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The interferometric power of a bipartite quantum state quantifies the precision, measured by quantum Fisher
information, that such a state enables for the estimation of a parameter embedded in a unitary dynamics applied
to one subsystem only, in the worst-case scenario where a full knowledge of the generator of the dynamics is not
available a priori. For finite-dimensional systems, this quantity was proven to be a faithful measure of quantum
correlations beyond entanglement. Here we extend the notion of interferometric power to the technologically
relevant setting of optical interferometry with continuous-variable probes. By restricting to Gaussian local
dynamics, we obtain a closed formula for the interferometric power of all two-mode Gaussian states. We identify
separable and entangled Gaussian states which maximize the interferometric power at fixed mean photon number
of the probes and discuss the associated metrological scaling. At fixed entanglement of the probes, highly
thermalized states can guarantee considerably larger precision than pure two-mode squeezed states.

DOI: 10.1103/PhysRevA.90.022321 PACS number(s): 03.67.Hk, 03.67.Mn, 42.50.Dv, 06.20.−f

I. INTRODUCTION

The second quantum revolution [1] is dawning. The long-
anticipated fundamental advantages brought about by quantum
technologies in applications such as secure communication,
precise sensing, and metrology are starting to materialize
thanks mainly to the impressive progresses in the experimental
control of light and matter at the quantum level [2]. On the other
hand, some very central issues are still to be addressed at the
theoretical level, which can be summarized into one straight
question: Which quantum features are ultimately needed to
outperform the operation of classical devices?

Metrology [3] is one field where considerable debate around
such a question has been spurned in recent years. While in
some metrological setups entangled probes can lead to an extra
gain in precision for the estimation of unobservable parameters
compared to separable probes [4], such an enhancement can
fade away under the most common sources of noise [5–8].
At the same time, other means to achieve supraclassical
performances even without using entanglement have been
devised [9,10]. Somehow disappointingly, one might then con-
clude that quantum correlations in the form of entanglement
are neither necessary nor sufficient for quantum-enhanced
metrology in general.

Here we focus on a specific, highly relevant metrological
setting, namely optical interferometry [11]. The most pressing
mission of optical interferometry is arguably the revelation
of weak phase shifts induced by gravitational waves [12–14].
Optical interferometric setups traditionally involve a Mach-
Zender interferometer, in which a relative phase is acquired
between the two arms and needs to be detected at the output
[11]. It is convenient to model theoretically such a setup
as a dual-arm channel, where a phase shift is applied to
one arm only, while the identity operation is applied to the
other arm [6]. Note that, in practice, the implementation
of the scheme requires an additional phase reference beam;
see, e.g., the discussion in [15]. If, as it is customary, the
generator of the phase shift is known a priori, then tailored
nonclassical resources such as single-mode squeezed states or
two-mode entangled states can be exploited to improve the
precision of phase estimation beyond the classical shot noise

level. The mathematical techniques for assessing the ultimate
precision limits allowed by quantum mechanics for parameter
estimation are beautifully rooted in information geometry and
find widespread applications [16–18].

In this paper, we explore optical interferometry in a black-
box setting where the generator of the phase shift on one
arm is not known a priori. The aim of this analysis is to
elucidate exactly which characteristics of continuous-variable
quantum states are necessary and sufficient for them to act
as sensitive probes to not just one, but a variety of possible
local dynamics. We identify such essential characteristics
with genuinely quantum correlations between the two modes
entering the interferometer, of a general type commonly
referred to as quantum discord [19–23]. This finding resonates
with the analogous one for finite-dimensional systems, where
the paradigm of black-box metrology has been very recently
introduced [24].

The worst-case precision enabled by a two-party probe
state in a black-box phase estimation setting defines the
interferometric power of the state (Sec. II). Remarkably,
we obtain a closed formula for this operational quantifier in the
relevant instance of two-mode Gaussian probes (which include
squeezed and thermal states), thus assessing their potential
usefulness for practical sensing technologies (Sec. III). We
identify Gaussian states which offer, in principle, optimized
performances in optical metrology with or without the pres-
ence of entanglement and even in the presence of high thermal
noise at the probe preparation stage (Sec. IV).

II. BLACK-BOX OPTICAL INTERFEROMETRY

Let us begin by formalizing the black-box paradigm [24]
for optical interferometry [6,11]. We consider a bosonic
continuous-variable system of two modes A and B, respec-
tively described by the annihilation operators â and b̂. We
can define a vector of quadrature operators (in natural units,
� = 1) as Ô = {q̂A,p̂A,q̂B,p̂B}, where q̂A = (â + â†)/

√
2

and p̂A = (â − â†)/i
√

2 (and similarly for mode B). The
canonical commutation relations are then compactly expressed
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FIG. 1. (Color online) Black-box optical interferometry.

as [Ôj ,Ôk] = i�kl , with � = ( 0 1
−1 0

)⊕2
being the two-mode

symplectic form [25].
A two-mode state ρAB is prepared as the input of an

interferometer; see Fig. 1. Mode A enters a black box, where
it undergoes a unitary transformation

Û
φ

A = exp(iφĤA), (1)

whose full specifics are unknown a priori. In analogy with the
finite-dimensional case [24], we need to restrict the generator
ĤA to have a nondegenerate spectrum in order to avoid trivial
dynamics. In the present continuous-variable setting, the most
natural and maximally informative choice for the spectrum of
ĤA is a harmonic one. With this prescription, we can then
decompose the black-box transformation as follows without
any loss of generality,

Û
φ

A = V̂
†
AŴ

φ

AV̂A, (2)

where Ŵ
φ

A = exp(iφn̂A) is a standard phase shift generated by
the number operator n̂A = â†â, and V̂A is an arbitrary unitary
transformation. The transformed state of the two modes after
the black box is

ρ
φ,V̂A

AB = (
Û

φ

A ⊗ IB

)
ρAB

(
Û

φ

A ⊗ IB

)†
. (3)

One can then perform a measurement on the output state, to
construct an estimator φest for the parameter φ. One can iterate
the probing trial a large number κ of times (or, equivalently,
one can run κ parallel experiments if one has the availability
of κ independent copies of the black box) to improve the
statistical accuracy of the estimator. In mathematical terms,
the variance of any estimator for the parameter φ, defined
as �φ2 ≡ 〈(φest − φ)2〉, is constrained by the Cramér-Rao
bound [17],

κ�φ2 � 1

F
(
ρ

φ

AB

) , (4)

where the quantity at the denominator is known as the quantum
Fisher information (QFI) [17,18] and can be interpreted as
the squared speed of evolution of the probe state ρ

φ

AB under
an infinitesimal transformation (Û ε

A ⊗ IB) [16,26]. Under a
smoothness hypothesis, the QFI can be defined as [27,28]

F
(
ρ

φ

AB

) = −2 lim
ε→0

∂2F
(
ρ

φ

AB,ρ
φ+ε

AB

)
∂ε2

, (5)

via the Uhlmann fidelity [29],

F (ρ1,ρ2) = {tr[(√ρ1ρ2
√

ρ1)
1
2 ]}2. (6)

For single-parameter estimation, the bound in (4) is asymp-
totically tight (for κ 	 1). This means that the QFI directly
quantifies the precision (intended as the inverse of the variance

of the estimator per trial) that can be achieved with the
input probe state ρAB , for the estimation of the parameter
φ embedded in the local transformation Û

φ

A , by means of a
specific optimized measurement on the output state ρ

φ

AB . For
this reason, the QFI is conventionally adopted as the figure of
merit in quantum metrology [18].

With this in mind, the interferometric power (IP) of the state
ρAB , with respect to the probing mode A, is then defined as

PA(ρAB) = 1

4
inf
V̂A

F
(
ρ

φ,V̂A

AB

)
, (7)

where the 1
4 is a normalization factor adopted here for

consistency with the finite-dimensional definition of IP [24].
The quantity PA(ρAB) evaluates the worst-case precision
guaranteed by using ρAB as a probe, where the minimization
runs over all possible choices of local dynamics generated by
a Hamiltonian ĤA with harmonic spectrum. In practice, probe
states ρAB with higher IP embody more reliable resources for
metrology, as they ensure a smaller variance in the estimation
of φ even if uncontrollable unitary fluctuations V̂A occur in
conjunction with the designed phase shift Ŵ

φ

A ; in general, this
can happen even in the absence of entanglement [24,30,31].

Notice that, by definition, the IP is invariant under local uni-
tary operations, PA[(Û ′

A ⊗ Û ′′
B)ρAB(Û ′

A ⊗ Û ′′
B)†] = PA[ρAB]

[24]. This follows by observing that unitaries on B are
irrelevant for the QFI, while unitaries on A can be reabsorbed
in the minimization of Eq. (7). Notice, however, that, in spite
of the convexity of the QFI, the IP is not convex. One can
namely show the following inconclusive chain of inequalities.
Given two states ρAB and τAB and a probability 0 � p � 1,
one has

4PA[pρAB + (1 − p)τAB]

� F
[
pρ

φ,V̂A

AB + (1 − p)τφ,V̂A

AB

]
� pF

[
ρ

φ,V̂A

AB

] + (1 − p)F
[
τ

φ,V̂A

AB

]
� 4pPA[ρAB] + 4(1 − p)PA[τAB],

where we used the definition of IP in the first and last
inequalities and the convexity of the QFI in the middle one. In
particular, one can construct straightforward examples where
a state with nonzero IP is obtained by mixing two states ρAB

and τAB with zero IP; this happens when the minimum V̂A is
different for ρAB and τAB .

III. GAUSSIAN IP: DEFINITION AND PROPERTIES

In the following, we restrict our attention to a fully Gaussian
scenario. Namely, the probe states ρAB are assumed to be
two-mode Gaussian states, and the local dynamics Û

φ

A is
assumed to be Gaussian (also known as linear), i.e., preserving
the Gaussian character of the states it acts upon. It is in order
to recall that a Gaussian state ρAB is represented by a Gaussian
characteristic function in phase space and is completely
specified by the first and second moments of the quadrature
operators [25], collected, respectively, in the vector δAB =
(δj ) and in the covariance matrix σAB = (σjk), where δj =
tr[ρABÔj ] and σjk = tr[ρAB{(Ôj − δj ),(Ôk − δk)}+] (with
j,k = 1, . . . ,4). As the first moments can be adjusted by
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local displacements, and since the IP is invariant under local
unitary operations, in what follows we can consider without
any loss of generality states with zero first moments δ = 0,
described entirely by their covariance matrices. The latter will
correspond to physical states in the Hilbert space provided the
bona fide condition

σAB + i� � 0, (8)

which incarnates the Robertson-Schrödinger uncertainty rela-
tion, is satisfied.

Concerning the local dynamics, the Gaussianity restriction
amounts to requiring that the generator ĤA be at most quadratic
in the canonical operators â,â†. Given the decomposition in
(2) and noting that Ŵ

φ

A is already a Gaussian unitary, this
requirement is passed on V̂A. In general, up to irrelevant
displacements, a Gaussian unitary V̂A is associated via the
metaplectic representation to a symplectic transformation (i.e.,
a real matrix which preserves the symplectic form) acting
by congruence on covariance matrices [32]. By virtue of
this correspondence, together with well-established results
of symplectic algebra and Gaussian quantum information
[25,33], we can now translate the scheme of Fig. 1 and the
above equations at the phase-space level, as follows.

The probe state ρAB will be described by its covariance
matrix σAB . The black-box unitary Û

φ

A corresponds to a
symplectic transformation Tφ

A = MT
A Rφ

A MA, with

Rφ

A =
(

cos(φ) − sin(φ)

sin(φ) cos(φ)

)
(9)

being a phase-space rotation of an angle φ in phase space.
Furthermore, MA can be written, in general, according to the
Euler decomposition [32,34], MA = Rψ

A Sζ

A Rθ
A, where Sζ

A =
diag(ζ,1/ζ ), with ζ > 0, is a squeezing transformation. In

this way, Eq. (2) translates into Tφ,ζ,θ

A = Rθ
A

T
Sζ

A Rφ

ASζ

A Rθ
A.

From Eq. (3), the transformed state after the black box has a
covariance matrix given by

σ
φ,ζ,θ

AB = (
Tφ,ζ,θ

A ⊕ IB

)
σAB

(
Tφ,ζ,θ

A ⊕ IB

)T
. (10)

The Gaussian IP is of a two-mode Gaussian probe with
covariance matrix σAB is then defined as

PA
G(σAB) = 1

4
inf
ζ,θ

F
(
σ

φ,ζ,θ

AB

)
. (11)

The fidelity F between two (undisplaced) two-mode Gaus-
sian states, Eq. (6), which enters in the definition (5) of the
QFI, can be computed from the respective covariance matrices
σ 1 and σ 2 as [35]

F (σ 1,σ 2) = {
√

� +
√

� − [(
√

� +
√

�)2 − ϒ]
1
2 }−1, (12)

where

� = 16 det[�(σ 1/2)�(σ 2/2)],

� = 16 det[(σ 1 + i�)/2] det[(σ 2 + i�)/2],

ϒ = det[(σ 1 + σ 2)/2].

Notice that alternative yet related studies of QFI for Gaussian
states can be found, e.g., in Refs. [27,28,36].

We now recall that, by local symplectic operations, every
two-mode covariance matrix

σAB =
(

α γ

γ T β

)
(13)

can be transformed in a standard form with all diagonal 2 ×
2 subblocks, α = diag(a,a), β = diag(b,b), γ = diag(c,d),
where a,b � 1,c � |d| � 0. Exploiting once more the invari-
ance of the (Gaussian) IP under local unitaries, we now proceed
to evaluate Eq. (11) on probe states with covariance matrix in
standard form. In such case, the minimization over θ in (11)
turns out to be solved simply by θ = 0. The value of ζ which
yields the minimum in (11) is instead less trivial and can
be written as an analytical yet too cumbersome function of
a,b,c,d to be reported here [37].

After some tedious algebra, we arrive at one of the main
results of this paper: a closed formula for the Gaussian IP
of all two-mode Gaussian states. This is independent of the
standard form used for the explicit evaluation and can be
recast in terms of the four local symplectic invariants of an
arbitrary covariance matrix, defined as A = det α, B = det β,
C = det γ , and D = det σAB . The formula reads

PA
G(σAB) = X + √

X2 + YZ

2Y
, (14)

where

X = (A + C)(1 + B + C − D) − D2,

Y = (D − 1)(1 + A + B + 2C + D),

Z = (A + D)(AB − D) + C(2A + C)(1 + B).

We can now analyze the properties of the Gaussian IP for
two-mode Gaussian states. In [24], the IP has been proven
to capture a peculiar nonclassical feature of bipartite states
of a finite-dimensional system: their amount of quantum
correlations beyond entanglement, of the so-called discord
type [23]. We now show that the same interpretation holds
in the infinite-dimensional Gaussian case. First of all, the
Gaussian IP vanishes if and only the state is a zero-discord state
(also known as classical-quantum state) [23]. In the Gaussian
case, under a natural constraint of bounded mean energy per
mode, the only classical-quantum states are product states
[21,22,38]. From Eq. (14), we find indeed that the only two-
mode Gaussian states with vanishing Gaussian IP are product
states, characterized by the invariants C = 0,D = AB. All
correlated two-mode Gaussian states are therefore useful for
black-box optical interferometry, returning a nonzero QFI
for any possible local Gaussian dynamics. Furthermore, the
Gaussian IP is invariant under local unitary operations as
already mentioned, and it can be shown to be monotonically
nonincreasing under arbitrary Gaussian quantum operations
on subsystem B. The proof follows from the definition of
QFI and can be adapted from the finite-dimensional case
[24]. Namely, suppose a Gaussian probe state with covariance
matrix σ ′

AB is obtained from the state with covariance matrix
σAB by the action of a completely positive trace-preserving and
Gaussianity-preserving map (a Gaussian quantum channel) on
B. Any such a map commutes with the unitary phase shift
applied on A, so it can be moved after the black box and
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considered as part of the output measurement. Since F(σ φ,ζ,θ

AB )
defines the optimal precision achieved by the best possible
output measurement, the Fisher information associated with
σ

′φ,ζ,θ

AB can only be smaller or equal, which proves the claim.
Altogether, these properties allow us to conclude that the

Gaussian IP is a faithful measure of bipartite discord-type cor-
relations [23] for Gaussian states. With the result of Eq. (14),
the IP becomes the only currently known faithful measure
of discord-type correlations which is computable both for
two-qubit states [24] and for two-mode Gaussian states, which
are respectively the pillars of discrete-variable and continuous-
variable bipartite quantum information processing.

Equation (14) acquires a very simple form for states
characterized by d = ∓c in standard form [in which case the
optimal ζ in (11) reduces to 1], which include the relevant
classes of squeezed thermal states (d = −c) and mixed thermal
states (d = c):

PA
G(σAB |d=∓c) = c2

2(ab − c2 ± 1)
. (15)

Notice that in this simple case the Gaussian IP is symmetric
under swapping of the two modes A and B, but this is
not true for general two-mode Gaussian states, as is clear
from Eq. (14). For pure states, specified by b = a,−d = c =√

a2 − 1, one has, in particular, PA
G(σAB |b=a,−d=c=√

a2−1) =
(a2 − 1)/4, which is a monotonic function of the marginal
mixedness of each subsystem. This means that the Gaussian
IP reduces to a Gaussian entanglement monotone [25] on pure
states. This is, once more, a desired property for a discord-type
quantifier and holds analogously in the finite-dimensional case
[24].

IV. GAUSSIAN IP VERSUS LOCAL MEAN PHOTON
NUMBER AND ENTANGLEMENT

It is particularly interesting to study the scaling of the worst-
case QFI, namely, the Gaussian IP, with the mean photon
number of the probing subsystem A,

n̄A ≡ tr[ρAB(n̂A ⊗ IB)] = tr α − 2

4
, (16)

which conventionally defines the resource count in optical
interferometry [4,6,11]. A numerical exploration of random
two-mode Gaussian states σAB , as shown in Fig. 2, reveals
two distinct regimes. As expected, separable probe states can
never surpass the standard quantum limit (or shot noise limit),
given by a linear scaling of the IP with n̄A; entangled states,
on the other hand, can have IP scaling at most quadratically
with n̄A, reaching up to the so-called Heisenberg limit. A class
of states with the maximum possible Gaussian IP in absence
of entanglement, for instance, is given in standard form by
d = c = √

(a − 1)(b − 1), in the limit b 	 1; for these states,

lim
b→∞

PA
G(σAB |d=c=√

(a−1)(b−1)) = n̄A,

spanning the solid line in Fig. 2. Entangled states with
maximum Gaussian IP at fixed n̄A are instead pure two-mode
squeezed states, sitting on the dashed line in Fig. 2, for which
(as mentioned before)

PA
G(σAB |b=a,−d=c=√

a2−1) = n̄A(n̄A + 1).

FIG. 2. (Color online) Gaussian IP versus mean photon number
of the probing mode A for 105 entangled (lighter) and separable
(darker) Gaussian states. The standard quantum limit PA

G = n̄A (solid
line) and the Heisenberg limit PA

G = n̄A(n̄A + 1) (dashed line) are
indicated.

However, there are a considerable number of entangled states
which perform worse than shot noise, which means that
their entanglement does not translate into a practical quantum
enhancement for black-box metrology.

Motivated by the above observation, we perform a thorough
analysis of the interplay between the Gaussian IP PA

G , rescaled
by the local mean photon number n̄A, and the entanglement
of two-mode Gaussian states. The latter can be conveniently
measured by the logarithmic negativity [39,40], which is a
decreasing function of the smallest symplectic eigenvalue ν̃ of
the partial transpose of the covariance matrix,

EN (σAB) = max{0,− ln ν̃}, (17)

where 2ν̃2 = H − √
H 2 − 4D with H = A + B − 2C [25].

Figure 3 shows a comparison between the two quantities,
which reveals that PA

G/n̄A is bounded from above and from
below at fixed EN . To derive the expression of the bounds
analytically, we start from the ansatz that the extremal states

FIG. 3. (Color online) Gaussian IP normalized by the mean
photon number of mode A, plotted versus the logarithmic negativity
EN for 105 entangled Gaussian states. The dashed line accommodates
pure states. See text for details of the other boundary curves.
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are to be found within the class of entangled squeezed thermal
states. We can reparametrize their standard form covariances
as −d = c = √

(a − ν̃)(b − ν̃), with 0 < ν̃ < 1, and perform
a constrained optimization of

PA
G/n̄A = [(a − ν̃)(b − ν̃)]/[(a − 1)(aν̃ + bν̃ − ν̃2 + 1)]

at fixed ν̃, subject to the bona fide condition (8).
We then find that the upper boundary (solid line) in Fig. 3

is given by states with a = (1 + b − bν̃ + ν̃2)/(1 + ν̃) in the
limit b → ∞, for which(

PA
G/n̄A

)up → (1 + ν̃)/(2ν̃).

The lower boundary has two branches; see Fig. 3. For ν̃0 <

ν̃ < 1 (where ν̃0 ≈ 0.14 is the real root of the polynomial ν̃3 +
ν̃2 + 7ν̃ − 1), i.e., EN � 2, the extremal states (dotted line)
have a = [

√
2(ν̃ + 1)3 + 3ν̃ + 1]/(1 − ν̃), b = √

2(ν̃ + 1) +
ν̃ + 2, for which

(
PA

G/n̄A

)low1 =
(

2

ν̃ + 1
− 2

ν̃ − 1
− 2

√
2√

ν̃ + 1
− 1

)−1

.

For 0 < ν̃ < ν̃0, i.e., EN � 2, the extremal states (dashed line)
are pure two-mode squeezed states, described by a = b =
(1 + ν̃2)/2,−d = c = (1 − ν̃2)/2, for which

(
PA

G/n̄A

)low2 = (ν̃ + 1)2

4ν̃
.

This analysis reveals several interesting facts which can be
relevant for applications. First, there is a minimum threshold in
entanglement to beat necessarily the shot noise limit in black-
box metrology: All two-mode Gaussian states with EN �
1.135 achieve PA

G > n̄A, while some less entangled states can
be outperformed by separable, more discordant states. Second,
pure states eventually offer the worst possible metrological
performance in black-box optical interferometry for a given
(sufficiently high) degree of entanglement. Conversely, highly
thermalized states such as the ones on the upper boundary
of Fig. 3 can attain significantly higher Gaussian IP per
local mean photon number at equal degree of entanglement.
This is a very practical situation where the combined effect
of entanglement and state mixedness surprisingly results in
an enhancement of discord-type correlations useful for an
operative task (namely interferometry in this case), somehow
giving shape to the abstract statistical predictions of Ref. [41].

Finally, we like to point out that Fig. 3 is comparable to
Fig. 1 (right panel) of [21], which features the Gaussian en-
tropic discord versus the Gaussian entanglement of formation,
although the extremal states are different. In particular, for
separable states both the Gaussian discord and the Gaussian
IP divided by n̄A can reach, at most, 1 [21,22], while they
are unbounded for entangled states. Overall, this confirms the
intimate connection between IP and discord.

V. CONCLUSIONS

In conclusion, we extended the paradigm of black-box
parameter estimation to the technologically important setting
of optical interferometry. We defined the operative notion of
IP for a two-mode probe system and specialized its definition
to the case of Gaussian states and local Gaussian phase
dynamics. We derived a closed formula for the Gaussian IP of
all two-mode Gaussian states. By studying it against the mean
photon number and the entanglement of the probes, we singled
out classes of extremal Gaussian states which guarantee the
best possible metrological precision in a worst-case scenario.
These states can be highly thermalized, which eases the
demands for their implementation in the laboratory.

This work develops a conceptual and practical advance for
the characterization and exploitation of general nonclassical
correlations in continuous-variable systems, and complement-
ing Ref. [24] it shows that their role in metrology transcends
specific schemes and Hilbert space dimensions. The formalism
applied here can be immediately useful to calculate other
discord-type quantities for Gaussian states, which capture geo-
metrically their sensitivity under local unitary transformations,
e.g., the local quantum uncertainty [31], the discriminating
strength [42], and the discord of response [43] (see also [44]).

Note added. Recently, a preprint appeared [45] where
a similar measure is independently defined and explicitly
computed only for the subclass of symmetric two-mode
squeezed thermal states.
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