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The discovery of topological order has revolutionized the understanding of quantum matter in
modern physics and provided the theoretical foundation for many quantum error correcting codes.
Realizing topologically ordered states has proven to be extremely challenging in both condensed
matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamil-
tonian using an efficient quantum circuit on a superconducting quantum processor. We measure a
topological entanglement entropy near the expected value of ln 2, and simulate anyon interferome-
try to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key
aspects of the surface code, including logical state injection and the decay of the non-local order
parameter. Our results demonstrate the potential for quantum processors to provide key insights
into topological quantum matter and quantum error correction.

Different phases of matter can commonly be distin-
guished in terms of spontaneous symmetry breaking and
local order parameters. However, several exotic quan-
tum phases have been discovered in recent decades that
defy this simple classification, instead exhibiting topo-
logical order [1, 2]. These phases are characterized by
their long-range quantum entanglement and the emer-
gence of quasiparticles with anyonic exchange statistics.
Moreover, they have energetically gapped ground states
with degeneracies that depend on their boundary condi-
tions. The non-local nature of these states makes them
particularly attractive platforms for fault tolerant quan-
tum computation, as quantum information encoded in
locally indistinguishable ground states is robust to local
perturbations [3, 4]. This is the underlying principle of
topological quantum error correcting codes, where the
logical codespace corresponds to the degenerate ground
state subspace of a lattice model [5–7].

An archetypical topological two-dimensional lattice

model is the toric code, which exhibits so-called Z2 topo-
logical order [3]. The realization of the toric code on
a plane—the surface code—has emerged as one of the
most promising stabilizer codes for quantum error cor-
rection due to its amenable physical requirements [8].
Given both its inherent richness and quantum comput-
ing applications, experimentally realizing Z2 topological
order has sparked extensive interest, resulting in several
experimental studies with comparatively small-scale syn-
thetic quantum systems [9–19]. Despite these efforts, the
experimental realization of topologically ordered states
remains a major challenge, requiring the generation of
long-range entanglement. This can be achieved by iden-
tifying suitable quantum systems with topologically or-
dered ground states or by constructing a topologically
ordered state in an engineered quantum system. Prob-
ing the non-local topological properties of such a state
on an array of qubits requires high fidelity gates and a
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sufficiently large two-dimensional lattice.
In this work, we develop an efficient quantum circuit

to prepare the toric code ground state on a lattice of
31 superconducting qubits. We then experimentally es-
tablish the topological nature of the state by measur-
ing the topological entanglement entropy. By simulating
interferometry of toric code excitations, we fully deter-
mine their associated braiding statistics. Furthermore,
we prepare logical states of the distance-5 surface code
on 25 qubits and demonstrate error correction of logical
measurements. While a meaningful implementation of
active error correction on these states is beyond current
experimental capabilities, we realize these states without
stabilizer circuitry, providing a scheme to characterize
and understand errors of logical qubits.

We realize the toric code ground state, depicted in
Fig. 1A, by implementing a shallow quantum circuit on a
Sycamore quantum processor [22]. The toric code Hamil-
tonian

H = −
∑
s

As −
∑
p

Bp (1)

is defined in terms of qubits living on the edges of a square
lattice. The “star” operators As =

∏
i∈s Zi are prod-

ucts of Pauli Z operators touching each star (+, blue).
The “plaquette” operators Bp =

∏
j∈pXj are products of

Pauli X operators on each plaquette (�, purple). For the
boundary conditions shown in Fig. 1A, there is a unique
toric code ground state |G〉, with parity +1 for all star
and plaquette operators: As |G〉 = Bp |G〉 = +1 |G〉.

Our ground state preparation algorithm, depicted in
Fig. 1B, is motivated by the observation that the ground
state is an equal superposition of all possible “plaquette
configurations” and can be written as

|G〉 =
1√
212

∏
p

(I +Bp) |0〉⊗31 , (2)

where |0〉⊗31 is the product of single-qubit states |0〉, and
the product is over the 12 plaquettes. We begin in the
trivial state |0〉⊗31, where all 〈As〉 = 1 and 〈Bp〉 = 0.
For each plaquette Bp, we perform a Hadamard on the

upper qubit, preparing (|0〉+ |1〉)/
√

2, and then perform
CNOT gates to the other qubits on the plaquette, effec-
tively realizing I + Bp. These operations are carefully
ordered, starting in the middle and working outward,
to avoid conflict between plaquettes while minimizing
circuit depth. The 12 Hadamards create a superposi-
tion of 212 bitstrings, and the CNOTs transform each of
those bitstrings into a configuration where the Z parity
on each star is +1; the final superposition has X parity
+1 on each plaquette. This circuit exhibits optimal scal-
ing, with depth linear in system width [23], specifically
3 + 2b(N − 1)/2c nearest-neighbor CNOT layers for a
lattice N plaquettes wide.

Topologically ordered states in 2D systems exhibit
long-range quantum entanglement, characterized by the
topological entanglement entropy, Stopo [24, 25]. Ground

states of 2D gapped Hamiltonians typically satisfy the
“area law” scaling of the entanglement entropy: the
leading-order contribution to the entanglement entropy
SA of a subsystem A results from local interactions that
scale with the boundary length of the subsystem. Topo-
logical ground states have an additional universal con-
stant contribution Stopo < 0 arising from their intrinsic
long-range entanglement. To extract Stopo, a linear com-
bination of subsystem entropies can be constructed such
that the local contributions cancel. For the subsystems
depicted in Fig. 2A,

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC ,
(3)

where AB indicates the union of A and B. The structure
of toric code eigenstates implies that Stopo can be inferred
from small subsystems. For the toric code ground state,
Stopo = − ln 2, reflecting the total quantum dimension of
Z2 topological order [26], while Stopo = 0 in the absence
of topologically order.

The structure of the toric code Hamiltonian results in
entanglement characterized by integer multiples of ln 2,
scaling with the number of star operators As intersecting
the subsystem boundary [27], as illustrated in in Fig. 2B.
To compute Stopo, one can measure the second Rényi en-

tropy S(2) = − ln[Tr
(
ρ2
)
], where ρ is density matrix, for

each subsystem in Eq. (3). Recently-introduced random-
ized methods enable efficient measurement of Rényi en-
tanglement entropies, requiring a smaller number of mea-
surements for large subsystems compared to full quan-
tum state tomography [28–30]. This enables accurate
entropy measurement when tomography is intractable,
such as the 9-qubit subsystem in Fig. 2A. We apply ran-
dom single-qubit unitaries to the subsystem of interest
and sample the probability distribution of the bitstrings.
Analyzing statistical correlations across many random in-
stances allows us to compute the second Rényi entropy.
We use an iterative Bayesian scheme [20] to mitigate mea-
surement errors and remove under-sampling bias (see [21]
Sec. C, where we also compare randomized measurement
with tomography results).

Figure 2C shows distributions of the measured entan-
glement entropies for subsystems of 2×2, 2×3, and 3×3
qubits within the toric code ground state. For a subsys-
tem with n qubits, the entanglement entropy ranges from
0 for a product state up to n ln 2. In the toric code, sub-
systems with no interior have the maximum value n ln 2;
in those cases, we measure a narrow distribution centered
just below the ideal value. For subsystems with an in-
terior, we measure a wider distribution centered slightly
above the predicted value. This is consistent with uni-
tary error and decoherence slightly mixing the system
with its environment, which increases entanglement en-
tropies that are not yet at their maximal value.

We compute Stopo from the subsystem entropies using
Eq. (3) for 14 different 2× 2 arrays, 20 different 2× 3 ar-
rays, and 3 different 3×3 arrays. Each randomized mea-
surement on the qubit array yields several Stopo estimates
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FIG. 1. Toric code ground state. (A) Experimentally-measured parity values for a 31-qubit lattice in the toric code
ground state |G〉. Qubits (x) are drawn on the standard toric code lattice, touching star (As, +, blue tile) and plaquette
(Bp, �, purple tile) operators. We compute each parity from a measured probability distribution (measuring each As and Bp
separately, 104 repetitions), which we correct for readout error using iterative Bayesian methods [20] (see [21] Sec. B). Mean
parity: 0.92± 0.06 (1σ). (B) Quantum circuit to prepare |G〉, with quantum gates superimposed on experimentally-measured
parity values following each step. The circuit consists of Hadamard (H) and CNOT gates, which we compile into CZ gates.
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FIG. 2. Topological entanglement entropy. (A) Schematic identifying the subsystems A, B, and C used to measure
topological entanglement entropy Stopo on 4-, 6-, and 9-qubit systems within the toric code lattice. (B) Illustration identifying
the expected entanglement entropy S for groups of qubits in the toric code. We draw a red perimeter around each group and
count the number k of star operators (blue tiles) it crosses. S = k ln 2 + Stopo = (k − 1) ln 2. (C) Experimental second Rényi

entropy S(2) distributions measured on the 31-qubit toric code ground state. There is a histogram for each subsystem shape.
(D) Topological entanglement entropy Stopo/ ln 2 (ideal value −1) computed from the entropies in C. We evaluate each dataset
in all possible orientations of the subsystems in A (2 × 2: 4, 2 × 3: 2, 3 × 3: 8). Upper right: mean (dark green line) and
distribution standard deviation.

from different orientations of the partitions A,B,C. Dis-
tributions of measured Stopo are shown in Figure 2D,
with mean values Stopo/ ln 2 = −0.89, −0.90, and −0.95
for the 2× 2, 2× 3, and 3× 3 qubit arrays, respectively.
The distributions provide strong evidence for the non-

trivial topological nature of the state, closely approach-
ing the ideal value of Stopo = − ln 2, completely distinct
from the trivial state value of zero.

One of the most exotic features of topological phases is
that their quasiparticle excitations (anyons) satisfy mu-



4

A |E⟩ = U1|G⟩ U4|E⟩ = ei
 

π|E⟩

X parity, ⟨B⟩

Z parity, ⟨A⟩

X

X

Z

Z

Z

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

XX X

X X

X

X

X

X

X X

X

X

m
e

e

m
e

e

m
e

e

m
e

e

U3|E⟩U2|E⟩

B |+⟩

|φ⟩

|0⟩+ei
 

θ|1⟩

U |φ⟩

C

D

E

m

m

m

m

e e e e

ψ

em

eψ

mψ

𝟙e

𝟙m

𝟙ψ

e

m

ψ

M
ut

ua
l

E
xc

ha
ng

e

Interferometry phase, θ/π

|φ⟩ U ei
 

θ|φ⟩

X

XX

X

e
m
ψ

X

X

Z

Z

controlled
XXYYZZ

controlled
XXXX

F

Y

Y

𝟙
Before After

Before After

+ ctrl-U

D

E

|1⟩⊗|φ⟩

|0⟩⊗|φ⟩

+

|1⟩⊗ei
 

θ|φ⟩

|0⟩⊗|φ⟩

θ(em)

θ(ψ)

FIG. 3. Extracting braiding statistics using Ramsey interferometry. (A) Visualizing braiding with a toric code
excited state |E〉 = U1|G〉 (excitations e (red) and m (yellow), experimentally-measured parities). We apply additional X gates
(U2, U3, U4) to visualize braiding an e around the m. (B) Quantum circuits with unitary U and an eigenstate |ϕ〉. Left: Direct
application. Right: Extracting the phase θ using an auxiliary qubit (green). (C) Illustration of Ramsey interferometry for
the case of braiding an e and m (state |ϕ〉) using an operator U . We visualize the superposition of two paths, with the braid
operation U controlled by an auxiliary qubit in |+〉. (D) Extracting the mutual statistics for e and m. Left: initial excited
eigenstate (similar to A). We implement controlled-XXXX with an auxiliary control qubit (green) starting in |+〉. Right:
parity measurements after controlled-XXXX. (E) Extracting the fermion exchange statistics, analogous to D. We create two
pairs of ψ (neighboring e and m) and implement controlled-XXYYZZ to measure the exchange phase. (F) Measured mutual
and exchange phases, with braiding diagrams. Phases are from tomography on the auxiliary qubit, 18000 total repetitions per
compiled instance. Standard error estimated with jackknife re-sampling over instances.

tual and exchange statistics more general than those of
bosons and fermions. Excitations in toric code eigen-
states are commonly denoted as “electric” e with 〈As〉 =
−1, and “magnetic” m with 〈Bp〉 = −1, in connection
to lattice gauge theory. The four distinct anyons of the
toric code are 1 (the absence of an e or m), e, m, and
ψ (an emergent fermion resulting from the combination
of e and m). In the toric code, the mutual statistics are
encoded in the phase accumulated when dragging one
anyon around another anyon of different type, while the
exchange statistics are phases arising from spatial inter-
change of two identical anyons. We simulate anyon braid-
ing on our quantum processor by creating toric code ex-
cited states corresponding to all the distinct excitations
and measuring their statistics with interferometry.

The toric code excited states can be created by ap-
plying a string of Pauli operators to the ground state:
an X-string will result in the state with e excitations
at each end, while a Z-string prepares the state with m
excitations at each end, as shown in the first panel of
Fig. 3A, where we visualize an example of e−m mutual
braiding with snapshots of experimentally-measured par-
ity values, 〈As〉 and 〈Bp〉. We move an e around m with

an X-string, eventually returning to its initial position.
The initial and final states have the same parity values
but differ by an overall phase, in this case π, which is not
directly detectable.

To experimentally extract the braiding statistics, we
employ a multi-qubit Ramsey interferometry scheme [31].
This protocol provides a scalable way to measure the
overlap between the initial and final states, allowing ex-
perimental access to the accumulated phase θ. A key
step in this protocol is the use of an auxiliary qubit and
a controlled operation, effectively creating a superposi-
tion of the braided and non-braided states, as shown in
Fig. 3B-C. This sequence imparts θ into a measurable ro-
tation of the auxiliary qubit. We efficiently compile the
multi-qubit controlled operations into CZ gates. Since
the measured phases are sensitive to coherent and non-
Markovian errors, we use randomized compiling to miti-
gate these errors [32]. See Sec. D in [21] for details.

Fig. 3D-E illustrate two examples of braiding interfer-
ometry. In Fig. 3D, we extract the e−mmutual statistics,
where the braiding path is a Pauli string XXXX, mov-
ing e around the plaquette that contains an m. Fig. 3E
shows a similar example for the exchange statistics of two
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FIG. 4. Surface code logical qubit states. (A) Measured parity values for surface code logical qubit states |TL〉 =(
|0L〉+ eiπ/4 |1L〉

)
/
√

2 on 5 × 5 and 3 × 3 qubit arrays. Logical operators ZL and XL span across each array. (B) Logical

measurement with error correction. We measure a 25-qubit bitstring in X or Z basis and evaluate the local parities of the same
basis. Negative parities indicate an error. We flip the circled qubits to restore positive parities. (C) Experimental logical qubit
tomography immediately after state injection for 128 states (sweeping the initial state of the center qubit |α〉 + |β〉), plotted
in the Bloch sphere (5 × 5). The ideal states lie on five planes: x = 0 (yellow), y = 0 (purple), z = 1/

√
2 (red), z = 0 (blue),

z = −1/
√

2 (green). Mean Bloch vector length: 0.6 ± 0.1 (1σ). (D) We prepare logical states, wait for a time t, and then
perform a logical measurement. For |1L〉, we compare raw (hollow markers) to corrected (filled markers) logical measurements.
For |+L〉, we compare free evolution (filled markers) to dynamical decoupling (star markers), both using corrected logical
measurement (see main text). Each logical measurement uses 104 repetitions.

identical ψ excitations using a path of intertwining Pauli
strings of XXXX and ZZZZ, simplifying to XXYYZZ
(see Sec. D in [21] for details). The parity measurements
show consistent values before and after the controlled-
braiding operation, slightly fading due to decoherence
and gate error. We measure the phases for the other mu-
tual and exchange combinations, presenting the results
in Fig. 3F. The phases are plotted alongside their corre-
sponding braid diagrams, with the expected values 0 and
π indicated by dashed gray lines.

Our measurements illuminate the non-trivial mutual
and exchange statistics of the toric code. Braiding e
around m results in a π phase, which does not occur for
local bosons or fermions. Moreover, while e and m both
satisfy bosonic exchange statistics, their combination ψ
exhibits fermionic exchange statistics. The mutual and
exchange statistics of the anyons, conventionally summa-
rized in the modular S and T matrices, fully characterize
the Z2 topological order [26].

Distinct topologically ordered ground states are locally
indistinguishable, making them attractive logical qubits
due to this immunity to local perturbations. The lattice
of Fig. 1A has only one ground state, but in Fig. 4A we
use different boundary conditions where the toric code
admits a ground state degeneracy, as proposed for the
surface code [5, 6, 33]. We introduce logical operators ZL
and XL which span across the lattice and commute with
the Hamiltonian but anti-commute with each other.

We generalize the state preparation circuit of Fig. 1B
to create the logical states |0L〉 and |+L〉, where
ZL |0L〉 = +1 |0L〉 and XL |+L〉 = +1 |+L〉, on both
5×5 (distance-5) and 3×3 (distance-3) arrays. The |0L〉
and |+L〉 preparations are closely related, connected by
a logical Hadamard. We then use the logical operators,
which are simply products of single-qubit gates, to realize
|1L〉 = XL |0L〉 and |−L〉 = ZL |+L〉. See Sec. A in [21]
for details on state preparation and logical operations.

The logical states are resilient to local errors, which we
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demonstrate with logical measurement with error correc-
tion, shown in Fig. 4B. Following surface code proposals,
we perform a logical measurement by projectively mea-
suring all the qubits in Z or X basis (for ZL or XL, re-
spectively). Naively evaluating the parity of the logical
operator is vulnerable to errors on any qubit along the
operator, but errors can be detected by also evaluating
the local parities (As and Bp) from the individual qubit
measurements. By construction, we expect the local par-
ities to be +1, so any −1 values indicate nearby errors.
We find a minimal set of qubits to flip in order to recover
+1 parities before evaluating the logical operator. This
correction decreases the logical error by about a factor of
5 for distance-5 and a factor of 3 for distance-3. Averag-
ing over ZL and XL eigenstates, the logical preparation
and measurement error is 0.030 for both distance-5 and
distance-3, lower than the average physical qubit prepa-
ration and measurement error, 0.034. This is a simpli-
fied form of error correction compared to the repetitive
stabilizer measurements of surface code proposals, where
parity changes are matched together over space and time.

The logical subspace also admits arbitrary superposi-
tion states α |0L〉 + β |1L〉, which we realize with state
injection, encoding a single physical qubit state into the
logical qubit. For 5 × 5 state injection, we prepare the
central qubit in α |0〉 + β |1〉 and then create a GHZ-

like state (αI + βXL) |0〉⊗25 using three CZ layers. The

toric code preparation circuit maps |0〉⊗25 → |0L〉 and

XL |0〉⊗25 → |1L〉, giving α |0L〉 + β |1L〉. For example,
the states depicted in Fig. 4A are logical T states |TL〉 =(
|0L〉+ eiπ/4 |1L〉

)
/
√

2, of interest for non-Clifford oper-
ations. We characterize injected states using logical to-
mography. Measuring ZL and XL is straightforward and
robust, as discussed above. We measure YL by perform-

ing another logical gate, X
1/2
L = (I − iXL)/

√
2, decom-

posed into five CZ layers, and then measuring ZL. We
plot the resultant Bloch vectors for 128 injected states
across the Bloch sphere in Fig. 4C. By measuring these
non-local order parameters, we illuminate the logical de-
gree of freedom that was invisible to the local parity mea-
surements of Fig. 4A.

Finally, we investigate decoherence of ZL and XL

eigenstates by plotting logical error versus wait time t
in Fig. 4D. We reiterate the importance of measurement
error correction by comparing raw and corrected data for
|1L〉. Note that while distance-5 has significantly worse
raw error, after correction it is modestly better than
distance-3. However, observe that |+L〉 decays much
more quickly than |1L〉, due to its sensitivity to Z errors
(dephasing). We dynamically decouple the qubits from
low-frequency noise with a simple sequence executing an
X gate on each qubit at t/4 and 3t/4, which brings |+L〉
error slightly below |1L〉 error, with distance-3 remaining
slightly lower-error. |1L〉 and |0L〉 are not appreciably af-
fected by this dynamical decoupling (see Sec. E in [21]).
Overall, the logical error increases linearly at 0.06 per
microsecond. For active error correction with the sur-

face code, we expect a few percent logical error per cycle
at threshold [8]. Typical cycle durations are hundreds
of nanoseconds [34], where the logical state suffers the
decoherence studied here as well as gate errors, suggest-
ing continued efforts to decrease the cycle duration and
improve coherence.

Our shallow quantum circuits for realizing toric code
eigenstates can be extended to other topologically or-
dered states, including string-nets with non-Abelian
anyons [35]. Moreover, the tools we have developed
can be readily applied to a wide class of topologically-
ordered states generated on quantum processors. By en-
coding quantum information in the degenerate ground
state manifold of the toric code, we provide a method
for studying coherence properties of logical qubit states.
This method could be used to identify and mitigate noise
correlations in the system, with critical implications for
future error correction experiments.
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Supplementary materials for
“Realizing topologically ordered states on a quantum processor”

I. LINEAR QUANTUM CIRCUIT FOR THE
TORIC CODE

We provide a general circuit design principle for the
toric code on a square lattice. The construction can be
implemented on Sycamore to (i) realize toric code with
3+2b(N−1)/2c nearest-neighbor (NN) CNOT layers for
a lattice with N ×M plaquettes, where N ≤M , and (ii)
encode arbitrary distance-d logical qubit with d+1 layers
of nearest-neighbour CNOT (however, in some instances
this reduces to (d + 3)/2 layers). Such construction is
generalizable to a wide range of Abelian and non-Abelian
quantum codes [36]. The linear scaling of the circuit is
essentially optimal for topologically ordered states [23].

As mentioned in the main text, a toric code ground
state takes the form of a product of commuting projectors

|G〉 =
1√

2NM

∏
p

(I +Bp) |00 . . . 0〉 , (S1)

where N ×M is the total number of plaquettes. We note
that the choice of As and Bp is dual to that originally
used by Kitaev; both conventions are widely used in liter-
ature and can be related by a single layer of Hadamards.
An expansion of the product suggests |G〉 is an equal-
weight linear combination of configurations with each
plaquette p acted on by I or Bp with equal probabil-
ity. This resembles an equal-weight superposition of all
the binary digits with each binary representing the ac-
tion of operators at p, with the relations 0 → I and
1 → Bp =

∏
i∈pXi (see Fig. S1). This motivates the

following construction of toric code

1. Initialize the product state |00...0〉 on all the qubits.

2. Identify a representative qubit for each plaquette.

3. Apply Hadamard gate H on each representative
qubit.

4. Within each plaquette, apply CNOTs controlled by
the representative qubit and targeting the other
qubits in the plaquette. Perform the control op-
eration over all plaquettes in an order such that
the state stored in the representative qubits are
not changed until the CNOT operations in their
plaquette have been applied.

Steps 1-3 initialize an equal weight superposition of all
the binary strings of representative qubits, in Step 4 we
apply the plaquette operator Bp on each plaquette de-
pending on the representative qubit state, which turns a
qubit binary string into a plaquette configuration. We
illustrate this in further detail in Fig. S2.

To specify the state on a finite system, we need to im-
pose boundary conditions. These can either be “match-
ing” or “mixed,” corresponding to whether the boundary

1

0

FIG. S1. The binary correspondence of the configurations
(toric code on 2×2 plaquette system). The yellow plaquettes
are acted by Bp, the white plaquettes are acted by I. This can
be viewed as an equal-weight superposition of binary strings
where the binary digit corresponds to the two operators.

plaquettes are of the same type or not, respectively. For
the former, there is a unique ground state–we call this
the toric code ground state in the main text. For the
latter, the ground state subspace is two-dimensional and
can thus encode a logical qubit–we refer to these states as
logical states of the surface code in the main text. Other
boundary conditions are possible, though we do not ex-
plore them here, such as periodic boundary conditions
placing the code on a torus, or inserting defects inside
the lattice.

A. Matching boundary conditions

In the case of matching boundary conditions, the lat-
tice consists of a rectangular array of complete plaquettes
(see Figs. 1A and S2). Following the design principle,
all the qubits are initialized with state |0〉. We choose
the top qubit on each plaquette to be the representative
qubit.

To proceed, let us consider a system of two plaquette
columns, shown in Fig S2. In panel B, we initialize the
qubits, apply Hadamards on the representative qubits,
and apply CNOTs from the representative qubits to the
other qubits. Note that after B(1-3), the states of rep-
resentative qubits are stored in the boundary qubits on
the sides, so in panel B(4) the side qubits control the
CNOTs, reducing the circuit depth. Fig. S2C shows the
wavefunction after the Hadamards. The CNOTs act to
“spread out” the 1’s to form loops around the plaque-
ttes, effectively realizing (I + Bp). As discussed in the
main text, each bitstring is an eigenstate of all the stars
As (blue), and the superposition of all 16 is an eigen-
state of all the plaquettes Bp (purple): Bp |G〉 maintains
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the same superposition. The situation for the 31-qubit
system in Fig. 1A is analogous but intractable to draw,
involving superpositions of 212 = 4096 bitstrings.

For systems with more columns, we can grow the toric
code starting from the middle out, following a similar
strategy. This is shown in Fig. 1B. This larger circuit
begins similarly to Fig. S2B, for the central two columns,
and then extends outward (overlapping CNOT layers
where possible to reduce depth). This procedure gen-
eralizes easily to wider systems with linear depth scaling,
independent of the height.

B. Mixed boundary conditions (logical states)

Mixed boundary conditions result in a two-dimensional
ground state subspace that can encode a logical qubit.
The distance-3 and 5 surface code can be encoded on the
lattice shown in Fig. 4A, where the plaquette (purple)
and the star (blue) stabilizers correspond to

∏
i∈pXi and∏

i∈s Zi. On the boundary, some stars and plaquettes
are incomplete, the stabilizers there are taken to be the
product of Pauli operators on the two remaining bonds.

To construct the circuit for the distance-3 and 5 codes,
we again follow the design principle above. The represen-
tative qubit is chosen as the outer-top qubit referenced
to the center of the system. In the case of the incom-
plete plaquettes on the top boundary, we choose the outer
qubit to be representative (see Fig. S3 and Fig. S5).

Fig. S3 shows the circuit construction to encode the
logical state |0L〉 for a distance-3 code, with many paral-
lels to Fig. S2 to help visualize the state. Here again, the
CNOTs act to “spread out” the 1’s to form loops around
the plaquettes, effectively realizing (I+Bp). This state is
a +1 eigenstate of ZL (see Fig. 4A). The situation for the
5 × 5 system in Fig. 4A is analogous but intractable to
draw, involving superpositions of 212 = 4096 bitstrings.
We can readily create |1L〉 using XL |0L〉, where XL is
simply a produce single-qubit X gates.

To create XL eigenstates, we take advantage of the
transversal logical Hadamard, where applying H to all the
qubits performs a logical H and, as a side effect, also ro-
tates the code 90◦ [37]. To compensate, we simply rotate
the |0L〉 circuit 90◦ and add the transversal Hadamard,
as shown in Fig. S4. This creates |+L〉, and we can also
readily create |−L〉 = ZL |+L〉.

These circuits generalize readily to larger circuits, such
as the distance-5 case shown in Fig. S5A. Distance-d re-
quires only (d+ 3)/2 CNOT layers (for odd d).

By altering the beginning of the circuit, we can in-
ject an arbitrary logical state. This is shown in Fig. S5B
for the distance-5 case (it generalizes easily with depth
linear in distance). The center qubit (red) is prepared
in arbitrary single-qubit state α |0〉 + β |1〉. In (1a), we
initialize the center qubit in |ψ〉 = α |0〉 + β |1〉 along
with the Hadamards. In (2a-c), we “spread” this state
along the qubits of XL (the five qubits in the center
column; see Fig. 4A) using the CNOTs highlighted in

red. This creates a GHZ-like state on those five qubits,
(αI + βXL) |00000〉 = α |00000〉 + β |11111〉. Step (2c)
includes the final layer of red CNOTs as well as step (2)
from Fig. S5A to minimize circuit depth. We then pro-
ceed with steps (3-5) from Fig. S5A.

C. Circuit compilation and optimization

In Fig. S6, we walk through our circuit optimization
techniques for an example state preparation circuit. We
use these optimization steps on all of the circuits run in
the main text except for the randomized compiling case
(see Sec. IV B).

II. READOUT ERROR MITIGATION

Measuring superconducting qubits is vulnerable to var-
ious errors, such as qubit decay, other unwanted qubit
transitions, and separation error. Without full error cor-
rection, these readout errors severe limitations on the
computational fidelity of quantum processors. It is there-
fore important to mitigate the readout errors strategi-
cally when using NISQ devices.

Note we discuss and benchmark readout performance
in Sec. V C, including discussion of related errors as state
preparation and gate error, which we neglect here, since
measurement error is dominant on this device.

One way to mitigate readout errors is using the re-
sponse matrix [20]. Suppose, for bitstrings s, s′, the ob-
served probabilities are Po(s) and the actual error-free
probabilities are Pa(s′). This method assumes the two
probability distributions are related by a response ma-
trix P (s|s′) via Po(s) =

∑
s′ P (s|s′)Pa(s′). In the exper-

iment, the response matrix is obtained by a set of cali-
bration experiments over computational basis states [20].
This is done by preparing the product state |s〉 for some
bitstring s, then measuring the probability distribution
by repeated bitstring readouts. Such measurements are
carried out for all the possible bitstring s. The measured
probabilities are then used to approximate the response
matrix. In this work, the number of repetitions used in
each bitstring basis is 10000, 64000 and 64000 for 4-, 6-
and 9-qubit error-mitigation, respectively.

The task of error-mitigation becomes a matter of in-
verting the response matrix to infer the actual distri-
bution from the observed distribution; this procedure is
known as “unfolding” in high energy physics. The un-
folding of the response matrix can be performed with
different methods. Here we employ iterative Bayesian
unfolding (IBU) [38], where the unfolded distribution
is inferred by recursively calling Bayes’ theorem. This
error-mitigation scheme is used to mitigate the readout
errors in the parity measurements (see Fig. S7) and the
entropy measurements (see Sec. III). The regularization
parameter for IBU is the number of iteration steps, which
can be chosen in advance, seeking optimal convergence.
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FIG. S2. State preparation illustration for 12 qubits, matching boundary. (A) Schematic showing the 12-qubit
system with four plaquettes (purple), similar to Fig. 1A. (B) Quantum circuit to transform |0〉⊗12 → |G〉, similar to Fig. 1B.
(C) Wavefunction after the four Hadamard gates, a uniform superposition of 24 = 16 bitstrings. Each Hadamard is associated
with the plaquette (purple) below. We darken a portion of each plaquette underneath the 1’s that came from its associated
Hadamard. Each plaquette has a darkened portion in exactly half the bitstrings. (D) Wavefunction |G〉 after the complete
circuit.

The full response matrix is known to capture typical
uncorrelated and correlated noise. However, obtaining
and unfolding the full response matrix is in general ex-
ponentially costly for large systems. This limits the scal-
ability of such error-mitigation techniques. For certain
types of error models that are typical in the current su-
perconducting qubits device (such as the uncorrelated
errors), the cost of the calibration and the classical pro-
cessing can be greatly reduced. This allows a possible
scalable protocol for mitigating readout errors [39].

In our experiment, the structures of the response
matrices were consistent with uncorrelated errors (see
Fig. S8 for typical response matrices measured in the ex-
periments). This allows us to understand the error effects
by Monte Carlo simulation.

III. MEASURING TOPOLOGICAL
ENTANGLEMENT ENTROPY

Measuring the entropy of a system is experimentally
challenging: one often needs the density matrix ρ, from
which one can extract the von Neumann entropy

S = −Tr [ρ ln ρ] , (S2)

or n-th order Rényi entropy

S(n) =
1

1− n
ln (Tr ρn) . (S3)

The entropy cannot be measured directly, but can be
accessed through quantum state tomography of the den-
sity matrix. Full quantum state tomography is resource
intensive, with cost typically scaling exponentially with
the subsystem size. Moreover, tomography produces a
biased estimator [40], which can sometimes be tricky to
account for.

The topological entanglement entropy is defined us-
ing von Neumann entanglement entropies for the subsys-
tems [24, 25]. In the case of Abelian topological order
(such as the toric code), the same equation holds when
the von Neumann entropies are replaced by second Rényi
entropies [41, 42]. This equivalence is helpful when inves-
tigating larger system sizes, as we can extract the second
Rényi entropies from the statistical correlations of the
subsystems using the technique of randomized measure-
ment (RM) [28–30]. A main advantage of this protocol
is the direct access to the entropy without reconstructing
the full state, significantly reducing the required number
of measurements. It also provides a simpler way to re-
move the bias and understand the statistical errors for
the estimation.
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FIG. S3. State preparation illustration for 9 qubits, mixed boundary, |0L〉. (A) Schematic showing a 3 × 3 logical
qubit with four plaquettes (purple), similar to Fig. 4A. (B) Quantum circuit to transform |0〉⊗9 → |0L〉. This maintains
ZL = +1. (C) Wavefunction after the four Hadamard gates, a uniform superposition of 24 = 16 bitstrings. Each Hadamard is
associated with a plaquette (purple). We darken a portion of each plaquette by the 1’s that came from its associated Hadamard.
Each plaquette has a darkened portion in exactly half the bitstrings. (D) Wavefunction |0L〉 after the complete circuit.

A. Randomized measurement of second Rényi
entropy

In this work, we focus on the randomized measurement
(RM) protocol that measures the second Rényi entropy
using single-qubit random unitary. Consider a subsystem
A, whose purity is given by

Tr
(
ρ2A
)

= 2NA

∑
s,s′

(−2)−H(s,s′)P (s)P (s′), (S4)

where NA, ρA is the number of qubits and the density
matrix of A. The average is over the tensor product of
single-qubit random unitaries which act on the qubits in
A and are independently drawn from the circular unitary
ensemble (CUE). s, s′ are the binary strings in the com-
putational basis with H(s, s′) outputting the hamming
distance between them, and P (s) denotes the probabil-
ity of observing s. The second Rényi entropy is given by
S(2)(ρA) = − ln

(
Tr
(
ρ2A
))

. A nice feature of the random-
ized method is that the same set of measurement data can
be used to compute the entropies for multiple subsystems
at the same time. This renders particular convenience in
measuring the Stopo, which is inferred from a linear com-
bination of the entropies from different partitions. In
the experiment, we only have to measure the entropy of
the subsystems themselves, from which Stopo can be ob-
tained by calculating all the entropies for different par-

tition using the same data. This avoids having several
randomized measurements on the subsystem partitions
and the large statistical errors built up from adding and
subtracting these independently-measured entropies.

In practice, P (s)2 is a biased estimator for E(P (s))2

and needs to be replaced with an unbiased estimator

P → P × nP − 1

n− 1
, (S5)

where n is the number of measurements used to deter-
mine P (s) [43]. The random unitaries can be drawn from
the continuous (Haar) measure. However, on many cur-
rent devices it is more desirable to use a given finite set
of pre-calibrated quantum gates. This is made possible
by approximating the ensemble (up to certain statisti-
cal moment) using a unitary 3-design, e.g. the Clifford
group [44, 45]. The single-qubit random unitary can be
implemented as random single-qubit Clifford gates.

In the setting of RM, averaging over the tensor product
of single-qubit Clifford gates is equivalent to averaging
over all the Pauli basis measurement [46]. This can be
seen by noting the qubit measurement projects the state
onto Pauli Z basis, i.e. |0〉〈0| = (1+Z)/2 and |1〉〈1| = (1−
Z)/2. The single-qubit Clifford gates send the Pauli Z to
any other non-identity Pauli gates with equal frequency,
U†ZU = ±P , where U ∈ Cliff(2) and P ∈ {X,Y, Z}.
One can then go back to the Pauli Z basis as in the
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FIG. S4. State preparation illustration for 9 qubits, mixed boundary, |+L〉. (A) Quantum circuit to transform
|0〉⊗9 → |+L〉. Steps (1-4) are the same as Fig. S3B but rotated 90◦. The final step is a transversal logical Hadamard [37],
which transforms |0L〉 → |+L〉 and effectively rotates the code 90◦. (B) Wavefunction after the four Hadamard gates, a uniform
superposition of 24 = 16 bitstrings. Each Hadamard is associated with a star (blue). We darken a portion of each star by the
1’s that came from its associated Hadamard. Each star has a darkened portion in exactly half the bitstrings. (C) Wavefunction
|+L〉 after the complete circuit. This is similar to |0L〉 in Fig. S3D, but in X basis and rotated by 90◦. Each element in the
sum is an eigenstate of all the plaquettes Bp, and the superposition of all 16 is an eigenstate of all the stars As (blue). The
state can also be written in Z basis as (|0L〉+ |1L〉)/

√
2 = (|0L〉+XL |0L〉)/

√
2. The situation for the 5× 5 system in Fig. 4A

is analogous. To prepare |+L〉 in the 5× 5 system, we rotate the circuit in Fig. S5A by 90◦ and end with a transversal logical
Hadamard.

usual Pauli measurements. The mapping with phase -1
corresponds to a bit-flip when transforming back to the
Pauli Z basis. The Hamming prefactor in Eq. (S4) is
preserved under bit-flip on s, s′, hence the equivalence
follows.

Despite the properties of unitary 3-design, discretizing
the random unitary measure with the Clifford group can
give rise to different behaviour in the statistical fluctua-
tions of the entropy measurement. In the example of toric
code subsystems, the statistical errors are observed to be
much larger in the random Clifford/Pauli case than in
the Haar-random case. We illustrate this with the Monte
Carlo simulation in Figure. S9. In the simulation, we es-
timate the second Rényi entropy of the 2 × 3 (6-qubit)
subsystem within the toric code assuming the bitstring
probabilities can be measured perfectly, and compare the
results of using random Pauli basis rotations and using
Haar-random unitaries. To draw the random Pauli rota-
tions from a finite set of 36 = 729 elements, we can either
sample with or without replacement. For the entropy es-
timation, the random Pauli protocol is observed to be
biased upward. In the case when the samples are sta-
tistically independent (sampling with replacement), the

bias can be mitigated by a jackknife resampling tech-
nique [47]. The Haar-random case, however, produces
nice estimation with minimal bias. The relative statisti-
cal errors reveal the advantage of the Haar-random pro-
tocol when the number of random unitaries drawn NU
are fewer than the full set of Pauli rotations, with much
smaller statistical errors than the other protocols. When
NU ≥ 36, random sampling becomes unnecessary, as we
can simply sum over all the possible Pauli rotations to
obtain the exact average over the ensemble, resulting in
zero statistical errors.

This motivates the RM experiments to use the random
Pauli rotations in 4- and 6-qubit systems where the mea-
surements over the full Pauli basis are feasible (34 = 81
for 4-qubit and 36 = 729 for 6-qubit, equivalent to full
tomography), and use 1000 instances of Haar-random
single-qubit unitaries in the 9-qubit system where a scan
of the full Pauli basis is not feasible (39 = 19683 basis
states). For each instance of the single-qubit unitaries,
we repeat the bitstring measurement 10000 times, and
then we attempt to correct the measured probability dis-
tribution for readout error (see Sec. II).
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FIG. S5. State preparation and injection circuits for 5× 5 logical qubit states (mixed boundary). (A) Quantum
circuit to transform |0〉⊗25 → |0L〉, similar to Fig. S3A. This maintains ZL = +1 (see Fig. 4A). To prepare |+L〉, we rotate
the circuit 90◦ and perform a transversal logical Hadamard at the end, as in Fig. S4. (B) To inject an arbitrary logical state
α |0L〉+ β |1L〉, we replace steps (1) and (2) from A, initializing the center qubit to the desired |ψ〉 = α |0〉+ β |1〉.
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FIG. S6. Circuit compilation example. (A) Example 10-
qubit system with matching boundaries, similar to Fig. S2A.
(B) Circuit to prepare |G〉, similar to Fig. 1B but rotated
90◦. We intentionally use this orientation with 5 CNOT layers
to illustrate the optimization steps. (C) Decomposition of
CNOT into CZ and Hadamard. (D) Using C, convert B into
CZ and H, preserving the CNOT layer structure. (E) Defer
H gates to keep qubits longer in |0〉. (F) Insert X gates to
echo low-frequency noise. Once a qubit leaves |0〉, we do not
let it idle between CZ layers. In the final step, we transform
the single qubit gates to cancel out the effects of the inserted
X gates, in this case using X,

√
Y , and identity.

B. Unbiased estimator under error-mitigation

A subtlety arises when applying the error unfolding
in RM of the entropy, which is estimated from a list
of cross-probabilities P (s)P (s′) between two bit-strings
s, s′. However, the multinomial nature indicates finite
covariance between P (s) and P (s′). In other words, the
estimation of P (s)P (s′) becomes biased:

E[P (s)P (s′)]−E[P (s)]E[P (s′)] = cov(P (s), P (s′)). (S6)

In practice, an unbiased estimator for the cross-
probability is used to remove this bias (see Section III A).
That only allows us to remove the bias in the estimation
based on the observed data, but not the error-mitigated
data after IBU. To fix this deficiency, we need to si-
multaneously unfold the covariance during the iterative
steps [48] and use the unfolded covariance to remove the
bias in the error-mitigated estimation at the end.

In the experiment, the unfolding and the propagation
of the covariance were performed using RooUnfold pack-
age [48]. The iterative steps are chosen to be 15, 50 and
50 for the 4-qubit, 6-qubit and 9-qubit systems.

To illustrate the effectiveness of the error-mitigation
and the unfolding techniques, we simulate the 6-qubit ex-
periment using an uncorrelated readout error model. The
model assumes asymmetric error rates e(0 → 1) = 0.01
and e(1→ 0) = 0.05 during the readout procedure, while
other sources of error such as decoherence and gate er-
ror are neglected. The randomized measurements are
simulated by drawing sufficiently many single-qubit ran-
dom unitaries (or equivalently, summing over the full
Pauli basis rotations) and repeating the bitstring mea-
surements Nrep times for each random unitary instance,
where Nrep sweeps through a range of possible values.
The results are shown in Figure. S10. Without taking
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FIG. S7. Parity data with and without readout cor-
rection. (A) Same as Fig. 1A. Before evaluating the pari-
ties, we correct each probability distribution using iterative
Bayesian unfolding (see text). (B) Evaluating the parities
directly from the measured probability distributions (no iter-
ative Bayesian unfolding or other correction).

error-propagation into account, a clear under-sampling
bias is induced, where the estimated entropy will strongly
depend on Nrep. Instead, when the error-propagation is
taken into account, the bias is removed, allowing an ac-
curate determination of the entropy for a wide range of
bitstring samples Nrep.

C. Extended experimental details

As a check for the state quality and the success of
the entropy measurement protocol, we probed the (sec-
ond Rényi) entropy for the 4-qubit subsystems by taking
snapshots of the entropy values after each step of the
state preparation in Fig. 1B. The entropies of all the
4-qubit subsystems at the stars and plaquettes are mea-
sured following the protocol described above, giving a
sequence of the 4-qubit subsystem entropies at each step
as shown in Figure. S11. The measured entropies closely

match the ideal values (by carefully following the CNOT
gates), demonstrating the quality of the state and en-
tropy measurements.

As mentioned earlier, the topological entanglement en-
tropy (Stopo) can be computed using a single set of ran-
domized measurements data for a given subsystem. In
our experiments, we perform the Stopo measurements on
14 4-qubit subsystems, 20 6-qubit subsystems and 3 9-
qubit subsystems across the device (see Figure. S12). For
each subsystem, we extracted multiple Stopo values based
on different partitions. By rotation and reflection, we
can have 4, 2 and 8 ways to partition the 4-, 6- and 9-
qubit subsystems. The Stopo distributions for all these
values are summarized in Fig. 2. In Fig. S13, we present
the individual Stopo values with estimated error bars of
one standard deviation. We estimate the statistical er-
rors with bootstrapping [49]. Despite the much larger
Hilbert space, the 9-qubit subsystems show small uncer-
tainty with an average relative statistical errors of 12%.
This compares favorably against the uncorrelated error
modelling on a 9-qubit subsystem with asymmetric error
rates e(0→ 1) = 0.01 and e(1→ 0) = 0.05, estimating a
relative statistical errors of 13%.

The data for the 4- and 6-qubit randomized measure-
ments were taken by measuring the bitstring probability
distributions over all the Pauli bases, which is equiva-
lent to a full quantum state tomography. We can there-
fore analyze the same set of data with standard quan-
tum state tomography techniques. We find the reduced
density matrices using maximum likelihood estimation
through convex optimization. In Figure. S14, we show
the comparison of the estimated Stopo between the to-
mographic analysis and the randomized analysis on the
same sets of data. The direct access to the density ma-
trices also allows the computation of the corresponding
von Neumann entropy for the subsystem, which is the
usual entropy measure used to define Stopo, as opposed
to the second Rényi entropy. The consistency between
the Stopo values obtained through different analysis of
the same data again supports the reliability of the exper-
iments.

In Figure. S15, we show the examples of reduced den-
sity matrices for 4- and 6-qubit subsystems obtained by
tomographic analysis. The non-trivial entanglement pat-
tern of the states are manifested by the rank deficiencies
in the matrices. We can further extract the state fidelity
of the subsystems against the exact toric code, which is
summarized in the histograms in Figure. S15. The aver-
age fidelity of the 4- and 6-qubit subsystems have reached
94% and 88% respectively.

IV. SIMULATING BRAIDING

In this Appendix, we elaborate on the protocol for sim-
ulating braiding in Fig. 3 of the main text, cf. Fig. S16.
Exchange statistics refers to interchanging the position of
a pair of identical anyons, while mutual statistics refers to
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FIG. S8. Selected response matrices displayed in log-scale to highlight uncorrelated pattern. Visualization
of typical response matrices obtained in the error-mitigation calibration experiments. The colors are displayed in log-scale
to highlight the uncorrelated noise pattern in the response matrices. We extract effective uncorrelated error rates from the
matrices given respectively by (2 × 2) e0 = 0.016 and e1 = 0.056, (2 × 3) e0 = 0.019 and e1 = 0.050, (3 × 3) e00.018 and
e1 = 0.048. For comparison we show the image for an exact response matrix of 3 × 3 subsystem for uncorrelated noise with
error rates e0 = 0.02 and e1 = 0.05 (green dashed box).

exchanging the positions of two (possibly distinct) anyons
twice. Equivalently, mutual statistics arise when circling
one anyon around another (the two pictures are related
by switching to the reference frame of one of the anyons).
While fundamental particles have trivial mutual statistics
(all +1) and exchange statistics (+1 for bosons and −1
for fermions), braiding Abelian anyons can result in more
general phases.

A. Interferometry

The interferometric protocol is motivated by the simple
quantum optics picture in which a single light source is
split into two paths that interfere when recombined. In
our digital quantum processor, we use an auxiliary qubit
a which is initially prepared as (|0〉 + |1〉)/

√
2 to “split”

the target state |ϕ〉 into a superposition

|Ψ〉 = |0〉 ⊗ |ϕ〉+ |1〉 ⊗ U |ϕ〉 (S7)

by an controlled-U operation using the auxiliary a. Then

〈ϕ|U |ϕ〉 = 〈Ψ|Xa|Ψ〉+ i 〈Ψ|Ya|Ψ〉 , (S8)

where Xa, Ya are single-qubit Pauli operators that act
on a. This procedure thus allows an experimental mea-
surement of the overlap 〈ϕ|U |ϕ〉 for some state |ϕ〉 and
local unitary U . The final overlap can be measured by
single-qubit tomography of the auxiliary qubit a.

In our case, the unitary U is a Pauli string simulating
moving the anyons of the toric code. In Fig. S17, we
show the set of minimal experiments to measure all the
braiding statistics between the anyons. Most of these
paths can be understood based on the ψ (fermion) ex-
change as shown in Fig. S16E. To exchange ψ, we first
create two pairs of ψ near the corner of the device. Each
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FIG. S9. Monte Carlo simulation of entropy estima-
tion. We show the difference of using the discrete random
Pauli rotations and using Haar-random unitary for estimat-
ing the second Rényi entropy of a 6-qubit subsystem (2 × 3
qubit array) in toric code. In the simulation, the bitstring
probability distributions are measured perfectly in each ran-
dom unitary instance. We use 200 Monte Carlo experiments
for the Haar-random case and > 104 experiments for the dis-
crete Pauli rotation case. The Haar-random unitary protocol
shows much smaller statistical errors and bias in the estima-
tion.

movement of ψ consists of a single Pauli X and Pauli
Z that move the constituent e and m respectively. The
resulting total path simplifies to a Pauli string XXYYZZ
(see Figure. S16F). Other minimal braiding paths can be
deduced from the ψ-exchange case by only keeping the
anyon of interest. The exception is the e − m mutual
statistics. If we perform two exchanges between the m
near the corner and e away from the corner, we can ex-
tract the e −m mutual statistics with a Pauli string of
6 Pauli operators. However, a simpler path is to move e
around m (topologically equivalent to exchanging e and
m twice). This path only consists of a Pauli string XXXX
(4 operators) as shown in Figure. S17A.

The major cost of the procedure comes from the im-
plementation of the controlled-U that controls the auxil-
iary qubit and targets the support of U , which in general
will involve multiple swap gates when decomposed into
nearest-neighbor CNOTs. In order to reduce the depth
of the circuit, we made use of a second auxiliary qubit
(gray). The two auxiliary qubits are initially entangled

in a Bell pair (|00〉 + |11〉)
√

2. Then we can parallelize

FIG. S10. Monte Carlo simulation of the error-
mitigation for a 6-qubit subsystem (2× 3 qubit array)
in toric code. Error mitigation can be applied to estimate
non-linear quantity like entropy, but the induced biased needs
to be removed by error-propagation. Here we show a simula-
tion of entanglement entropy estimation for a 2×3 subsystem,
using an uncorrelated noise model (e0 = 0.01, e1 = 0.05). The
red dotted line highlights the number of repeated bitstring
measurements used in the actual experiment. The inset shows
a simulated estimation of Stopo/ ln 2.

the decomposition of the controlled-U by using both aux-
iliary qubits as control qubits (see Figure. S16A-D. At
the end of the circuit, we disentangle the second aux-
iliary qubit from the system by a single CNOT. This
trick roughly halves the depth of the circuit in terms
of nearest-neighbour gates. Rather than disentangling,
it is also possible to directly measure a Pauli string
〈ϕ|U |ϕ〉 = 〈Ψ|XaXb|Ψ〉 + i 〈Ψ|XaYb|Ψ〉, where a, b are
the two auxiliary qubits. In our case, disentangling is ad-
vantageous because our CZ error (≈ 0.005) is much lower
than our measurement error (≈ 0.04); see Sec. V C.

This interferometric protocol can be generalized be-
yond the Abelian braiding statistics of the toric code to
measure the braiding statistics of other models, includ-
ing some with non-Abelian braiding statistics supporting
universal quantum computation [36].

B. Randomized compiling

For the phase measurements in Fig. 3F, we utilize ran-
domized compiling [32, 50]. This is a more sophisti-
cated technique than the circuit optimizations described
above (primarily inserting many X gates) used for all the
other experiments. Essentially, the layers of single-qubit
gates (between layers of CZs) are transformed by random
single-qubit Paulis in such a way that the overall circuit
unitary is unchanged. We use 30 different randomly-
compiled instances for each experiment. Each individual
instance has a different perspective on the various coher-
ent and non-Markovian errors that we wish to mitigate.
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FIG. S11. Experimental snapshots of the second Rényi entropies during the ground state preparation steps. We
probed the second Rényi entropy of all the 2×2 subsystems during the state preparation steps using randomized measurement,
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boundary conditions.

2x2 (14)A B C2x3 (20) 3x3 (3)

FIG. S12. Systems used for Stopo measurements. Refer
to the 2×2, 2×3, and 3×3 systems in Fig. 2A. As discussed in
the main text, for the entropy data in Fig. 2C-D, we measure
several of each system shape across the 31-qubit toric code
ground state (see Fig. 1A). (A) 2× 2 systems (14). Note we
exclude the corners which have different entropy; see Fig. S11.
(B) 2 × 3 systems (20). For clarity, we split into two groups
with different orientations. (C) 3× 3 systems (3).

For example, in Fig. S18, we plot the scatter in the
measured Bloch vector for the em mutual measurement
from Fig. 3F, as well as two control experiments. The key
result of Ref. [32] is that by averaging over randomly-
compiled instances, we tailor these coherent and non-
Markovian errors into a depolarizing channel, which is
suitable since here our focus is on extracting the phase
of a qubit after a sophisticated and deep 33-qubit circuit.
The price is that all the errors now manifest incoherently,

so the Bloch vector length is decreased.
There is not a well-established method of estimating

the uncertainty in the phase, so we employ a simple tech-
nique, jackknife resampling [47]. Resampling techniques
are appealing here because each individual instance is
subject to significant coherent and non-Markovian error,
while averaging over many instances should be less sen-
sitive. For each instance i (of n = 30 total), we compute
the phase θ̄i averaging the Bloch vector over the n − 1
other instances. The average over all n instances is θ̄.
Then we estimate the standard error of the mean value
of θ̄,

σ =

[
n− 1

n

n∑
i=1

(
θ̄i − θ̄

)2]1/2
.

This is how we compute the error bars in Fig. 3F.

V. LOGICAL QUBIT STATES

A. Logical state measurement

Now we expand on the logical state measurement and
error correction illustrated in Fig. 4B. The logical mea-
surement proceeds as follows. We fix a basis, Z or X, and
measure all qubits in that basis. We use the resulting bit-
string to evaluate the logical operator, ZL or XL, respec-
tively. At this stage, we work with individual measured
bitstrings, rather than probability distributions. The bit-
string can be used to evaluate the local parities, As or
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FIG. S13. The individual values of Stopo of each subsystem for different partitions into subregions. Here we
present details for the histograms shown in Figure. 2D. In units of ln 2, the expected topological entanglement entropy for
the toric code is -1. The average relative statistical errors are 1.3%. 1.2% and 12% for the 4-, 6- and 9-qubit subsystems,
respectively.

Bp, respectively, equal to ±1. We perform error correc-
tion on the logical measurement by finding the minimal
set of qubits to flip such that all local parities are +1.

There are various ways to choose which qubit mea-
surements to flip. Here, we use a brute force approach.
Consider Z basis. For the distance-3 surface code, the
logical Z states |0L〉 and |1L〉 = XL |0L〉 are superpo-
sitions of 24 = 16 bitstrings. For the distance-5 surface
code, the logical Z states are superpositions of 212 = 4096
bitstrings. Each bitstring satisfies As = +1 for all s. By
taking the Hamming distance (number of differing bits)
between the measured bitstring and all the constituent
bitstrings of the logical Z states, we can find which con-
stituent bitstring is closest to the measured bitstring.
The correct logical measurement outcome is then sim-
ply whether that closest bitstring is associated with |0L〉
or |1L〉. The logical X measurement proceeds similarly
with all measurements in the X basis.

As discussed in the main text, we use a logical oper-

ation X
1/2
L for logical tomography. This rotates the YL

axis onto ZL, so that measuring YL on |ψL〉 is nomi-

nally equivalent to measuring ZL on X
1/2
L |ψL〉. Unfor-

tunately, this is a nontrivial entangling operation that
essentially involves shrinking the XL observable to two
qubits, performing the desired rotation, and expanding
the XL observable back across the array. This makes it
especially vulnerable to errors, similar to the state in-
jection protocol. This can be generalized for other pow-
ers Xα

L (and also ZαL) using a complementary circuit.
The ladder structure also generalizes to larger code dis-

tances. We show the specific CZ circuits used for X
1/2
L

in Fig. S19.

B. Dynamical decoupling

Studying the onset of logical errors over time in
Fig. 4D, we observe a significant basis dependence where
|+L〉 decays much more rapidly than |1L〉. This is ex-
pected due to qubit frequency drift and low-frequency
noise, which manifest as Z errors. For example, if a
qubit has a constant 500 kHz frequency offset, it will pre-
cess a π rotation (Z error) in 1 µs. These issues can be
studied and mitigated using dynamical decoupling, tech-
niques developed for nuclear magnetic resonance [51–54]
that have been adopted successfully for superconducting
qubits [55].

The dynamical decoupling we test in Fig. 4D is ex-
tremely simple. Given a particular wait time t, we apply
an X gate on each qubit at t/4 and again at 3t/4, very
similar to a “spin echo” sequence. These X gates nom-
inally cancel out each other, but they also cancel out
quasi-static Z rotations over the course of the wait time.
As shown in Figs. S20-S21, using dynamical decoupling
dramatically improves the performance for |+L〉 and |−L〉
(XL eigenstates sensitive to Z errors), while it does not
make a significant difference for |0L〉 or |1L〉, as expected.

Minimizing idle error in these states is important for
the surface code, where an appreciable amount of time is
spent idling while stabilizers are measured [34]. One di-
rection to explore in future work is to look at other states,
notably YL eigenstates. Developing protocols that work
well for all logical states, such as alternating X and Y
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FIG. S14. Comparison between the topological entan-
glement entropy estimation obtained with random-
ized measurements and quantum state tomography.
The full Pauli basis rotation data can be analyzed using
randomized measurements and also quantum state tomog-
raphy. We compare both cases to check consistency. Top:
2 × 2 subsystems. Distribution mean and standard devia-

tion: S
(2)
rand = −0.89± 0.07, Stomo = −0.82± 0.1 and S

(2)
tomo =

−0.89±0.06. Bottom: 2×3 subsystems, S
(2)
rand = −0.90±0.09,

Stomo = −0.91± 0.1 and S
(2)
tomo = −0.91± 0.07.

pulses (see Ref. [54]) are highly desirable. Another direc-
tion is to study the noise frequency spectrum by using
different numbers of decoupling pulses, as demonstrated
for a single physical qubit in Ref. [55].

C. Extended experimental results

In Figs. S20-S21, we present the data from Fig. 4D
with extended context. We examine all four ZL and XL

eigenstates for both 5×5 and 3×3, for raw measurement,
corrected measurement, and corrected measurement with
dynamical decoupling. Primarily, this supports the claim
in the main text that dynamical decoupling does not sub-
stantially affect the ZL eigenstates |0L〉 and |1L〉. We
observe that generally |0L〉 and |1L〉 (ZL eigenstates) be-
have similarly, as do |+L〉 and |−L〉 (XL eigenstates).
Note the interesting oscillations for |+L〉 and |−L〉 with-
out dynamical decoupling with microsecond timescale,
only visible in Fig. S21. The oscillations are most pro-
nounced for the 3×3 data and may come from individual

qubits’ static frequency offsets. The sharp dips in the
corrected data suggest brief windows when the Z errors
coherently cancel enough that error correction can still
succeed.

In Fig. 4A, we display local parity measurements for a
particular logical state to illustrate we are in a toric code
ground state (all local parities close to +1). In Fig. S22,
we plot similar data for seven different logical states, both
for 5 × 5 and 3 × 3. Although the logical states can be
distinguished by global observables (ZL and XL), they
all look the same to the local parity operators As and
Bp. We also show logical tomography data for both 5×5
(same as Fig. 4C) and 3 × 3 state injection in Fig. S23.
Note the longer Bloch vectors for the 3×3 case: the state
injection, state preparation, and YL tomography circuits
are all lower depth for the 3× 3 case (each one has linear
depth in code distance).

VI. EXPERIMENTAL DETAILS

We use precisely the same Sycamore processor and ex-
perimental setup as in Ref. [22]. We use CZ gates, res-
onantly swapping |11〉 with |02〉 and back; see Refs. [34,
56]. We optimize a frequency configuration for CZ gates
with 35 active qubits and the others biased to low fre-
quency, similar to Ref. [34].

In Fig. S24-S25, we map experimental benchmarks
across our qubit configuration. The center qubit, both
in Fig. 1A and Fig. 4A, is (row, column) = (5, 4). The
toric code rectangle (Fig. 1A) is rotated 45◦ with respect
to these plots. The auxiliary qubits used in Fig. 3 are (1,
4) and (1, 5). Qubits (3, 2) and (7, 6) are only used in
the 5× 5 logical qubit experiments, Fig. 4.

In Fig. S24, we present typical readout error bench-
mark results. Each experiment involves readout as-
signment error and also state preparation error. Read-
out assignment error is dominant, for example from un-
wanted transmon transitions and separation error. State
preparation error includes stray |1〉 population, typically
< 0.01, and π pulse error, typically ≈ 0.001. The single-
qubit measurements (left panel) are representative of the
errors we experience in multi-qubit experiments. In the
center and right panels, we show the specific errors we
observed for simultaneous 25-qubit and 9-qubit readout
used for logical measurements in Fig. 4. We benchmark
200 random bitstrings and 2000 repetitions each, then
plot the fraction of runs where each qubit had an error.
For more details about the readout setup, calibration,
and benchmarking, see Ref. [22].

In Fig. S25, we present typical qubit lifetime and gate
error. We benchmark gate error (single-qubit π/2 pulses
and two-qubit CZ gates) using cross-entropy benchmark-
ing (XEB). Note we present Pauli error, and the CZ
benchmarks (right panel) are error per cycle, where a cy-
cle includes a CZ and two single-qubit π/2 pulses. Taking
into account the single-qubit gate errors, the typical CZ
Pauli error is about 0.005. In these benchmarks, we only
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FIG. S15. Example density matrices and fidelity histogram. The left panels show examples of 4- and 6-qubit
measured density matrices. The density matrices are obtained using maximum likelihood estimation based on full quantum
state tomography (with 10000 repeated measurements in each basis). The right panels show the histograms of fidelity for all
the measured density matrices against the corresponding toric code subsystems. The average fidelity reaches 94% and 88% for
4- and 6-qubit states, respectively. On average, we estimate the uncertainty of the fidelity to be 0.004 and 0.002 for 4- and
6-qubit subsystems, respectively. The shown examples are chosen to be near the average, having fidelity 94% (4-qubit) and
91% (6-qubit).

examine one qubit or pair at a time, while we use many different gate patterns throughout the experiments in the
main text. For more details, see Ref. [22].
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FIG. S16. Circuit decompositions for Fig. 3. (A)
Circuit decomposition of controlled-XXXX for Fig. 3D. We
use a second auxiliary qubit, initially in |0〉, to decrease the
circuit depth. We decompose into swap and CNOT (see D
for further decomposition). (B) Circuit decomposition of
controlled-XXXXXX, which is used for Fig. 3E. (C) Circuit
decomposition of controlled-XXXX targeting qubits deeper
in the array, which is used for other interferometry experi-
ments. (D) Additional circuit decomposition details. Left:
Conversions between swap and CNOT. Middle and right: ex-
ample conversions between controlled operators using single-
qubit rotations (S is Z1/2). Ultimately, everything is com-
piled into CZ gates, and we use randomized compiling on
these circuits when we extract the phases (see Sec. IV B). (E)
Schematic showing the idea behind the controlled-XXYYZZ
used in Fig. 3E. In two steps, we exchange the location of two
ψ’s. Unlike the similar plots in the main text, these are not
experimentally-measured parities. (F) Simplification of the
two-step sequence in E to a single step XXYYZZ, as used in
Fig. 3E.
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FIG. S17. Extended version of Fig. 3D-E. (A-I) Measured parity values for toric code eigenstates before and after the
indicated controlled operation (green auxiliary qubit starts in |+〉), in the same order as the measured phases in Fig. 3F. (A)
Same as Fig. 3D. (B) Note the simplification where two sets of XXXX cancel, similar to the simplification in Fig. S16F. (C)
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FIG. S18. Example scatter over randomized compiling instances. For each randomized compiling instance, we
perform single-qubit tomography on the auxiliary qubit to obtain its Bloch vector. This single-qubit tomography consists of
six sequences, effectively measuring along ±X, ±Y , and ±Z, which averages out readout bias. We do not use any readout
correction such as unfolding here. We plot the projection of the Bloch vector in the XY plane, which determines the phase
of the qubit state. The Bloch vector for each instance is shown in a smaller light green point (30 total), while the average
Bloch vector over all the instances is a larger dark green point. (A) Control experiment where we prepare |+〉 and immediately
perform tomography. The measured phase is (0.007 ± 0.001)π (see text for discussion of estimating the phase uncertainty).
The mean Bloch vector length is 0.96, where the discrepancy from 1.0 is dominated by measurement error. (B) Data used for
the em mutual datapoint in Fig. 3F, also connected to Fig. 3D and Fig. S17A. Note the scatter in the data from individual
instances, which we attribute to coherent and non-Markovian errors manifesting differently in different compiled instances. (C)
Control experiment measuring XXXX on the trivial state |0〉⊗31, as shown in Fig. S17J. We measure a Bloch vector close to
(0, 0, 0) without any well-defined phase, as expected, since |0〉⊗31 is not an eigenstate of XXXX : 〈0000|XXXX |0000〉 = 0.
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FIG. S19. CZ decomposition for X
1/2
L . The operator X

1/2
L = (I − iXL)/

√
2 is useful for logical tomography as it maps

|+iL〉 = (|0L〉 + i |1L〉)/
√

2 → |0L〉. We operate on the qubits that appear in XL. The circuit decomposes the operator

(I− iXL)/
√

2 into CZ, H, and S (Z1/2) for the (A) 3× 3 and (B) 5× 5 qubit arrays. The S and H gates are compiled into one
step, and we use the optimizations discussed in Fig. S6.
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FIG. S20. Logical error versus wait time (1 µs). Extended version of Fig. 4D.
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FIG. S21. Logical error versus wait time (5 µs). Extended version of Fig. 4D.
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X parity, ⟨B⟩Z parity, ⟨A⟩

|0L⟩ |1L⟩ |+L⟩ |-L⟩ |+iL⟩ |-iL⟩ |TL⟩

FIG. S22. Local parity measurements for various logical states. Extended version of Fig. 4A. Experimental parity
measurements 〈As〉 and 〈Bp〉. For each column, we prepare a different logical state. We prepare ZL eigenstates (|0L〉 and |1L〉)
and XL eigenstates (|+L〉 and |−L〉) directly. We prepare YL eigenstates (|+iL〉 and |−iL〉) and |TL〉 = (|0〉 + eiπ/4 |1〉)/

√
2

using state injection. Top row: 5× 5, bottom row: 3× 3. The rightmost column is the same data as Fig. 4A.

5x5 3x3

XL YL

ZL

XL YL

ZL

FIG. S23. Logical tomography of injected states. Extended version of Fig. 4C. Left: Logical tomography of injected
states for the 5× 5 logical qubit, same as Fig. 4C. Right: 3× 3 version.
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FIG. S24. Typical readout error. State preparation and measurement error on each qubit, averaging over |0〉 and |1〉 error.
Left: “Isolated” error measuring one qubit at a time. Center: Simultaneous 25-qubit error for the 5× 5 system used in Fig. 4.
Right: Simultaneous 9-qubit error for the 3× 3 system used in Fig. 4.
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FIG. S25. Typical lifetime and gate error. Left: Qubit lifetime T1 for each qubit, measured at its idle frequency in
our configuration. Center: Single-qubit π/2 pulse cross-entropy benchmarking results, in Pauli error. Median: 0.0016. Right:
Two-qubit CZ cross-entropy benchmarking results, in Pauli error per cycle. Each cycle contains one CZ and two single-qubit
π/2 pulses. Median: 0.0084.
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