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lifetime of the oscillon is dramatically reduced compared to the classical limit, the regions

of longevity are similar in the space of Gaussian initial configurations.
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1 Introduction

Oscillons are a class of very long-lived, quasi-periodic, non-topological soliton observed

to arise in various, non-linear field-theories [1–3]. Classically, oscillon lifetimes vary from

O(104) in natural units in 3+1 space-time dimensions through to larger than O(106) in

2+1 dimensions (see for instance [2, 4]), and even stable solutions (such as the Sine-Gordon

breather) can exist in 1+1 dimensions. This stability is not enforced by the topology of

the theory, such as for topological defects, or any conserved charges, such as for Q-balls.

Instead, stability arises from the large-amplitude oscillations of the configuration being non-

linear and the basic frequency smaller than the particle mass [4–6]. This makes it hard

for the oscillation (at least, perturbatively) to excite particle modes of the field, triggering

decay and loss of energy.

Oscillons are known to be generated in phase transitions [3, 7, 8]. In such situations,

the oscillons can carry a significant fraction of the energy available; the long decay time

may consequently influence the thermalization time of matter after cosmological phase

transitions [8]. In the intermediate state, oscillons supply regions where the field expecta-

tion value is away from the vacuum value. It therefore departs from equilibrium and may

source particle creation and baryogenesis.

Although very long-lived, over time an oscillon does slowly shed energy, eventually

reaching a critical, lowest-energy profile that collapses through a rapid, though poorly

understood, non-linear process (see however [4, 5]). The semi-classical scalar dynamics

on the background of the classical oscillon indicate that the decay rate is increased and

even dominated by the addition of quantum effects [9]. In progresssion from the classical

regime to the quantum-field theoretic description, a pertinent question remains whether the

shedding of energy is altered, potentially greatly accelerated, by the presence of quantum

degrees of freedom offering additional decay-channels to the non-linear configuration.

Just as for Q-balls, in addition to decay to other particle species, one could imagine

a tunnelling transition to a lower-energy state (say, of smaller oscillons or elementary
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excitations) [5]. Also, the shape of the effective potential may change in such a way that

stability is lost for some classically stable configurations [6]. The potential results of the

quantum self-interaction is very hard to compute perturbatively in a time- and space-

dependent mean field background; but numerically it is possible, as we will demonstrate

here.

In the subsequent sections, we setup a simple 2+1 dimensional, single-scalar field in a

quartic potential and discuss classical oscillons. We then obtain the quantum mean-field

equations that are analogue to the classical field equations, and the equation of motion

for the quantum perturbations to the classical system. The combined equations describe

the quantum dynamics that we intend to investigate. We introduce at that point how the

quantum state can be approximated by a Gaussian ensemble of random initial realizations

and set up the numerical approach for evolving the dynamical equations. We use this to

examine the lifetime of the oscillons determined from the simulations and compare the

region of stability and the lifetimes to their classical counterparts. We then conclude.

2 Setup and Model

We consider a single real scalar field in 2 + 1 dimensions, with the action

S = −
∫

d2x dt

[

1

2
∂µφ∂

µφ+
1

2
m2φ2 +

λ

4
φ4

]

.

Variation of the action yields the equation of motion for the classical system

[

∂2t −∇2 +m2 + λφ2 (x, t)
]

φ (x, t) = 0. (2.1)

Setting m2 < 0, the potential has two minima with vacuum expectation values v± =

±
√

−m2/λ. This choice for the potential also allows for oscillons to exist, and a rough

criterion is that the centre and some fraction of the localized oscillon configuration should

have amplitude beyond the inflection point of the potential φ =
√

−m2/3λ. There is

evidence [5] that there is only a single ”trajectory” of oscillons and that it is an attractor

in field space: so although an analytic closed form for the oscillon profile is unknown,

starting the field evolving from within the basin of attraction for this configuration is

sufficient to establish an oscillon. Taking the initial configuration to be a Gaussian over

the broken phase vacuum

φ (x, 0) = v+
[

1−A0 exp

(

−x
2 + y2

2r2
0

)]

, (2.2)

provides a suitable profile to produce an oscillon, for certain values of the amplitude A0

and width r0. Within the basin of attraction, different values of these parameters lead to

evolution into an oscillon at different points along the ”trajectory”. Once there, memory

of the initial condition is lost, and the oscillon evolves in a unique way along the trajectory,

until it finally collapses.

Rescaling the system according to φ →
√

|m2|/λφ and x → x/m effectively sets the

mass and coupling equal to unity in the equation of motion for the classical scalar field, and
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so general masses and couplings may be traded in for the field and time normalization. The

quantum dynamics, however, introduces another scale, the scale of fluctuations (which is

essentially ~). We will press on with the unrescaled field, but ultimately use λ/m = 1 and

~ = 1 for our simulations, so that time is in mass units and the ratio between amplitude

of quantum fluctuations and the vev is fixed by hand.

In the quantum theory, φ is promoted to a field operator and we split the operator

into its mean Φ = 〈φ̂〉 and a perturbation δφ̂:

φ̂ (x, t) = Φ (x, t) + δφ̂ (x, t) .

The evolution equations for the mean field and mode functions follow from first promoting

the classical equation of motion (2.1) to an operator equation (the Heisenberg equation).

Then taking the expectation value of the operator equation [13, 14], we find for the mean

field (ignoring connected correlators beyond quadratic)

[

∂2t −∇2 −m2 + λΦ2 + 3λ〈δφ̂ (x, t) δφ̂ (x, t)〉
]

Φ (x, t) = 0, (2.3)

and for the perturbations
[

∂2t −∇2 −m2 + 3λΦ2 + 3λ〈δφ̂ (x, t) δφ̂ (x, t)〉
]

δφ̂ (x, t) = 0. (2.4)

For a Gaussian truncation (such as the current Hartree approximation), we can expand

the perturbation into orthogonal mode functions fk:

δφ̂ (x, t) =

∫

d2k

(2π)2

(

akfk (x, t) + a†kf
∗
k (x, t)

)

, (2.5)

where each mode function independently satisfies the perturbation equation of motion

(2.4). The {ak} and {a†k} are the ladder operators, and are time-independent. They obey

[

ak, a
†
k′

]

= (2π)2δ2(k− k′), 〈a†kak〉 = nk(2ωk)(2π)
2δ2(k− k′),

where the nk correspond to the particle number in the free scalar theory. In the Hartree

approximation (although more general than the free field theory case), the nk still provide

a sensible definition of the occupation number in a given quantum mode.

We initialize the quantum mean field Φ with the Gaussian profile (2.2). In the absence

of back-reaction from the perturbations in the equation (2.3), this initial configuration

would obey the classical dynamics and for certain values of A0, r0 evolve into an oscillon.

When the two-point correlator of the perturbations is small, the initial configuration re-

mains perturbatively close to the expected, oscillon solutions of the quantum mean-field

dynamics.

For the mode functions fk, we chose the initial configuration to be that of a transla-

tionally invariant system. In particular, in the free vacuum (λ = 0), we have the familiar

plane wave solutions:

fk (x, 0) =
1

2ωk

exp (ik · x) , ∂tfk(x, 0) =
i

2
exp (ik · x) . (2.6)
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Notably, with this choice for the initial condition, the initial two-point correlators of the

perturbations become

〈δφ̂ (x, 0) δφ̂ (x, 0)〉 =
∫

d2k

(2π)2
1

ωk

[

nk +
1

2

]

, (2.7)

〈δπ̂ (x, 0) δπ̂ (x, 0)〉 =
∫

d2k

(2π)2
ωk

[

nk +
1

2

]

. (2.8)

The first of these enters as the fluctuation, back-reaction contribution. It is divergent, and

we perform a mass renormalization through the counterterm

m2 → m2 − 3λ〈δφ̂ (x, 0) δφ̂ (x, 0)〉, (2.9)

to yield a finite, physical mass1.

The quantum fields can be rescaled, as the classical fields, according to Φ →
√

|m2|/λΦ
and δφ̂ →

√

|m2|/λδφ̂, along with the rescaling of the co-ordinates x → x/m. This sets

the mass and coupling effectively equal to unity, in exact parallel to the classical rescaling,

for both the mean and perturbation dynamics. Briefly reinstating ~, the vacuum two-point

correlator becomes (remembering that k → mk and ωk → mωk)

〈

δφ̂ (x) δφ̂ (x)
〉

=

∫

d2k

(2π)2
~λ

m

1

ωk

[

nk +
1

2

]

, (2.10)

where ωk =
√
2 + k2. As mentioned, we now take ~ = λ/m = 1, which is a particular

choice of the scale of fluctuations relative to the vev. Ultimately, we also set the occupation

number nk = 0.

The most straightforward way to numerically solve the system of equations (2.3) and

(2.4) is to insert the ansatz (2.5) into (2.4), thereby generating a set of N2 + 1 coupled

differential equations (where N is the linear size of the spatial lattice and the ‘+1’ accounts

for the mean field equation (2.3)). The coupling is through the appearance of the correlator

〈

δφ̂ (x, t) δφ̂ (x, t)
〉

=

∫

d2k

(2π)2

[

nk +
1

2

]

|fk (x, t)|2 , (2.11)

in both mode and mean field equations. The main difficulty with this technique is the very

large number of mode functions, since in a time-dependent, inhomogeneous background

the fk(x, t) are each space-dependent fields, and so the numerical problem scales as N4.

The alternative method is to replace the computation (2.11) with an average over a

new ensemble of fields ψi:
〈

δφ̂ (x, t) δφ̂ (x, t)
〉

→ 〈ψi (x, t)ψi (x, t)〉E . (2.12)

Each of these new field realizations is evolved according to (2.4), i.e. in position space, and

is constructed by taking the random complex-numbers {cki }, and writing at the initial time

ψi(x, 0) =
∑ d2k

(2π)2
1

2ωk

[

cki e
ikx + (cki )

∗e−ikx
]

. (2.13)

1In 2 + 1 dimensions only this linear divergence is present. Beyond the Hartree approximation, further

divergences would be present.
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Then for each k, the {cki } are Gaussianly distributed with zero mean and

〈

cki (c
k′

i )∗
〉

E
=

[

nk +
1

2

]

(2ωk)(2π)
2δ(k− k′) (2.14)

so that the linearity of the equation of motion ensures that the replacement (2.12) is correct

in the limit of many random realizations, i = 1, ...,M for M large. This implementation

scales as N2×M , which is potentially smaller than N4 (although we will see here that the

gain for inhomogeneous systems of the present type is only a factor of a few).

3 Classical and quantum oscillons

With the system discretized on a spatial lattice of spacing δx = 0.8m, we further discretized

the time-evolution with a time step δt = 0.05m. For this highly inhomogeneous system, we

found that a very large number of realizations M was necessary, with convergence being

reached only around M = 60000. For a lattice of N = 256, this is a very small gain in

computer time, compared to solving all the mode equations. This is in contrast to the work

of [12] and [13] that demonstrated much better convergence, however for volume averaged

quantities; but is consistent with [11] and [15] for respectively, bosons and fermions in truly

inhomogeneous systems.

We scanned the space of Gaussian initial profiles in the region A0 ∈ [−4, 4] and

r0 ∈ [0, 4], inspired by the results of [5]. This nicely covers the main boundaries of the

classical oscillon basin of attraction. In most cases, identifying the decay of the oscillon is

straightforward but especially near the region’s edge, it becomes harder. For the quantum

simulations, we argue from the structure of the classical parameter-space that a reduced

region A0 ∈ [0.25, 4] and r0 ∈ [1, 4] is sufficient to cover the full corresponding-region of

interest while reducing the required computing time.

A square-grid of N = 256 with the converged ensemble-size M = 2562 was used for

each set (A0, r0) to provide computations that were feasible within a reasonable duration.

Selected parameter sets were repeated on larger grids of N = 384 and N = 512 (also

with larger M). These enabled us both when the lattice spacing was fixed, to check for

finite volume effects and to test for resolution effects when maintaining a constant physical

volume.
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Figure 1. The time evolution of the center of a configuration with initial condition inside (left) and

one outside (right) the basin of attraction for the classical (top) and quantum (bottom) oscillon.

(A0, r0) = (2.25, 2.5) and (1.0, 1.5), respectively.

Fig. 1 shows two different initial conditions, inside and outside the basin of attraction

respectively. In the two top plots, these are evolved classically, and we see that inside the

basin of attraction, the oscillon settles and then lives on for a much longer time than the

simulation. Outside, the centre amplitude decays below the inflection point in two periods

or less. In the quantum evolution (the two bottom plots), we again see that outside the

basin of attraction, the evolution is very similar: an oscillon is never generated, and the

quantum back-reaction never has any impact. Inside the basin, however, the evolution is

very different. The oscillon clearly emerges, though with a somewhat narrower oscillation

envelope. Over roughly 100 periods of oscillation, however, the amplitude gradually de-

creases to a more or less harmonic oscillation no longer crossing the point of inflection for

the classical potential.

This suggests a number of things about the quantum system. There is an effective

quantum potential, which does allow for long-lived oscillon-like solutions. Some Gaussian

initial profiles are again close enough to such a solution to be attracted by it. Lifetimes

are likely much shorter than in the classical case, and the decay process is very different.

Whereas for classical oscillons, decay takes place as a sudden collapse, for the quantum
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case, the decay and loss of energy is gradual throughout. In particular, nothing dramatic

happens near the classical inflection point, suggesting that this point has no connection

to the shape of the effective potential. Interestingly, the minimum of the potential agrees

with the classical case, and so our renormalization procedure works well, even though it is

approximate.
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Figure 2. Initial conditions, whose evolution shows the unphysical small beat frequency phe-

nomenon (left), and the physical large beat frequency phenomenon (right). (A0, r0) = (2.5, 1.5)

and (2.5, 2.5), respectively.

In some cases, simulations displayed an envelope around the basic oscillation, that

was itself oscillating at a high frequency. Finer resolution simulations eliminated this su-

perimposed oscillation (see Fig. 2, left). These artefacts of the coarsest lattices entirely

vanished on the increase in resolution for each initial profile examined, to leave only oscil-

lations around the positive vacuum, with an amplitude below the point of inflection in the

potential. This, essentially, leaves the initial profile in question outside the oscillon basin

of attraction. Any distinctive appearance of comparably strong beats further to those ex-

plicitly examined were hence disregarded as unphysical and a signal of being outside the

basin of attraction2.

A beat frequency higher than in the evidently unphysical cases was observed for various

other initial profiles, and the presence of this beat frequency in the cases tested was not

removed in the repetition of selected simulations, at the higher spatial resolution (see Fig. 2,

right). This suggestion of a physical beat frequency in the oscillons mimics the observations

in the classical system [16]3. The amplitude and the frequency of the modulations, however,

2These strong beats arose at disparate points in the whole parameter space of initial profiles exam-

ined. The stark contrast in emergence of the beat frequency after a strong similarity in the oscillation to

neighbouring points in parameter space, along with the highly peculiar nature of the beat frequency in

comparison to the evolution on the oscillons in general was sufficient though to identify these beat frequen-

cies, shown to be unphysical. Completing these larger simulations to confirm this in every such case was

prohibitively time consuming.
3Similarly, the study [16] highlighted that similar beat frequencies occur much more strongly in the case

of the Sine-Gordon potential.
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alters on the change in the resolution of the lattice, perhaps indicating a non-physical

component to these minor beat frequencies. Regardless, the continuation much longer

than the natural timescale of the system and oscillatory characteristics on each change in

resolution remained, characterizing the oscillon. The permanence confirmed the physical

nature of the quantum oscillons, and any comparably weak beat frequency modulating

an apparent oscillon further to those explicitly examined on the larger lattices is hence

regarded to be physical.

0 200 400 600 800
0.5

1

1.5

t

ω
(t
)

 

 

classical
quantum
particle mass

Figure 3. The frequency for a classical (blue) and the corresponding, quantum (red) oscillon.

(A0, r0) = (2.25, 2.5). The black, dashed line shows the frequency corresponding to the particle

mass in the broken phase
√
2m.

We end this section by in Fig. 3, showing the evolution of the oscillation frequency

as a function of time for one particular initial condition in the classical (black) and the

quantum (red) case. We see that for the classical case, the frequency settles at some

value smaller than
√
2m = 1.41... (in units where the mass parameter is m = 1), as is

characteristic for an oscillon. The basic particle-like excitation has mass
√
2m. In the

quantum case, the frequency is also lower than the particle mass, and even lower than the

classical case. However, due to the quantum corrections, it is not clear what the natural

frequency of the quantum oscillon should be. Nonetheless, because of the renormalization,

if the correlator is close to vacuum at the end of the simulation, the particle excitation in the

quantum case should be close to the classical value. The envelope passes the inflection point

around t = 460m, but we see in the frequency there that nothing dramatic happens. For a

classically decaying oscillon the frequency would suddenly jump from distinctly below
√
2m
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to
√
2m. For the quantum case, the frequency has a gradual evolution until at late times,

around t = 600m, it becomes less regular. This highlights the ambiguity in defining the

lifetime of the quantum oscillon. We checked that the gradual decrease in central amplitude

is not the result of the oscillon having moved away from the centre of the lattice.

4 Classical and quantum basins of attraction

A convenient (if not exact – see previous section) way to define the lifetime of an oscillon

is when the envelope of the oscillation (at the centre point of the oscillon) crosses the

inflection point of the potential

d2V

dφ2
= 0 → φ =

√

m2

3λ
,

which for our parameters become φ =
√

1/3 = 0.577.... Examples for the time evolution of

an oscillon is shown in Fig. 1, for the classical (top left) and quantum (bottom left) case.

The solid line is the broken phase minimum, around which the oscillon evolves, and the

dashed line is the inflection point. As mentioned, in the classical case, the oscillon settles

but then continues to oscillate for the length of the simulation. The envelope never goes

within the inflection point. For the quantum case, this happens around time mt = 460 that

we correspondingly define to be its lifetime. Clearly, the decay of the amplitude of oscillon

is very gradual, and so the precise lifetime will depend on this definition. Nonetheless,

because it is gradual, shifting the definition of the decay point does not influence the

relative lifetime of oscillons evolved from different initial profile.

We also note, based on the analysis above, that we understand the oscillon to have

decayed (or be in the process of decaying) when a strong beat frequency appears in the

evolution, even if the maximum of the modulation recrosses the inflection point. For the

case of the small beat-frequencies, the defined endpoint may be when the net, modulated

field first crosses below the point of inflection. The endpoint could also be based on

the evolution of the envelope when this may be determined. As a consequence of this

ambiguity, small-beat-frequency configuration have some systematic error in the lifetime

determination. Any difference in the lifetime calculated from the envelope or the net,

modulated field in each simulation however is minimal compared to the calculated lifetime.

Equally, the observed change in the frequency of the small modulations on switching to the

larger lattices, according to either method adjusts the instant of the decay little compared

to the corresponding, measured lifetime.
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Figure 4. The lifetime of classical oscillons projected onto the parameter space of Gaussian initial

conditions.

We first consider the basin of attraction for classical simulations, i.e. ignoring the

quantum modes and their back reaction on the mean (classical) field. This is numerically

straightforward, and has been studied in some detail in [5]. Fig. 4 shows the region of

interest, as part of the whole space of initial configurations in the Gaussian parametrization.

We see that there are two main regions for positive and negative amplitude A0, sepa-

rated by a throat of instability, roughly corresponding to amplitudes less than the inflection

point of the potential. There is also a lower limit to the width r0, corresponding to the

need for a certain size and energy to be ”near”, in the sense of the basin of attraction, to

the oscillon. As was also demonstrated in [5], in two spatial-dimensions, classically stable

oscillons are stable for a very long time.

It is worth noting that the two-region structure is slightly misleading; they corre-

spond to the two extrema of the oscillon oscillations and although the exact point-by-point

matching is not obvious, each Gaussian released from rest in the right-hand region will

approximately correspond to a Gaussian released from rest in the left-hand region. It is

therefore sufficient for us to sweep in half the parameter space.
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Figure 5. The lifetime of quantum oscillons projected onto the parameter space of Gaussian initial

profiles. The white contours indicate the classical basin.

Including quantum fluctuations, we expect the effective potential to be different from

the classical. Further, because the mean field is inhomogeneous and time-dependent, the

effective potential will not simply be the usual perturbatively computable one but involve

gradients in space and time. Moreover, because the mean field spans a significant fraction

of the non-linear potential, it is not even clear that a gradient expansion would be sufficient.

In [11] a similar exercise was performed with Q-balls, where the field varies in time

and space but the effective mass of the propagator (the modulus of the field) varies only in

space and is constant in time. In that case, although notably in three spatial-dimensions,

the effect of quantum fluctuations on the stability of the system was significant.

Fig. 5 shows the equivalent of Fig. 4, when including quantum fluctuations and their

back reaction. We use the exact same initial profiles. Note that this is not a further

approximation since also in the classical case, the Gaussian is equally only-approximately

an oscillon; so what we map is whether different Gaussians are in the basin of attraction

for the oscillon of the classical and/or the quantum system.

We see that the structure is very similar to the classical one. There is a sub-inflection

throat region for small A0, a minimum width r0 and some additional structure relative

to the overall main region. However, the actual lifetimes are much shorter, and near the

edges of the main region, we have the physical (large frequency) and unphysical (small
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frequency) beating cases described earlier. We assign the small frequency cases to be

outside the stability/oscillon region.

5 Conclusion

We have performed the first quantum dynamical simulations of oscillons, using the inho-

mogeneous Hartree approximation. This is numerically very challenging since the mean

field oscillon is spatially large, space- and time-dependent, and since in order to not have

emitted energy travelling around the lattice and influencing the settling oscillon, we need

a volume much larger than the oscillon itself. In addition, we found that replacing the full

set of Gaussian quantum modes by an ensemble or random realizations did not in practice

reduce the numerical effort.

Our results show that at least for the parameters chosen here (~ = λ/m = 1), quan-

tum fluctuations significantly shorten the lifetime and evolution of the oscillons. Decay is

gradual rather than instantaneous, and the precise decay process is still uncertain (as it is

for the classical case).

We also mapped out and compared the basin of attraction of the classical and quantum

oscillons, and perhaps surprisingly found that although the lifetimes are shorter, the region

of Gaussian profiles that result in an oscillon are roughly the same. This suggests that at

least at early times, the oscillon profile is similar, and that if the Gaussian profile has

enough energy and is otherwise ”spatially big enough”, it does not feel the presence of the

fluctuating modes until at later times.

Regardless, because oscillons are time-dependent, real-time simulations are the only

way to study their quantum properties. It is, for instance, not possible to do a Monte

Carlo integration of the path integral. The approximation for the full quantum dynamics

employed here can in principle be systematically improved by including more diagrams

beyond the LO in 1/N or Hartree approximation, but then expanding in modes is no

longer an option. One could also consider stochastic quantization with a complex action,

which has been partially successful for scalar fields [17]. It is also possible that employing

the classical-statistical approximation and simply averaging over an ensemble of random

fluctuation realizations on top of a classical profile is a fruitful avenue. This remains to be

seen.
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