1

2π

∫ ∞
0
ds cos(ωs)

{
χ(0)[χ(0)− χ(s)− χ(−s)]

s

+
1

s2

∫ s

0
duχ(u)χ(u− s)

}
for ω 6= 0 , (5.3b)

∆F (1)(0) =
χ(0)

4π

∫ ∞
0
ds ln(em0e

ηβs)
[
χ′(s)− χ′(−s)

]
+

1

2π

∫ ∞
0
ds

{
− χ(0)[χ(s) + χ(−s)]

2s
+

1

s2

∫ s

0
duχ(u)χ(u− s)

}
, (5.3c)

where γ is Euler’s constant.

Several observations are in order. For properties that hold for both of ∆F (0) and

∆F (1), we refer to the two by ∆F .

First, ∆F is even in ω: the firewall has identical effects on probabilities of excitation

and de-excitation.

Second, ∆F is invariant under χ(τ) → χ(−τ): the firewall effect is invariant under a

future-past reflection about the horizon-crossing moment.

Third, ∆F depends on the infrared cutoff m0. It also depends on the trajectory’s

rapidity parameter β and is hence not Lorentz invariant. We shall shortly see that these

effects are subdominant in the limit of a large energy gap and in the limit of adiabatic

switching, but we may note here that the Lorentz noninvariance is directly connected to

the cutoff: the term that depends on m0 and β is

p = 0 :
ln(m0e

ηβ)

2π

∫ ∞
0

ds cos(ωs)

∫ s

0
duχ(u)χ(u− s) , (5.4a)

p = 1 : − (2π)−1[χ(0)]2 ln(m0e
ηβ) , (5.4b)

which shows that increasing (respectively decreasing) the detector’s velocity towards the

horizon has the effect of increasing (decreasing) the effective infrared cutoff m0e
ηβ by

precisely the appropriate Doppler shift factor. Note also that for p = 0 the ambiguous

term (5.4a) comes from a finite neighbourhood of the horizon-crossing moment, while for

p = 1 the ambiguous term (5.4b) comes strictly from the horizon-crossing moment and

vanishes iff χ(0) = 0.

Fourth, ∆F is nonvanishing whenever χ has support both before and after the horizon-

crossing, regardless whether the detector is in operation at the horizon-crossing moment.
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Fifth, we show in appendix A that ∆F has the large |ω| form

∆F (0)(ω) =
1

2π
ln
(
|ω|eγ−1e−ηβ/m0

)( [χ(0)]2

ω2
+

[χ′(0)]2 − 2χ(0)χ′′(0)

ω4
+O(ω−6)

)
+

2χ(0)χ′′(0)− [χ′(0)]2

6πω4
+O(ω−6) , (5.5a)

∆F (1)(ω) =
[χ(0)]2

2π
ln
(
|ω|eγ−1e−ηβ/m0

)
+

4χ(0)χ′′(0) + [χ′(0)]2

12πω2
+O(ω−4) . (5.5b)

In the special case χ(0) = 0, all the terms shown in (5.5) vanish and the first potentially

nonvanishing terms are

∆F (0)(ω) =
1

2π
ln
(
|ω|eγ−1e−ηβ/m0

)( [χ′′(0)]2

ω6
+O(ω−8)

)
− 8[χ′′(0)]2

30πω6
+O(ω−8) , (5.6a)

∆F (1)(ω) =
[χ′′(0)]2

40πω4
+O(ω−6) . (5.6b)

The dominant effect at large |ω| comes hence from the horizon-crossing moment. If χ and

all its derivatives vanish at the horizon-crossing, ∆F vanishes at |ω| → ∞ faster than any

inverse power of ω.

Sixth, to analyse the adiabatic limit, we write χ(τ) = g(ατ) where α is a positive

parameter, g is a fixed switching function, and we are interested in the limit α → 0+.

Changing in (5.3) integration variables by u = v/α and s = r/α, and assuming ω 6= 0, we

see that the asymptotic formulas are obtained from (5.5) and (5.6) by multiplying ∆F (0)

by α−2 and making the replacements χ → g, ω → ω/α and m0 → m0/α. The dominant

effect in ∆F in the adiabatic limit hence comes from the horizon-crossing moment, and

if the detector operates at this moment, the leading term in ∆F is independent of α and

equal to the leading term shown in (5.5). When the Minkowski vacuum contribution (3.5)

to the response is included, we see that if the detector operates at the horizon-crossing

moment, the firewall gives the leading adiabatic contribution to the excitation probability

and the next-to-leading adiabatic contribution to the de-excitation probability.

5.2 Horizon-crossing at the bifurcation point

In the special case in which the detector crosses the horizon at the bifurcation point, ∆F
is given by summing over the two values of η in (5.3). ∆F is hence obtained from (5.3) by

setting η = 0 and including an overall multiplicative factor 2. The only qualitatively new

property is that ∆F is now independent of β and hence Lorentz invariant.

6 Rindler energetic curtain

In this section we consider a generalisation of ρ̂FW whose restriction to L is thermal with

respect to the future-pointing Killing vector −ξ in the (dimensionless) temperature T > 0,

and an inertial detector crossing the Rindler horizon from R to F. It has been suggested [25]

that at T � (2π)−1 this system models a detector crossing the energetic curtain of [1] in

a black hole spacetime.
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6.1 The state

Let M̂ denote an auxiliary (1 + 1)-dimensional Minkowski spacetime, with the metric

d̂s2 = −dû dv̂ in the dimensionless null coordinates (û, v̂). For a massless scalar field

on M̂ , the Wightman function in a thermal state of temperature T > 0 with respect to the

normalised time translation Killing vector ξ̂ := ∂û + ∂v̂ reads [18]

ĜT
(
(û′, v̂′), (û′′, v̂′′)

)
= −(4π)−1 ln

{
− sinh[πT (∆û− iε)] sinh[πT (∆v̂ − iε)]

}
, (6.1)

where ∆û = û′ − û′′, ∆v̂ = v̂′ − v̂′′, the logarithm has its principal branch and the distri-

butional sense is that of ε→ 0+. Note that the temperature parameter T is dimensionless

since û and v̂ are dimensionless.

We map M̂ conformally to the region L in the (1+1)-dimensional Minkowski spacetime

M of section 3, by u = m−1
0 eû and v = −m−1

0 e−v̂, so that ds2 = −du dv = (−uv) d̂s2. The

push-forward of ξ̂ to L is the future-pointing boost Killing vector u∂u− v∂v = −ξ, and the

push-forward of ĜT is GL
T (x, x′) + 1

4T ln(m4
0u
′u′′v′v′′), where

GL
T (x, x′) = −(4π)−1 ln

{
ε+ i

[
(m0u

′)2πT − (m0u
′′)2πT

]}
−(4π)−1 ln

{
ε+ i

[
(−m0v

′′)2πT − (−m0v
′)2πT

]}
. (6.2)

As the term 1
4T ln(m4

0u
′u′′v′v′′) is regular in L and satisfies the field equation there, we

may drop this term and define in L a quantum state whose Wightman function equals GL
T .

We denote the density matrix of this state by ρL,T . Note that ρL,(2π)−1 = ρL.

Now, the right-mover part of GL
T continues without singularities from L to F, and

the left-mover part continues without singularities from L to P. We may hence define

on M a state by starting from ρR ⊗ ρL,T on R ∪ L and extending to all of M by causal

propagation as in section 4. We denote the density matrix of this state by ρ̂EC,T . By

construction, ρ̂EC,(2π)−1 = ρ̂FW. We regard ρ̂EC,T as modelling the energetic curtain of [1]

when T � (2π)−1 [25].

6.2 Detector

We consider the response of an inertial detector that crosses the Rindler horizon from R

to F, with the field in the state ρ̂EC,T . The response differs from that in the state ρ̂FW by

the additional term

∆ECF (p)(ω) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′ e−iω(τ ′−τ ′′) χ(τ ′)χ(τ ′′) ∂pτ ′∂
p
τ ′′∆ECW(τ ′, τ ′′) , (6.3)

where

∆ECW(τ ′, τ ′′) =


1

4π
ln

[
m̃(τ ′ − τ ′′)

(m̃τ ′)2πT−(m̃τ ′′)2πT

]
for τ ′ > τ ′′ > 0 or τ ′′ > τ ′ > 0 ,

0 otherwise ,

(6.4)

and m̃ := m0e
−β. ∆ECF (p) is clearly finite for all T and p.

– 12 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
2

We are interested in the limit of large T . Proceeding as in section 5, and using the

techniques of appendix B, we find that the asymptotic large T forms of ∆ECF (0) and

∆ECF (1) are

∆ECF (0)(ω) = −T
∫ ∞

0
ds cos(ωs)

∫ ∞
s

du ln(m̃u)χ(u)χ(u− s) +O(T 0) , (6.5a)

∆ECF (1)(ω) = T

[
[χ(0)]2 ln

(
|ω|eγ

m̃

)
+ χ(0)

∫ ∞
0

ds cos(ωs)
χ(0)− χ(s)

s

−
∫ ∞

0
du ln(m̃u)χ′(u)χ(u)

]
+O(T 0) for ω 6= 0 , (6.5b)

∆ECF (1)(0) = T

∫ ∞
0

du ln(m̃u)χ′(u)[χ(0)− χ(u)] +O(T 0) . (6.5c)

The leading behaviour is hence linear in T . When |ω| is large, we may use the techniques

of appendix A to show that

∆ECF (0)(ω) = T

[
[χ(0)]2

ω2
ln

(
|ω|eγ

m̃

)
− 1

ω2

∫ ∞
0

du ln(m̃u)χ′(u)χ(u) +O

(
ln(|ω|)
ω4

)]
+O(T 0) , (6.6a)

∆ECF (1)(ω) = T

[
[χ(0)]2 ln

(
|ω|eγ

m̃

)
−
∫ ∞

0
du ln(m̃u)χ′(u)χ(u) + χ(0)O(ω−2)

]
+O(T 0) . (6.6b)

If χ(0) = 0, the leading ω-dependence at large |ω| drops out from the T -term in (6.6a),

and the T -term in (6.6b) becomes independent of ω.

We conclude that the response can be made arbitrarily large by increasing T , and the

part of this response that is dominant at large |ω| comes from the horizon-crossing moment.

7 Summary and concluding remarks

We have shown that a two-level UDW detector in (1 + 1)-dimensional Minkowski space-

time, coupled linearly to a massless scalar field or its proper time derivative, has a finite

response on crossing inertially the Rindler horizon in a firewall-type quantum state in which

the Minkowski vacuum correlations between the right and left Rindler wedges have been

fully severed. In the limit of a large detector energy gap ω, the leading contribution to

the difference from the Minkowski vacuum response is proportional to [χ(0)]2ω−2 ln(|ω|)
for the non-derivative detector and to [χ(0)]2 ln(|ω|) for the derivative-coupling detector,

where χ(0) is the coupling strength at the horizon-crossing moment. The same leading

contributions arise also in the limit of adiabatic switching. If the detector operates both

before and after the horizon-crossing moment but not at the horizon-crossing moment,

and the coupling strength changes smoothly in time, the effect is weaker: for a detector

whose coupling vanishes in any open interval containing the horizon-crossing moment, the

difference from the Minkowski vacuum response dies off at large |ω| faster than any inverse

power of ω.

– 13 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
2

Our construction of the Rindler firewall state ρ̂FW relied on the fact that the right-

moving and left-moving components of a massless field are decoupled in 1 + 1 dimensions.

(Related consequences of this decoupling for past-future correlations have been investi-

gated in [31, 32].) ρ̂FW is not Hadamard at the Rindler horizon, and we found that the

Wightman function of ρ̂FW contains a heightened version of the (1+1)-dimensional infrared

ambiguity. In particular we found that the response of the derivative-coupling detector is

ambiguous by an additive Lorentz-noninvariant constant, even though this detector is free

from infrared ambiguities in Hadamard states [18]. It could be interesting to investigate

whether such ambiguities are present for the derivative-coupling detector in firewall-type

states in which a severing of correlations evolves from an initially regular state by some

dynamical mechanism.

We emphasise that ρ̂FW is undoubtedly singular at the Rindler horizon, as seen from the

non-Hadamard form of the Wightman function, and from the way in which the detector’s

response hinges on the coupling strength at the horizon-crossing moment. ρ̂FW is hence

qualitatively different from an evaporating (1 + 1)-dimensional black hole in the CGHS

model, where the outcome is a long-lived remnant [33], and from a (1 + 1)-dimensional

moving-mirror system that models a remnant [34]. We have not attempted to characterise

the singularity in ρ̂FW in terms of a stress-energy tensor, or by other means that might

indicate how the spacetime responds to the singularity when allowed to become dynamical.

However, our main observation is that when the spacetime is assumed to be unaffected by

the singularity in ρ̂FW, the response of the detector that falls across the horizon is, while

sudden, nevertheless finite.

Our UDW detector had two internal states. If the detector’s internal Hilbert space

is generalised to that of a harmonic oscillator, it would be usual to take µ in (2.1) to be

the oscillator’s position operator, µ(τ) = eiΩτd† + e−iΩτd, where Ω > 0 is the oscillator’s

angular frequency and (d, d†) are the annihilation and creation operator pair [13, 14, 16].

For the non-derivative detector in 3 + 1 dimensions, this choice for µ models the p ·A term

by which an atomic electron couples to the quantised electromagnetic field when there is

no angular momentum exchange [23, 24]. With this choice, µ has nonvanishing matrix

elements only between neighbouring energy eigenstates, and the only nonvanishing first-

order transition probabilities from detector state |n〉D are to detector states |n+ 1〉D and

|n − 1〉D, given by our formulas with ω = ±Ω. The conclusion about a finite detector

response on crossing the firewall hence still holds. If however µ were chosen to have matrix

elements of equal magnitude between each pair of the harmonic oscillator eigenstates, the

sum of the first-order transition probabilities from state |n〉D to all other states would

diverge for the derivative-coupling detector, because of the leading term proportional to

ln(|∆n|) at large ∆n, but be still finite for the non-derivative detector, because the leading

term is only proportional to (∆n)−2 ln(|∆n|).
We considered also a generalisation of ρ̂FW in which excitations are added behind

the Rindler horizon in a way that has been suggested [25] to model the energetic curtain

of [1]. We found that the response is qualitatively similar to that in ρ̂FW but can be made

arbitrarily large by increasing the temperature-like parameter that characterises the added

excitations.
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Finally, recall that the short-distance behaviour of the Wightman function becomes

more singular as the spacetime dimension increases. One may hence expect an UDW

detector in dimensions higher than 1+1 to react to a firewall more violently [22]. However,

the short-distance behaviour of the derivative-coupling detector in 1 + 1 dimensions is

similar to that of the non-derivative detector in 3+1 dimensions [18, 20, 21]. This suggests

that our results for the 1 + 1 derivative-coupling UDW detector may faithfully reflect the

response of a non-derivative UDW detector that crosses a (3 + 1)-dimensional firewall.
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A Asymptotics at large |ω|

In this appendix we verify the asymptotic large |ω| expressions (3.4), (5.5) and (5.6). We

assume ω 6= 0, and we denote by O∞(ω−1) a quantity that vanishes faster than any inverse

power of ω as |ω| → ∞.

A.1 Minkowski vacuum response

Consider inF (1)
|0M 〉 (3.3b). Repeated integration by parts, integrating the trigonometric

factor [35], shows that the second term in (3.3b) is O∞(ω−1). This gives (3.4b) in the

main text.

Consider then inF (0)
|0M 〉 (3.3a). We write

inF (0)
|0M 〉(ω) = inF (0)

1 (ω) + inF (0)
2 (ω) , (A.1a)

inF (0)
1 (ω) = −1

2

∫ ∞
0

ds sin(ωs)H(s) , (A.1b)

inF (0)
2 (ω) = − 1

π

∫ ∞
0

ds cos(ωs) ln(m0s)H(s) , (A.1c)

where H(s) :=
∫∞
−∞ duχ(u)χ(u−s). H is a smooth function of compact support, it is even,

and integration by parts shows that H(2k)(0) = (−1)k
∫∞
−∞ du

[
χ(k)(u)

]2
for k = 0, 1, 2, . . ..

For inF (0)
1 , repeated integration by parts in (A.1b) gives

inF (0)
1 (ω) = −1

2

k∑
r=0

(−1)r
H(2r)(0)

ω2r+1
+O

(
1

ω2k+3

)
, k = 0, 1, 2, . . . . (A.2)
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For inF (0)
2 , integrating (A.1c) by parts twice gives

inF (0)
2 (ω) =

1

πω

∫ ∞
0

ds
sin(ωs)

s
H(s) +

1

πω2

∫ ∞
0

ds cos(ωs)
H ′(s)

s

+
1

πω2

∫ ∞
0

ds cos(ωs) ln(m0s)H
′′(s) . (A.3)

In the first term in (A.3) we write H(s) = H(0) + [H(s) − H(0)], we use in the part

proportional to H(0) the identity
∫∞

0 dxx−1 sinx = π/2, and we estimate the remainder

by repeated integration by parts, finding that this term equals 1
2H(0)/|ω|+O∞(ω−1). The

second term in (A.3) is O∞(ω−1), again using repeated integration by parts. The last term

in (A.3) has the same form as (A.1c) but with H → H ′′ and an overall factor −1/ω2.

Proceeding recursively, we hence obtain

inF (0)
2 (ω) =

1

2

k∑
r=0

(−1)r
H(2r)(0)

|ω|2r+1 +O

(
1

|ω|2k+3

)
, k = 0, 1, 2, . . . . (A.4)

Substituting (A.2) and (A.4) into (A.1a), and using the values of H(2k)(0) found above,

gives (3.4a) in the main text.

A.2 Firewall response

Consider ∆F (1) (5.3b). The large |ω| expansion of the second term can be obtained by

repeated integration by parts, integrating the trigonometric term [35]. When χ(0) 6= 0, the

leading terms are shown in (5.5b). When χ(0) = 0, it follows from the non-negativity of χ

that χ′(0) = 0, and the expansion starts as shown in (5.6b).

Consider then ∆F (0) (5.3a). We write

∆F (0)(ω) = ∆F (0)
1 (ω) + ∆F (0)

2 (ω) , (A.5a)

∆F (0)
1 (ω) =

1

4

∫ ∞
0

ds sin(ωs)G(s) , (A.5b)

∆F (0)
2 (ω) =

1

2π

∫ ∞
0

ds cos(ωs) ln(m̃s)G(s) , (A.5c)

where m̃ := m0e
ηβ and G(s) :=

∫ s
0 duχ(u)χ(u − s). G is a smooth function of compact

support, it is odd, and we have G′(0) = [χ(0)]2, G(3)(0) = 2χ(0)χ′′(0) − [χ′(0)]2 and

G(5)(0) = 2χ(0)χ(4)(0)− 2χ′(0)χ(3)(0) + [χ′′(0)]2.

For ∆F (0)
1 , repeated integration by parts in (A.5b) gives ∆F (0)

1 (ω) = O∞(ω−1).

For ∆F (0)
2 , integration by parts in (A.5c) gives

∆F (0)
2 (ω) = − 1

2πω

∫ ∞
0

ds sin(ωs)
G(s)

s
− 1

2πω

∫ ∞
0

ds sin(ωs) ln(m̃s)G′(s) . (A.6)
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To handle the second term in (A.6), we introduce a cutoff ε > 0 and observe that

ω

∫ ∞
ε

ds sin(ωs) ln(m̃s)G′(s) = cos(ωε) ln(m̃ε)G′(ε)−G′(0) Ci(ε|ω|)

+

∫ ∞
ε

ds cos(ωs)
G′(s)−G′(0)

s

+

∫ ∞
ε

ds cos(ωs) ln(m̃s)G′′(s) , (A.7)

first integrating by parts and then subtracting and adding G′(0) Ci(|ω|ε), where Ci is the

cosine integral function in the notation of [36]. The limit ε → 0+ in (A.7) can be taken

using the small argument form of Ci [36], and substituting the result in (A.6) yields

∆F (0)
2 (ω) = − 1

2πω

∫ ∞
0

ds sin(ωs)
G(s)

s
+
G′(0)

2πω2
ln
(
|ω|eγ/m̃

)
− 1

2πω2

∫ ∞
0

ds cos(ωs)
G′(s)−G′(0)

s

− 1

2πω2

∫ ∞
0

ds cos(ωs) ln(m̃s)G′′(s) , (A.8)

where γ is Euler’s constant. Repeated integration by parts gives for the first term in (A.8)

an expansion in inverse powers of ω2, and the same technique shows that the third term

in (A.8) is O∞(ω−1). We find

∆F (0)
2 (ω) = − 1

2πω2

∫ ∞
0

ds cos(ωs) ln(m̃s)G′′(s) +
G′(0)

2πω2
ln
(
|ω|eγ−1/m̃

)
+

1

2π

k∑
r=2

(−1)r
G(2r−1)(0)

(2r − 1)ω2r +O

(
1

ω2k+2

)
, k = 2, 3, 4, . . . (A.9)

Now, the first term in (A.9) has the same form as (A.5c) but with G → G′′ and an

overall factor −1/ω2, and we may proceed with ∆F (0)
2 recursively. Collecting, we find for

∆F (0) the asymptotic large |ω| expansion

∆F (0)(ω) ∼ 1

2π
ln
(
|ω|eγ−1/m̃

)(G′(0)

ω2
− G(3)(0)

ω4
+
G(5)(0)

ω6
− G(7)(0)

ω8
+ · · ·

)
+

1

2π

( 1
3G

(3)(0)

ω4
−
(

1
3 + 1

5

)
G(5)(0)

ω6
+

(
1
3 + 1

5 + 1
7

)
G(7)(0)

ω8
− · · ·

)
. (A.10)

Equations (5.5a) and (5.6a) in the main text follow from (A.10) by inserting the values of

G′(0), G(3)(0) and G(5)(0) found above.

B Evaluation of ∆F (0) and ∆F (1)

In this appendix we verify formulas (5.3) for ∆F (0) and ∆F (1). We write m̃ := m0e
ηβ,

Q(τ) := e−iωτχ(τ) and Q′(τ) := d
dτQ(τ).
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B.1 ∆F (0)

Starting from (5.1) with p = 0, we have

∆F (0)(ω) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′Q(τ ′)Q(τ ′′) ∆W(τ ′, τ ′′)

= Re

∫ ∞
0

dτ ′
∫ 0

−∞
dτ ′′

{
(2π)−1 ln

[
m̃(τ ′ − τ ′′)

]
+

1

4
i

}
Q(τ ′)Q(τ ′′) , (B.1)

using (5.2) for ∆W and interchanging the names of τ ′ and τ ′′ in the region where originally

τ ′ < 0 < τ ′′. Writing u := τ ′ and τ ′′ = u− s, intechanging the integration order, and using

Q(τ) = e−iωτχ(τ), we obtain

∆F (0)(ω) =

∫ ∞
0

ds

[
1

4
sin(ωs) + (2π)−1 cos(ωs) ln(m̃s)

] ∫ s

0
duχ(u)χ(u− s) , (B.2)

which is equation (5.3a) in the main text.

B.2 ∆F (1)

Starting from (5.1) with p = 1, we have

∆F (1)(ω) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′Q′(τ ′)Q′(τ ′′) ∆W(τ ′, τ ′′)

=
1

2π
Re

∫ ∞
0

dτ ′
∫ 0

−∞
dτ ′′ ln

[
m̃(τ ′ − τ ′′)

]
Q′(τ ′)Q′(τ ′′) , (B.3)

first integrating the distributional derivatives by parts, then using (5.2) for ∆W and noting

that the contributions from the ±1
8 i terms in (5.2) cancel, and finally interchanging the

names of τ ′ and τ ′′ in the region where originally τ ′ < 0 < τ ′′. Writing u := τ ′ and

τ ′′ = u− s, and intechanging the integration order, we obtain

∆F (1)(ω) =
1

2π
Re

∫ ∞
0

ds ln(m̃s)

∫ s

0
duQ′(u)Q′(u− s) . (B.4)

Using in (B.4) the identity∫ s

0
duQ′(u)Q′(u− s) =

d

ds

(
Q(0)Q(−s) +

∫ s

0
duQ(u)Q′(u− s)

)
, (B.5)

separating the two terms and integrating the second term by parts, we find

∆F (1)(ω) = ∆F (1)
1 (ω) + ∆F (1)

2 (ω) , (B.6a)

∆F (1)
1 (ω) =

χ(0)

2π

∫ ∞
0

ds ln(m̃s)
d

ds

[
cos(ωs)χ(−s)

]
, (B.6b)

∆F (1)
2 (ω) = − 1

2π
Re

∫ ∞
0

ds

s

∫ s

0
duQ(u)Q′(u− s) . (B.6c)

Consider first ∆F (1)
1 (B.6b). When ω = 0, (B.6b) reduces to

∆F (1)
1 (0) = −χ(0)

2π

∫ ∞
0

ds ln(m̃s)χ′(−s) . (B.7)

– 18 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
2

When ω 6= 0, we introduce a cutoff ε > 0 and write∫ ∞
ε

ds ln(m̃s)
d

ds

[
cos(ωs)χ(−s)

]
= − ln(m̃ε) cos(ωε)χ(−ε)−

∫ ∞
ε

ds

s
cos(ωs)χ(−s)

= − ln(m̃ε) cos(ωε)χ(−ε) + χ(0) Ci(|ω|ε)

+

∫ ∞
ε

ds cos(ωs)

[
χ(0)− χ(−s)

]
s

, (B.8)

integrating by parts and adding and subtracting χ(0) Ci(|ω|ε). Using the small argument

form of Ci to take the limit [36], we find

∆F (1)
1 (ω) =

[χ(0)]2

2π
ln
(
|ω|eγ/m̃

)
+
χ(0)

2π

∫ ∞
0

ds cos(ωs)

[
χ(0)− χ(−s)

]
s

, (B.9)

where γ is Euler’s constant.

Consider then ∆F (1)
2 (B.6c). Using in (B.6c) the identity

−Re

∫ s

0
duQ(u)Q′(u− s) = − cos(ωs)χ(0)χ(s)+

d

ds

∫ s

0
du cos(ωs)χ(u)χ(u−s) (B.10)

and integrating the second term in (B.10) by parts, we find

∆F (1)
2 (ω) =

1

2π
lim
ε→0+

{
− 1

ε

∫ ε

0
duχ(u)χ(u− ε)

+

∫ ∞
ε

ds cos(ωs)

[
− χ(0)χ(s)

s
+

1

s2

∫ s

0
duχ(u)χ(u− s)

]}
= − [χ(0)]2

2π
+

1

2π

∫ ∞
0

ds cos(ωs)

[
− χ(0)χ(s)

s
+

1

s2

∫ s

0
duχ(u)χ(u− s)

]
.

(B.11)

For ω 6= 0, combining (B.9) and (B.11) gives (5.3b) in the main text.

For ω = 0, we set ω = 0 in (B.11), we add and subtract under the s-integral the

term χ(0)
[
χ(−s) − χ(s)

]
(2s)−1, and we integrate the added term by parts. Combining

with (B.7) gives (5.3c) in the main text.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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J. Brüning and V.W. Guillemin eds., Mathematics past and present. Fourier integral

operators, Springer, Berlin Germany (1994).

[30] B. Reznik, A. Retzker and J. Silman, Violating Bell’s inequalities in vacuum,

Phys. Rev. A 71 (2005) 042104 [quant-ph/0310058].

[31] S.J. Olson and T.C. Ralph, Entanglement between the future and past in the quantum

vacuum, Phys. Rev. Lett. 106 (2011) 110404 [arXiv:1003.0720] [INSPIRE].

[32] S.J. Olson and T.C. Ralph, Extraction of timelike entanglement from the quantum vacuum,

Phys. Rev. A 85 (2012) 012306 [arXiv:1101.2565] [INSPIRE].

[33] A. Almheiri and J. Sully, An uneventful horizon in two dimensions, JHEP 02 (2014) 108

[arXiv:1307.8149] [INSPIRE].

[34] M. Hotta, J. Matsumoto and K. Funo, Black hole firewalls require huge energy of

measurement, Phys. Rev. D 89 (2014) 124023 [arXiv:1306.5057] [INSPIRE].

[35] R. Wong, Asymptotic approximations of integrals, Society for Industrial and Applied

Mathematics, Philadelphia U.S.A. (2001).

[36] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, release 1.0.6 (2013).

– 21 –

http://dx.doi.org/10.1103/PhysRevD.87.064038
http://arxiv.org/abs/1207.3248
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3248
http://dx.doi.org/10.1103/PhysRevA.89.033835
http://arxiv.org/abs/1311.7619
http://dx.doi.org/10.1088/0264-9381/17/9/302
http://arxiv.org/abs/gr-qc/9910060
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9910060
http://dx.doi.org/10.1007/s000230200001
http://arxiv.org/abs/math-ph/0109010
http://inspirehep.net/search?p=find+EPRINT+math-ph/0109010
http://dx.doi.org/10.1103/PhysRevA.71.042104
http://arxiv.org/abs/quant-ph/0310058
http://dx.doi.org/10.1103/PhysRevLett.106.110404
http://arxiv.org/abs/1003.0720
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0720
http://dx.doi.org/10.1103/PhysRevA.85.012306
http://arxiv.org/abs/1101.2565
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2565
http://dx.doi.org/10.1007/JHEP02(2014)108
http://arxiv.org/abs/1307.8149
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.8149
http://dx.doi.org/10.1103/PhysRevD.89.124023
http://arxiv.org/abs/1306.5057
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.5057
http://dlmf.nist.gov/

	Introduction
	Two-level UDW detector
	Inertial detector in 1+1 Minkowski
	A Rindler firewall state hat rho(FW)
	Definition of hat rho(FW)
	Properties of hat rho(FW)
	hat rho(FW) as a firewall model

	Response of an inertial detector in hat rho(FW)
	Generic horizon-crossing
	Horizon-crossing at the bifurcation point

	Rindler energetic curtain
	The state
	Detector

	Summary and concluding remarks
	Asymptotics at large |omega|
	Minkowski vacuum response
	Firewall response

	Evaluation of Delta F**(0) and Delta F**(1)
	Delta F**(0)
	Delta F**(1)


