INTERPRETIVE SUMMARY

Methane emissions among individual dairy cows during milking quantified by eructation peaks or ratio with carbon dioxide. By Bell et al., page 0000. Methane (CH₄) and carbon dioxide (CO_2) emissions of dairy cows were measured during milking within an automatic milking station. Cows were fed a commercial partial mixed ration followed by 2 high forage rations during 3 feeding periods. Emissions of CH₄ during milking were examined using 2 methods: CH₄ released in eructation peaks; and ratio of CH₄ and CO₂ average concentrations. Both methods can provide highly repeatable phenotypes for ranking cows by CH₄ output on different diets.

28	ENTERIC METHANE EMISSIONS DURING MILKING
29	
30	Methane emissions among individual dairy cows during milking quantified by
31	eructation peaks or ratio with carbon dioxide
32	
33	M. J. Bell, N. Saunders, R. Wilcox, E. M. Homer, J. R Goodman, J. Craigon and P. C.
34 35	Garnsworthy
36	The University of Nottingham, School of Biosciences, Sutton Bonington Campus,
37	Loughborough LE12 5RD, UK
38	¹ Corresponding author: Phil.Garnsworthy@nottingham.ac.uk
39	
40	ABSTRACT
41	
42	The aims of this study were to compare methods for examining measurements of methane
43	(CH ₄) and carbon dioxide (CO ₂) emissions of dairy cows during milking and to assess
44	repeatability and variation of CH ₄ emissions among individual dairy cows. Measurements of
45	CH_4 and CO_2 emissions from 36 cows were collected in 3 consecutive feeding periods. In the
46	first period, cows were fed a commercial partial mixed ration (PMR) containing 69% forage.
47	In the second and third periods, the same 36 cows were fed a high forage PMR ration
48	containing 75% forage, with either a high grass silage or high maize silage content.
49	Emissions of CH ₄ during each milking were examined using 2 methods. Firstly, peaks in CH ₄
50	concentration due to eructations during milking were quantified. Secondly, ratios of CH ₄ and
51	CO ₂ average concentrations during milking were calculated. A linear mixed model was used
52	to assess differences between PMRs. Variation in CH4 emissions was observed among cows
53	after adjusting for effects of lactation number, week of lactation, diet, individual cow and
54	feeding period, with coefficients of variation estimated from variance components ranging
55	from 11 to 14% across diets and methods of quantifying emissions. There was no significant

56	difference between the 3 PMR in CH ₄ emissions estimated by either method. Emissions of
57	CH ₄ calculated from eructation peaks or as CH ₄ to CO ₂ ratio were positively associated with
58	forage DM intake. Ranking of cows according to CH4 emissions on different diets was
59	correlated for both methods, although rank correlations and repeatability were greater for
60	CH ₄ concentration from eructation peaks than for CH ₄ to CO ₂ ratio. It is concluded that
61	quantifying enteric CH ₄ emissions either using eructation peaks in concentration or as CH ₄ to
62	CO_2 ratio can provide highly repeatable phenotypes for ranking cows on CH_4 output.
63	
64	Key words: dairy cow, methane, carbon dioxide, phenotype, repeatability
65	
66	INTRODUCTION
67	
68	Enteric methane (CH ₄) emissions from ruminants have gained research interest due to the
69	association between greenhouse gas concentrations in the atmosphere and global climate
70	change. A large proportion of the variation in enteric CH ₄ emissions from animals can be
71	explained by diet composition and feed intake (Bell and Eckard, 2012). In addition to the
72	variation in CH ₄ explained by diet, there is considerable variation among individual dairy
73	cows (de Haas et al., 2011; Garnsworthy et al., 2012a; Huhtanen et al., 2013), suggesting
74	scope for selective breeding. Compared to diet manipulation, outcomes of selective breeding
75	are permanent and cumulative. A repeatable and accurate phenotype is required, however, to
76	allow selection of animals for reduced emissions.
77	Use of respiration chambers is impractical for large-scale estimation of CH ₄ emissions by
78	individual cows on commercial dairy farms. Quantifying enteric CH4 emissions during
79	milking by using low cost and mobile technologies has been demonstrated to provide
80	repeatable phenotypic estimates of CH ₄ emissions under commercial conditions
81	(Garnsworthy et al., 2012a,b; Lassen et al., 2012). In the study of Garnsworthy et al. (2012a),

estimates of CH₄ made during milking were correlated with total daily CH₄ emissions by the
same cows when housed subsequently in respiration chambers.

The studies of Garnsworthy et al. (2012a) and Lassen et al. (2012) employed similar 84 technologies for measuring CH₄; both sampled gas from the feed bin of automatic (robotic) 85 86 milking stations whilst cows were being milked, and measured CH₄ concentrations with 87 portable gas analyzers. Subsequent handling and analysis of data, however, differed between 88 studies; Garnsworthy et al. (2012a) analyzed CH₄ only released by eructation, whereas 89 Lassen et al. (2012) calculated ratios of average CH_4 to average CO_2 concentrations of cows 90 throughout milking, as proposed by Madsen et al. (2010). The equivalence of these 2 91 approaches is unknown, but is fundamentally important for comparison of findings from 92 these and subsequent studies. 93 The objective of the current study was to assess repeatability and variation in CH₄ and CO₂ emissions from eructation peaks, average concentrations during milking, and their ratio, 94

95 by dairy cows fed on diets differing in forage composition.

- 96
- 97
- 98

MATERIALS AND METHODS

Animal work was conducted under authority of the UK Animal (Scientific Procedures)
Act 1986, and approval was obtained from the University of Nottingham animal ethics
committee before commencement of the study.

102

103 **Data**

104 Concentrations of CH_4 and CO_2 from Holstein Friesian dairy cows were measured during 105 milking at Nottingham University Dairy Centre (Sutton Bonington, Leicestershire, UK). 106 Cows were grouped housed in a freestall barn and milked individually at an automatic 107 (robotic) milking station (AMS). Gas concentrations in air sampled from the feed bin of the AMS were measured continuously by infrared analyzers (Guardian Plus; Edinburgh Instruments Ltd., Livingston, UK) throughout the sampling period of 35 days. For a full description of the technique see Garnsworthy et al. (2012a). The technique is briefly described below.

The CH_4 and CO_2 concentrations were logged at 1 second intervals on data loggers (Simex SRD-99; Simex Sp. z o.o., Gdańsk, Poland) and visualized using logging software (Loggy Soft; Simex Sp. z o.o.). Analyzers were calibrated using standard mixtures of gases in nitrogen (0.0, 1.0% CH_4 , and 5% CO_2 , Thames Restek UK Ltd., Saunderton, UK).

116 Concentrations of CH₄ and CO₂ measured in parts per million (v/v) were converted to 117 mg/L by assuming the density of CH₄ to be 655.7 mg/L and CO₂ to be 1798.9 mg/L at 25°C, 118 1 atm, with the analyzer sampling air at 1 L/min. Concentrations of CH₄ and CO₂ emitted 119 during each milking were calculated from 1) area under the curve of eructation peaks 120 (integral of concentrations minus concentration at the start of each peak; mg/L), multiplied by 121 frequency of eructation peaks (peaks per minute) or 2) average concentration during the 122 milking period minus the minimum (baseline or background) concentration at the start of the milking (Figure 1). Method 1 used a custom-designed program to identify and quantify 123 124 eructation peaks of CH₄ concentration during milking (eructation CH₄) from raw logger data (Garnsworthy et al., 2012a). In Method 1, milkings with less than 3 eructation peaks for CH₄ 125 126 concentration were excluded from the analysis. Peaks of CO₂ concentration were not 127 calculated using this method due to lack of distinct peaks originating from eructation (Figure 128 1). Method 2 used average of all recorded CH_4 (average CH_4) and CO_2 (average CO_2) concentrations (mg/L) during each milking to derive the ratio of CH₄ to CO₂ concentrations 129 130 (expressed as g/kg).

Emissions were measured during 3 consecutive feeding periods, in which cows were fed partial mixed rations (PMR; Table 1) ad libitum plus concentrates during milking (AMS 133 concentrates). In the first period, 36 cows were fed for 7 days on a commercial PMR 134 containing 69% forage (Table 1). In the second and third periods, the same 36 cows were fed, in a 14-d crossover design, PMRs containing 75% forage with high proportions of either 135 136 grass silage or maize silage (Table 1). Feeding periods followed on immediately with no adjustment period between diets. Daily AMS concentrate allowance fed during milking was 137 138 1.5 kg plus 0.16 kg per liter of milk vield above 23 L/d. AMS concentrates were dispensed into the feed bin at 360 g/min in 6 portions per minute throughout the milking period, which 139 140 helps to keep the cow's head within suitable proximity of the gas sampling tube. AMS 141 concentrate dispensers were calibrated monthly by weighing quantities dispensed. AMS 142 concentrate manufacturer's declared specification per kilogram as fed was: ME, 12.2 MJ; CP, 143 16%; NDF, 24%; starch, 21%; and fat, 6.2%. Milk yield, live weight, and AMS concentrate 144 intake were recorded automatically at each milking. Dry matter intake of PMR was recorded 145 automatically by electronic feeders. Total daily DM intake of concentrates was calculated 146 from AMS concentrate intake plus intake of concentrates in the PMR.

For comparison with other studies, the method of Madsen et al. (2010) was used to estimate daily heat produced by each cow in MJ per day ($5.6 \times \text{kg}$ live weight^{0.75} + 22 × kg milk yield per day + 0.000016 × days pregnant³ × 0.0864), which was then converted to estimated CO₂ emissions in grams per day.

151

152 Statistical analysis

Data were analyzed using a linear mixed model in Genstat Version 15.1 (Lawes Agricultural Trust, 2012). Equation 1 was used to assess the effect of diet on average DM intake, milk yield (both kg/d), average number of milkings per day, average duration of milking (s), live weight (kg), eructation CH₄, average CH₄, average CO₂, and CH₄ to CO₂ ratio per individual cow:

$$y_{ijk} = \mu + \mathbf{L}_i + \mathbf{W}_j + \mathbf{D}_i + \mathbf{C}_j + \mathbf{C}_j \cdot \mathbf{P}_k + \mathbf{E}_{jk}$$
[1]

161 where y_{ijk} is the dependent variable; μ = overall mean; L_i = fixed effect of lactation number 162 (1, 2 and 3+); W_j = fixed effect of week of lactation (1, 2, 3,...,); D_i = fixed effect of diet; C_j = 163 random effect of individual cow; P_k = random effect of sampling period within cow; E_{jk} = 164 random error term (df = 53).

165 The residual coefficient of variation was calculated from variance components as root mean square error divided by estimated mean. Repeatability of production and gas emission 166 variables were assessed by σ^2 animal / (σ^2 animal + σ^2 residual), where σ^2 is the variance. 167 Spearman's rank correlation was used to assess persistency of ranking of individual cow 168 169 emissions on the commercial diet and high forage diets. Pearson correlation coefficient was 170 used to assess the association between total DM intake, forage DM intake, concentrate DM 171 intake, milk yield, live weight and eructation CH₄, and CH₄ to CO₂ ratio across all individual 172 cow records.

RESULTS

- 173
- 174

175

176 **Cow performance**

There was no effect of diet on live weight, but DM intake was lower when cows were fed on the commercial diet than when they were fed on the high forage diets (Table 2). Milk yield of cows on the commercial diet was lower than when they were fed on the high grass silage diet. There was no difference between the high forage diets, however, in DM intake, milk yield or live weight. Cows presented themselves for milking fewer times per day when they were fed on the commercial diet than when they were fed the high forage diets, but there was no effect of diet on duration of milking visits to the AMS (Table 2).

185 Methane and CO₂ concentrations

There was no effect of diet on frequency of eructations during milking, as indicated by peaks in CH₄ concentration (mean 1.0 ± 0.1 eructations per minute). Diurnal variation was observed in eructation CH₄, and in CH₄ to CO₂ ratio; both were at their lowest during early morning and generally highest in the afternoon (Figure 2).

190 Eructation CH_4 was lower than average CH_4 (Table 2). For both indicators of methane 191 emissions, means were not significantly different when cows were fed on the commercial diet 192 than when cows were fed on the high forage diets. Average CO_2 , and CH_4 to CO_2 ratio were 193 not affected by diet.

Daily DM intake was positively associated with average CH₄ (r = 0.22, P < 0.05). Forage DM intake was positively associated with eructation CH₄ (r = 0.19, P < 0.05), average CH₄ (r = 0.29, P < 0.001), and CH₄ to CO₂ ratio (r = 0.24, P < 0.05). Daily milk yield was negatively correlated (r = -0.21, P < 0.05) with eructation CH₄. There was no association between live weight and CH₄ or CO₂ concentrations.

199

200 Variation among cows and repeatability of phenotypes

Residual coefficient of variation was slightly greater for eructation CH_4 than for average CH₄, average CO₂, and CH₄ to CO₂ ratio (Table 2). Residual coefficients of variation in DM intake and milk yield were of similar magnitude to that of CH₄ to CO₂ ratio. Repeatability was similar for eructation CH₄, average CH₄, average CO₂, daily milk yield, milking duration and live weight, but repeatability values for DM intake, milkings per day and CH₄ to CO₂ ratio were lower than for other phenotypes (Table 2).

When cows were fed on the commercial diet, rank correlations were 0.62 (P < 0.001) between ranking on eructation CH₄ and ranking on average CH₄ (Figure 3a), and 0.35 (P<0.05) between ranking on eructation CH₄ and ranking on CH₄ to CO₂ ratio (Figure 3b). When fed on the high forage diets rank correlations were 0.86 (P < 0.001) between ranking on eructation CH₄ and ranking on average CH₄ (Figure 3a), and 0.53 (P < 0.05) between ranking on eructation CH₄ and ranking on CH₄ to CO₂ ratio (Figure 3b).

Rank correlation coefficients obtained by comparing ranking of cows when fed on the commercial PMR and when fed on the high forage diets were high and positive for all production and emission phenotypes (Table 2). The rank correlation coefficient was higher, however, for eructation CH_4 than for CH_4 to CO_2 ratio (Table 3; Figure 4).

Average heat production estimated by the equation $(5.6 \times \text{kg live weight}^{0.75} + 22 \times \text{kg milk})$ 217 yield per day + 0.000016 × days pregnant³ × 0.0864) of Madsen et al. (2010) was 124 MJ/d 218 219 for the commercial diet, 127 MJ/d for the high grass silage diet, and 126 MJ/d for the high 220 maize silage diet. Extrapolated estimates of daily CO₂ emissions were 11,161 g/d for the 221 commercial diet, 11,454 g/d for the high grass silage diet, and 11,308 g/d for the high maize 222 silage diet. There was no relationship between observed CO₂ concentrations during milking 223 and daily CO_2 emissions estimated from heat production (Figure 5). Observed average CO_2 224 concentration was more variable (CV 18.7%) than estimated daily CO₂ emission (CV 13.4%).

- 225
- 226

DISCUSSION

227

228 This study is the first to compare online methods for estimating enteric CH₄ emissions from dairy cows during milking in the same individual cows. Because measurements of CH₄ 229 and CO_2 were made concurrently, using the same gas samples and instruments, any 230 231 differences between methods can be ascribed to differences in kinetics of CH₄ and CO₂ release. Thus, comparisons are not confounded by differences between experimental 232 233 conditions and research centers. Furthermore, the design of the study permits separation of 234 within-cow, between-cow, diet and temporal effects on methane emissions in order to 235 examine variation and repeatability of estimates. Quantifying variation and repeatability of phenotypes is an essential pre-requisite for combining datasets derived by different methodsin international collaborations.

238 Individual cow eructation CH₄ was a highly repeatable phenotype, confirming our 239 previous studies (Garnsworthy et al., 2012a,b). Average CH₄ and average CO₂ showed a level 240 of repeatability similar to that of eructation CH₄, but CH₄ to CO₂ ratio was less repeatable. 241 Repeatability of CH_4 to CO_2 ratio (0.54) is consistent with repeatability values of 0.37 in the 242 study of Lassen et al. (2012), and 0.34 in Experiment 1 of Huhtanen et al. (2013), although in 243 a second experiment Huhtanen et al. (2013) found a repeatability of 0.9 for CH₄ to CO₂ ratio. 244 In our previous studies, where CH₄ emissions were calculated from eructation peaks, 245 repeatability was 0.78 between diets (Garnsworthy et al., 2012a).

Mean average CH_4 was approximately double mean eructation CH_4 , as expected from the methods of calculation. Average CH_4 was calculated across each milking, subtracting the lowest concentration at the start of the milking; eructation CH_4 was calculated across each eructation peak, subtracting the lowest concentration at the start of the peak. Average CH_4 , therefore, adjusts for changes in ambient CH_4 at different milkings, whereas eructation CH_4 adjusts not only for ambient CH_4 , but also for build-up of CH_4 during milking, and considers only CH_4 released by eructation rather than in breath.

The coefficient of variation in CH₄ emissions ranged from 11% for CH₄ to CO₂ ratio to 253 254 14% for eructation CH₄. The greater variation in eructation CH₄, average CH₄, CH₄ to CO₂ 255 ratio compared with average CO₂, may be explained partly by differences in the way that CH₄ 256 and CO₂ are emitted by cows. Methane emissions arise from enteric fermentation, whereas CO₂ emissions arise from both enteric fermentation and metabolic CO₂ excreted via the 257 258 lungs. For CH₄, 83% of daily production by sheep was released by eructation irrespective of feeding level (Blaxter and Joyce, 1963; Murray et al., 1976), whereas for CO₂, the proportion 259 260 of CO₂ released by eructation varied with CH₄ production and level of feeding, so that in 261 eructed gas CO₂ concentration was 30% of CH₄ concentration when CH₄ production was 1 262 L/hr and 140% of CH₄ concentration when CH₄ production was 2.5 L/hr (Blaxter and Joyce, 263 1963). This effect would dampen variation in CO₂ concentrations measured in eructed gas. 264 When quantifying emissions from eructation peaks, it can be expected that this method would be more appropriate for identifying eructed CH₄ rather than more slowly emitted CO₂ 265 266 emissions in breath where peaks in concentration are less defined (Figure 1). Furthermore, Blaxter and Joyce (1963) reported that during feeding the loss of CO₂ is proportionally 267 268 greater than it is between meals; an observation made also in our chamber studies 269 (Garnsworthy et al., 2012a). This is an important consideration when analyzing gas samples 270 produced during milking in an AMS, which involves concurrent feeding.

The range in coefficients of variation among cows is within the range of 3 to 34% in coefficient of variation found in studies using respiration chambers to measure emissions in research herds (Grainger et al., 2007; Ellis et al., 2007; Yan et al., 2010), and is lower than the value of 28.8% found using eructation peaks on-farm in our previous study (Garnsworthy et al., 2012a). By expressing enteric CH_4 emissions as a ratio to CO_2 emissions, variation among cows and repeatability of the phenotype were similar to variation and repeatability of DM intake, which was also found by Huhtanen et al. (2013).

All CH_4 emission phenotypes studied were positively (r = 0.19 to 0.24) correlated with 278 279 forage DM intake, although only average CH_4 concentration was positively (r = 0.22) 280 associated with total DM intake. Positive correlations with forage DM intake are expected 281 because CH₄ arises primarily from hydrogen released during enteric fermentation of plant cell walls to produce acetate (Beauchemin et al., 2009). The lack of correlation between total DM 282 283 intake and eructation CH₄, however, does not agree with chamber studies (e.g. Grainger et al., 2007; Ellis et al., 2007; Yan et al., 2010), in which strong positive relationships were 284 observed. The explanation for this apparent discrepancy lies in the relative effects on CH₄ of 285

286 DM intake and diet composition. Although increased intake of most diets leads to greater 287 CH₄ production, increasing the proportion of concentrates, fat or starch in a diet will reduce CH₄ production (Beauchemin et al., 2009; Bell and Eckard, 2012). In our previous study 288 289 (Garnsworthy et al., 2012a), CH₄ emission rate during milking was positively related to both 290 total DM and forage DM intakes, but negatively related to concentrate DM intake. As in the 291 current study, higher intakes of DM were associated with higher intakes of concentrates. The 292 negative correlation between daily milk yield and eructation CH₄ can similarly be explained 293 by changes in diet composition; cows with greater milk yields consumed greater proportions 294 of high-fat concentrates fed in the AMS, which would offset increases in DM intake.

Although DM intake and forage intake were greater when cows were fed on the high forage PMR rather than the commercial PMR, none of the estimates of CH₄ emissions differed between diets. It is possible that the lack of difference between diets is due to slightly increased concentrate consumption with the high forage PMR; although concentrate percentage was lower than in the commercial PMR, as planned, the greater milk yield of cows resulted in a slightly greater (+0.5 kg/d, P = 0.070) concentrate DM intake. ,

301 A previous study on the same research herd demonstrated that measuring CH_4 emissions 302 in eructation peaks provides a method that is correlated with daily CH₄ emissions by the same 303 cows when housed in respiration chambers (Garnsworthy et al., 2012a). Since the CH₄ 304 analyzer in this study processes one liter of air per minute, the average concentration of 0.11 305 mg/L for cows fed a high forage PMR (Table 2) would equate to 422 g CH₄/d based on the 306 equation of Garnsworthy et al. (2012a) derived from 24-hour chamber measurements (CH₄ $g/d = 252 + 57.2 \times [0.11 \text{ mg/min} / 0.037]$, with the analyzer sampling 3.7% of eructed gas). 307 308 This value is within the range of 278 to 456 g CH_4/d (mean of 369 g CH_4/d) found in a study 309 by Garnsworthy et al. (2012a) on the same herd, and similar to the average value of 430 g 310 CH₄/d for dairy cows at peak milk yield reported by Cottle et al. (2011).

311 Using the method of Madsen et al. (2010) to estimate CO₂ emissions from theoretical heat 312 emitted by each cow in MJ per day, the average daily CH₄ emissions would be higher for 313 cows on the high grass silage PMR at about 346 g/d and lower for cows on the commercial 314 PMR at 333 g/d. Estimates of average CO₂ emitted per day derived using the method of 315 Madsen et al. (2010) were not consistent with measured average CO₂ concentration over 316 milking (Figure 5). This is not surprising as the equation of Madsen et al. (2010) is based on 317 an average cow and assumes constant efficiency of energy utilization, whereas calorimeter 318 studies show that these factors vary with animal, level of feeding and diet composition (Yan 319 et al., 2010). Furthermore, CO₂ concentration in breath varies with breathing rate, tidal 320 volume, eructation rate, and rumen CO₂ production; and large amounts of CO₂ can be lost 321 during feeding (Blaxter and Joyce, 1963). During early lactation when metabolic activity is 322 high, mobilizing body energy reserves for milk production can affect CO₂ emissions (Madsen 323 et al., 2010; Lassen et al., 2012). In our previous study involving daily measurement of 215 324 cows over 5 months, CH₄ emissions increased over the first 10 weeks of lactation, and then 325 declined in parallel with likely changes in DM intake (Garnsworthy et al., 2012b). Further 326 assessment of temporal variation in CH₄ to CO₂ ratio is required, but the current study 327 showed diurnal variation exists, with the ratio being at its lowest in the morning prior to feeding (Figure 2), which is consistent with other studies (Kinsman et al., 1995; Lassen et al., 328 329 2012). Diurnal variation in eructation CH₄ is similar to that observed in our previous study, 330 where it was ascribed mainly to synchronized feeding behavior of the herd (Garnsworthy et 331 al., 2012b).

332 Improvements in production efficiency of UK dairy systems over the last 20 years, 333 through genetic selection and nutrition, have reduced CH_4 emissions per unit product by 334 about 1.3% per year. Reductions will continue, but at a slower rate per year based on current 335 breeding objectives (Jones et al., 2008). Greater reductions in enteric CH_4 emissions are 336 possible by selecting animals on traits associated with enteric CH₄ such as feed intake or feed 337 efficiency without compromising production (Hegarty et al., 2007), with a theoretical potential for enteric CH₄ emissions from dairy cows to be reduced by up to 2.6% per cow per 338 339 year by selecting on feed efficiency (de Haas et al., 2011). A breeding objective such as 340 selecting cows for low CH₄ emissions per unit DM intake or kg milk may be a more cost-341 effective phenotype than feed intake and would include selection on energy utilization 342 efficiency, which has not been possible in the past. To generate sufficient data for analyzing 343 CH₄ phenotypes requires combining international datasets, derived using different methods. 344 The current study provides initial evidence that such phenotypes are correlated, but that 345 refinement is required before equivalence can be established.

- 346
- 347
- 348

CONCLUSIONS

349 This study showed that quantifying enteric CH4 emissions using eructation peaks in 350 concentration or as a ratio to CO_2 emissions averaged over a milking can provide a highly 351 repeatable phenotype for ranking cows on CH₄ output. There was no significant difference 352 between CH₄ and CO₂ emissions from the same cows when fed on diets containing different 353 percentages and types of forage. Considerable variation in enteric CH₄ emissions exists 354 among cows. All CH₄ emission phenotypes studied were positively correlated with forage 355 DM intake. Importantly, there were significant correlations in ranking cows on emissions of 356 CH₄ calculated from eructation peaks or as CH₄ to CO₂ ratio, although calculation of CH₄ 357 emissions from eructation peaks produced a more repeatable phenotype.

- 358
- 359
- 360

ACKNOWLEDGEMENTS

This work was funded by Defra, the Scottish Government, DARD, and the Welsh Government as part of the UK's Agricultural GHG Research Platform project

363	(www.ghgplatform.org.uk). The authors would like to thank the farm staff for their assistance				
364	with the study.				
365					
366	REFERENCES				
367					
368	Beauchemin, K. A., T. A. McAllister, and S. M. McGinn. 2009. Dietary mitigation of enteric				
369	methane from cattle. CAB Rev.: Perspec. Agric. Vet. Sci. Nutr. Nat. Resour. 4:1-18.				
370	Bell, M. J., and R. J. Eckard. 2012. Reducing enteric methane losses from ruminant livestock				
371	- Its measurement, prediction and the influence of diet. In Livestock Production (ed. K				
372	Javed), pp.135-150. InTech Publishing, Croatia.				
373	Cottle, D. J., J. V. Nolan, and S. G. Wiedemann. 2011. Ruminant enteric methane mitigation:				
374	a review. Anim. Prod. Sci. 51:491-514.				
375	de Haas, Y., J. J. Windig, M. P. L. Calus, J. Dijkstra, M. de Haan, A. Bannink, and R. F.				
376	Veerkamp. 2011. Genetic parameters for predicted methane production and the potential				
377	for reducing enteric emissions through genomic selection. J. Dairy Sci. 94:6122-6134.				
378	de Haas, Y., M. P. L. Calus, R. F. Veerkamp, E. Wall, M. P. Coffey, H. D. Daetwyler, B. J.				
379	Hayes, and J. E. Pryce. 2012. Improved accuracy of genomic prediction for dry matter				
380	intake of dairy cattle from combined European and Australian data sets. J. Dairy Sci.				
381	95:6103-6112.				
382	Ellis, J. L., E. Kebreab, N. E. Odongo, B. W. McBride, E. K. Okine, and J. France. 2007.				
383	Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90:3456-3467.				
384	Garnsworthy, P. C., J. Craigon, J. H. Hernandez-Medrano, and N. Saunders. 2012a. On-farm				
385	methane measurements during milking correlate with total methane production by				
386	individual dairy cows. J. Dairy Sci. 95:3166-3180.				

- Garnsworthy, P. C., J. Craigon, J. H. Hernandez-Medrano, and N. Saunders. 2012b. Variation
 among individual dairy cows in methane measurements made on farm during milking. J.
 Dairy Sci. 95:3181-3189.
- 390 Grainger, C., T. Clarke, S.M. McGinn, M.J. Auldist, K. A. Beauchemin, M. C. Hannah, G. C.
- Waghorn, H. Clark, and R. J. Eckard. 2007. Methane emissions from dairy cows
 measured using the sulfur hexafluoride (SF₆) tracer and chamber techniques. J. Dairy Sci.
 90:2755-2766.
- Hayes, B. J., J. H. J. van der Werf, and J. E. Pryce. 2011. Economic benefit of genomic
 selection for residual feed intake (as a measure of feed conversion efficiency) in
 Australian dairy cattle. In: Recent advances in animal nutrition, 18, pp. 31-35.
- Hegarty, R. S., J. P. Goopy, R. M. Herd, and B. McCorkell. 2007. Cattle selected for lower
 residual feed intake have reduced daily methane production. J. Anim. Sci. 85:1479-1486.
- Huhtanen, P., S. J. Krizsan, M. Hetta, H. Gidlund, and E. H. Cabezas Garcia. 2013.
 Repeatability and between cow variability of enteric methane and total carbon dioxide
 emissions. In: Proceedings of the Greenhouse Gases in Animal Agriculture conference,
- 402 Advances in Animal Biosciences, 23-27 June, Dublin, Ireland, 4:588.
- Jones, H. E., C. C. Warkup, A. Williams, and E. Audsley. 2008. The effect of genetic
 improvement on emission from livestock systems. In: Proceedings of the European
 Association of Animal Production, 24-27 August, Vilnius, Lithuania, p. 28.
- Kinsman, R., F. D. Sauer, H. A. Jackson, and M. S. Wolynez. 1995. Methane and carbon
 dioxide emissions from dairy cows in full lactation monitored over a six-month period. J.
 Dairy Sci. 78:2760-2766.
- Lassen, J., P. Løvendahl, and J. Madsen. 2012. Accuracy of noninvasive breath methane
 measurements using Fourier transform infrared methods on individual cows. J. Dairy Sci.
 95:890-898.

- 412 Lawes Agricultural Trust. 2012. Genstat 15, Version 15.1 Reference Manual. Clarendon
 413 Press, London, UK.
- Madsen, J., B. S. Bjerg, T. Hvelplund, M. R. Weisbjerg, and P. Lund. 2010. Methane and
 carbon dioxide ratio in excreted air for quantification of the methane production from
 ruminants. Livest. Sci. 129:223-227.
- 417 Yan, T., C. S. Mayne, F. G. Gordon, M. G. Porter, R. E. Agnew, D.C. Patterson, C. P. Ferris,
- 418 and D. J. Kilpatrick. 2010. Mitigation of enteric methane emissions through improving
- 419 efficiency of energy utilization and productivity in lactating dairy cows. J. Dairy Sci.

420 93:2630-2638.

422 **Table 1.** Composition and analysis of commercial, high grass silage, and high maize silage
423 partial mixed rations (PMR)

	PMR				
Composition (g/kg DM)	Commercial	Grass silage	Maize silage		
Grass silage	226	360	193		
Maize silage	253	210	361		
Whole-crop wheat silage	215	178	184		
Soya bean meal	80	66	68		
Rapeseed meal	80	66	68		
$DDGS^{1}$	24	20	20		
Soya hulls	24	20	20		
Sugar beet pulp	24	20	20		
Beet molasses	40	33	34		
Fat supplement ²	13	11	11		
Minerals & vitamins ³	22	18	19		
Analysis ⁴					
Dry matter, g/kg	463	425	453		
Metabolisable energy, MJ/kg DM	12.0	12.1	11.9		
Crude protein, g/kg DM	175	171	162		
Neutral-detergent fiber, g/kg DM	367	374	379		
Starch, g/kg DM	163	135	200		
Sugars, g/kg DM	67	60	58		
Crude fat, g/kg DM	37	37	36		
Forage DM, % of total DM	69	75	75		

424

425 ¹ Distillers dried grains with solubles (maize)

426 ² Butterfat extra (Trident Feeds, Peterborough, UK)

³ containing calcium, 18%; phosphorus, 10%; magnesium, 5%; salt, 17%; copper, 2,000

428 mg/kg; manganese, 5,000 mg/kg; cobalt, 100 mg/kg; zinc, 6,000 mg/kg; iodine, 500 mg/kg;

429 selenium, 25 mg/kg; vitamin A, 400,000 IU/kg; vitamin D3, 80,000 IU/kg; and vitamin E,

430 1,000 mg/kg.

431 ⁴ All ingredients were analyzed by a commercial analytical laboratory (Sciantec analytical,

432 Cawood, UK)

Partial mixed ration ¹										
		Commercial	High grass	High maize					Rank c	orrelation ²
			silage	silage						
							Residual			
Phenotype	Units		Mean		SED	P value	CV (%)	Repeatability	r	P value
DM intake	kg/d	17.8 ^a	19.8 ^b	19.4 ^b	0.7	< 0.05	11.4	0.42	0.632	< 0.001
Milk yield	kg/d	29.7 ^a	33.3 ^b	31.5 ^{ab}	1.2	< 0.05	10.6	0.82	0.920	< 0.001
Live weight	kg/d	662	664	661	2.8	0.294	1.0	0.98	0.967	< 0.001
Milkings per day		2.6 ^a	3.2 ^b	3.1 ^b	0.2	< 0.05	21.7	0.26	0.749	< 0.001
Milking duration	S	389	387	386	9.6	0.972	6.6	0.92	0.956	< 0.001
Eructation Peaks										
CH_4	mg/L	0.12	0.11	0.11	0.01	0.748	13.6	0.75	0.801	< 0.001
Average Concentrations										
CH_4	mg/L	0.25	0.24	0.24	0.01	0.536	10.3	0.74	0.716	< 0.001
CO_2	mg/L	8.4	8.6	8.7	0.2	0.293	6.6	0.86	0.821	< 0.001
Ratio CH ₄ :CO ₂	g/kg	29.8	30.7	29.7	1.1	0.592	11.0	0.54	0.587	< 0.001

433 **Table 2.** Least square means, variability, repeatability and rank correlation (r) of production, methane (CH_4) and carbon dioxide (CO_2) 434 phenotypes for cows fed on commercial, high grass silage and high maize silage partial mixed rations

435 ^{a,b} Means within a row with different superscripts differ. SED = standard error of differences.

¹ In consecutive feeding periods, 36 cows were fed a commercial ration (Period 1) followed by 2 diets containing higher proportions of grass
silage or maize silage in a crossover design (Periods 2 and 3).

438 ² Values for 36 cows fed on a commercial diet (Period 1) were compared to average values for the same 36 individual cows in Periods 2 and 3.

443 Figure 1. Concentration in parts per million of a) methane and b) carbon dioxide during a444 single milking visualized by the data logging software.

Figure 2. Average methane (CH₄) concentration (with SE bars) calculated from a) eructation peaks and b) the ratio of CH₄ to carbon dioxide (CO₂) concentrations for individual cows for each hour of the day from all records collected during the study period.

Figure 3. Relationship between methane (CH₄) concentration calculated from eructation peaks and a) the average CH₄ concentration over each milking, b) the ratio of CH₄ to carbon dioxide (CO₂) concentrations for individual cows fed a commercial PMR (\blacksquare) or high forage

- 458 PMRs (\Box). The rank correlation (r) is shown with the line of best-fit for the commercial PMR
- 459 (dashed line) and high forage PMRs (solid line).

Figure 4. Relationship between methane (CH_4) concentration during milking from individual cows on a commercial PMR and high forage PMRs calculated from a) eructation peaks, and b) ratio of CH_4 to carbon dioxide (CO_2) concentrations averaged over each milking. The rank correlation (r) is shown with the line of best-fit.

469 **Figure 5.** Relationship between average carbon dioxide (CO₂) concentration over each 470 milking and average daily CO₂ emissions estimated using the method of Madsen et al. (2010) 471 for individual cows fed commercial PMR (\blacksquare), high grass silage PMR (+), and high maize 472 silage PMR (\blacktriangle).