
1. The Challenge
Headwater streams compose ∼90% of stream length (Downing et al., 2012) and maintain hydrological, biogeo-
chemical and ecosystem integrity at regional scales (Freeman et al., 2007). Thus, climate and landscape changes 
in headwater catchments have disproportionate downstream impacts on water quantity and quality and, in turn, 
ecosystem health and society (Freeman et al., 2007). However, after decades of experimental and modeling re-
search, hydrological understanding of headwater catchment dynamics (i.e., where water comes from, how long 
water takes to travel through headwater catchments, and how these combine to generate streamflow), remains 
incomplete (Blöschl et al., 2019; Hrachowitz et al., 2016; Ward & Packman, 2019). This knowledge gap stems 
largely from our inability to observe many hydrological properties at scales amenable to understanding underly-
ing processes, and is a major barrier to developing more generalized understanding in the hydrological sciences 
(Beven et al., 2020). Hence, improving our ability to make meaningful hydrological observations is crucial for 
advancing hydrological understanding in an uncertain future under global change.

How streamflow is generated remains a key research question in hydrology. Answers are often envisaged in terms 
of the variable source area (VSA) concept, a hydrological theory that codifies how and when certain parts of 
(headwater) catchments contribute to streamflow by connecting to the stream network. These hydrologically-con-
nected upstream areas are crucial in determining hydrological response (Gannon et al., 2014; Kiewiet et al., 2020; 
Zehe et al., 2007) and water quality (Ocampo et al., 2006). However, observing how and when different areas 
connect and contribute hydrologically is challenging. Previously, the community has relied largely on point-
based monitoring (groundwater dynamics, e.g., Bonanno et al., 2021; Jencso et al., 2009; Pavlin et al., 2021; soil 
moisture, e.g., Ali & Roy, 2010; tracer applications, e.g., Kiewiet et al., 2020; Klaus et al., 2015; McGlynn & 
McDonnell, 2003), as past remote sensing approaches (e.g., Mengistu & Spence, 2016; Wagner et al., 2007) have 
often been too coarse to observe fine-scale hydrological processes in headwaters. Even when considering densely 
gridded point datasets (e.g., Western et al., 1998), inferring connectivity purely from point-based measures can be 
misleading (Klaus & Jackson, 2018). Progress in observing hydrological connectivity has been made by mapping 
stream network extension and contraction dynamics (Godsey & Kirchner, 2014) and observing patterns of surface 
saturation in the stream corridor (Glaser et al., 2018). However, these observation approaches are cumbersome 
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and have been limited by their spatial extent, acquisition time, and/or revisit intervals. We therefore urgently need 
improved methods for monitoring hydrological processes in headwaters at fine spatio-temporal resolution. In this 
context, this commentary explores the potential of leveraging drone-based thermal infrared (TIR) technologies to 
advance hydrological understanding of sensitive headwater catchments.

2. Current State of the Art
At larger scales, remote sensing approaches have long been a valuable asset in hydrology (e.g., Junqueira 
et al., 2021; Lettenmaier et al., 2015; Matgen et al., 2006; Mengistu & Spence, 2016; Schmugge et al., 2002), but 
these (predominantly satellite-based) techniques have been largely incapable of mapping fine-scale headwater 
dynamics. More recently, a renewed interest in remote sensing, based on low-altitude, high-resolution methods, 
has emerged for the derivation of key hydrological states in upstream catchments. In particular, high resolution 
thermal infrared (TIR) imaging has been increasingly used to quantify hydrological states through the use of 
temperature as a “tracer” or “signature” for (near-) surface flow and saturation (Glaser et al., 2018). Hydrologists 
have used ground-based TIR for characterizing groundwater-surface water (GW-SW) interactions in 2D (e.g., 
Briggs et al., 2013; Deitchman & Loheide, 2009; Drake et al., 2010; Hare et al., 2015; Lu et al., 2020; Pandey 
et al., 2013; Schuetz & Weiler, 2011), describing hydraulic processes such as surface flow velocity or mixing 
across the stream channel (e.g., Antonelli et al., 2017; Puleo et al., 2012) and understanding surface water energy 
budgets or thermal heterogeneity (e.g., Baker et al., 2019; Cardenas et al., 2014; Marruedo Arricibita et al., 2018; 
Tonolla et al., 2010). Ground-based TIR has also been increasingly deployed for mapping surface saturation (e.g., 
Antonelli et al., 2020; Glaser et al., 2018; Glaser et al., 2020; Glaser et al., 2016; Pfister et al., 2010; Figures 1a 
and 1b). At the heart of these methodologies is the capacity of ground-based thermography to facilitate high-fre-
quency measurements, a key consideration when understanding hydrological processes and dynamics through 
time. Although these techniques are useful at small scales, the narrow spatial extent of these ground-based TIR 
techniques has limited their applicability for understanding hydrological processes over larger domains, and there 
is a need for techniques capable of bridging the gap between coarse satellite- and fine resolution (but static) 
ground-based remote sensing.

In this vein, airborne TIR has been adopted for mapping streams at larger scales, with conventional (i.e., piloted 
aircraft) airborne TIR remote sensing shown effective for characterizing stream temperature and discrete surface 
or groundwater inputs to rivers at whole-river longitudinal extents (e.g., Dole-Olivier et  al., 2019; Handcock 
et al., 2006; Torgersen et al., 2001; Vatland et al., 2015) or laterally across wide channels or braid-plains (e.g., 
Mejia et al., 2020; Tonolla et al., 2012; Wawrzyniak et al., 2013). Indeed, airborne TIR is a sufficiently ma-
ture technique that it is used to map water temperature across entire watersheds or even regions (e.g., Dugdale 
et al., 2015; Fullerton et al., 2015; Fullerton et al., 2018). However, the cost associated with such airborne TIR 

Figure 1. (a). Winter-time ground-based TIR monitoring of surface hydrology in the Weierbach catchment, a temperate forested headwater catchment in Luxembourg. 
(b) Surface saturation and stream network extent in the Weierbach clearly segmented from presence of pixels that are warmer than surroundings (courtesy of B. Glaser). 
(c) Summertime airborne TIR mosaic of headwater stream network in Nunavik, Canada (subarctic tundra landcover). (d) Stream network extension/connectedness 
clearly segmented via pixels that are cooler than surrounding areas. Drone-based TIR has potential to combine the multi-temporal monitoring of ground-based methods 
(a) with the spatial coverage of (c) airborne approaches.
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acquisition means that it has not been taken-up for the characterization of hydrological processes outside of the 
main river stem, nor for detecting temporal change at high frequency - two aspects that are vital for understanding 
hydrological processes in headwater catchments (Glaser et al., 2020).

Recent advances in drone-based remote sensing offer a unique opportunity to bridge these space-time disparities, 
increasing the limited coverage associated with ground-based remote sensing while permitting data capture at rel-
atively high frequency and in areas outside of the immediate stream corridor. While recent applications of drones 
have demonstrated potential for mapping surface saturation and connectivity via segmentation of standard (RGB) 
imagery (e.g., DeBell et al., 2015; Dominique & David., 2013; Reaney et al., 2019; Spence & Mengistu, 2016), 
newer drone-based thermal infrared solutions eliminate difficulties associated with the complexity of visible 
image classification (e.g., Carbonneau et al., 2020), offering both increased spatial coverage over more common 
ground-based TIR and facilitating low-cost multitemporal data capture needed for hydrological monitoring. In-
deed, drone-based TIR has already started to see use in the hydrological sciences, with studies focusing on its 
use to identify GW-SW exchanges in a similar vein to earlier ground- and airborne-applications (e.g., Briggs 
et al., 2019; Harvey et al., 2019). However, the majority of recent applications in hydrology have, like conven-
tional airborne TIR, focused on monitoring in-stream ecologically-relevant phenomena (such as the location of 
thermal refuges; Casas-Mulet et al., 2020) or hydraulic properties (e.g., geometry of thermal plumes; Caldwell 
et al., 2019; KarisAllen & Kurylyk, 2021). Conversely, drone-based TIR has as of yet not been deployed for mon-
itoring properties such as the extension and contraction of the stream network or patterns of surface saturation 
(and related hydrological connectivity) outside of the channel and more broadly across headwater catchments, 
despite the fact that the approach appears to offer an ideal compromise between spatial coverage and repeat (high 
frequency) monitoring that is lacking in conventional (costly) airborne approaches. Drone-based TIR thus holds 
a high degree of promise for the quantification of headwater network/surface saturation dynamics at space-time 
scales amenable to understanding streamflow response at the catchment outlet.

This lack of uptake among the hydrology community may relate to well-publicized issues relating to sensor 
drift of miniaturized drone mounted TIR cameras (e.g., Abolt et al., 2018; Casas-Mulet et al., 2020; Dugdale 
et al., 2019) that can render the derivation of absolute temperature values difficult. However, we argue that for the 
quantification of key hydrological states (e.g., surface saturation, stream network extension, connectivity [from 
surface saturation]), the absolute accuracy of drone-based TIR is largely immaterial. When using temperature as 
a tracer, it is only necessary that wetted pixels are able to be clearly differentiated from their dry neighbors. Given 
that recent research in the agricultural and archeological sciences (e.g., Allred et al., 2018; Casana et al., 2017; 
Khanal et al., 2017) has demonstrated the ability of drone-based TIR to detect soil moisture patterns and that 
preliminary TIR images of stream network extension (Figures 1c and 1d) highlight its ability to clearly delineate 
the extension/length of the wetted parts of the headwater network, drone-based TIR is well placed to generate the 
space-time data necessary to unlock current barriers to understanding headwater network dynamics and hydro-
logical processes.

3. Leveraging Drone-Based Technologies
Despite clear potential, drone-based TIR raises challenges that will need to be addressed by the hydrology and 
remote sensing communities. Many of these relate to legal and logistical considerations that are well-covered 
in previous reviews (e.g., DeBell et al., 2015; Vélez-Nicolás et al., 2021). However, some stumbling blocks are 
more specific to headwater hydrology data acquisition. For example, mapping headwater network extension 
and/or surface saturation dynamics at event-scales will require the acquisition of data during rainy conditions. 
While weatherproof drones do currently exist, we are only aware of a handful of models that are also capable of 
supporting TIR cameras (e.g., DJI Matrice 200/300 series), and there is limited information relating to the per-
formance of TIR sensors during rainfall events and whether the resulting imagery will be biased by the presence 
of raindrops. We therefore urge further investigation to better understand the performance of drone-based remote 
sensing in varied meteorological conditions.

Another key consideration is impact of land-cover on the ability to extract key hydrological metrics from drone 
imagery. While TIR has been demonstrated readily capable of identifying stream network extension in bare/
unforested regions (such as those common in parts of Europe or high arctic locations), forested regions present 
a problem whereby dense tree canopies limit the ability of TIR sensors to resolve ground-level hydrological 
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properties, particularly in coniferous woodland where winter leaf loss does not occur. While understory drone ac-
quisition flights are technically possible (e.g., Hyyppä et al., 2020; Wang et al., 2021), this introduces a substan-
tial risk to both equipment and researchers and is unlikely to provide a universal solution. Research is therefore 
needed to understand the accuracy with which headwater network extension/surface saturation dynamics can be 
quantified as a function of varying forest density, as well as the potential for fusion of ground- and drone-based 
data to provide seamless coverage in areas of patchy forest.

Guidance is also needed concerning optimal spatio-temporal scales of data acquisition. Given the relatively low 
resolution of TIR sensors, it is possible that TIR flights may need to be conducted at lower altitude than normal 
to capture fine enough detail for deriving surface saturation or stream network extension while avoiding the phe-
nomena of “mixed pixels” (e.g., Martí-Cardona et al., 2019; Wawrzyniak et al., 2012). With current technology, 
such campaigns would clearly generate high resolution TIR data (<10 cm resolution), but the flight time needed 
to collect such data, and the potential computation demands for georeferencing, mosaicking and storage of such 
information, will place limits on what might be realistically achievable with drone-based TIR. Thus, coverage of 
drone-based TIR surveys is likely to be limited to sub-catchments on the order of ∼100 km2. While such coverage 
is suitable for improving hydrological understanding in headwaters (through observing temperature patterns, 
deriving the extent of surface saturation and connectivity and thus linking this to streamflow response), it may 
nevertheless limit the ability to resolve scale-dependent processes that require the deployment of other coarser/
higher coverage sensing methods. Similarly, further information is needed on appropriate temporal frequencies 
with which to conduct repeat imaging flights and thus capture the dynamic response of the headwater network 
as it connects in real-time to the catchment outlet to produce runoff (Figure 2). Data from ground-based TIR 
studies (e.g., Glaser et al., 2016; Glaser et al., 2018; Glaser et al., 2020) can provide useful a useful starting point 
to develop standardized acquisition methodologies in this regard, but further focus is required in terms of the 
practical/logistical issues surrounding rapid repeated drone surveys (i.e., battery requirements, drone reliability).

Although this commentary focuses on drones and TIR for understanding headwater dynamics, we nonetheless 
recognize the potential that standard (RGB) visible drone imagery holds for improving process understanding of 
headwater hydrology. For example, the ability to resolve catchment microtopography from highly detailed digital 
surface models (DSMs, derived from structure from motion photogrammetry) has the potential to revolutionize 
the extraction of hydrological networks at a resolution several orders of magnitude higher definition than existing 
LiDAR datasets acquired by national mapping agencies (e.g., Scottish Government, 2012), as well as the deri-
vation of water level/depth with centimetric precision (e.g., Dietrich, 2017; Kohv et al., 2017). Such advances 
hold promise for enhanced modeling of surface flows, although it is important to consider that large increases 

Figure 2. Schematic of drone-based TIR methodology to quantify links between hydrological connectivity and downstream 
runoff response. Drone-based TIR imagery of headwater catchment uses temperature as a tracer for headwater network/
surface saturation extent, allowing for quantification of area contributing to streamflow.
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in resolution would also necessitate bulk improvements in computing power to avoid yielding prohibitively long 
model runtime. RGB imagery could help in the identification of correlates (e.g., depressions, water levels, land-
use types) of surface saturation or stream network extension, extracted from TIR data. We therefore emphasize 
the complementary nature of drone-based TIR and RGB data, and call for the development of approaches that 
combine these approaches for improved understanding of headwater hydrology.

Aside from these more practical and conceptual issues, the acceptance of drone-based TIR methods within the 
hydrology community is reliant on them being demonstrated robust. Thorough and repeatable validation of 
drone-based measures of surface patterns (i.e., saturation) and derived surface connectivity must be considered 
a first step. Physical inspection of locations that show clear surface saturation (via the “squishy boot” method; 
Rinderer et al., 2012) as well as discrete monitoring via conventional techniques (i.e., point measurements) will 
need to be carried out in tandem with drone surveys to ensure that observations of connectivity are accurate. 
While this step has already been demonstrated for ground-based TIR, the increased spatial scale of drone-based 
surveys means that validation will be more field-intensive. Where ground validation cannot be easily achieved 
by means of conventional fieldwork owing to the difficulty of collecting data at spatio-temporal scales amenable 
to the drone data, the installation of high-density low-cost sensor networks (e.g., Mao et al., 2019), capable of 
relaying information in real time using LoRaWAN or 5G cellular connections, holds promise for the generation 
of rich validation datasets not previously possible using other means. Where disparities between conventional 
and drone-based observation methods are evident, advances in machine learning (e.g., Carbonneau et al., 2020) 
may provide solutions for more clearly segmenting wetted pixels from the TIR data (when combined with RGB 
imagery), further increasing the utility of extracted data. Indeed, the simultaneous collection of visible imagery 
(outlined above) and even drone- or ground-based LiDAR (e.g., Orlandini et al., 2012) data capable of revealing 
other catchment characteristics related to runoff generation (e.g., topography, land-use) holds potential for im-
proved segmentation of TIR imagery, further improving the accuracy of extracted hydrological metrics.

4. Releasing the Opportunities for Catchment Hydrology
In light of the novel hydrological observation opportunities provided drone-based TIR, we call for its increasing 
involvement in hydrological process research. Its unprecedented potential for directly quantifying spatio-tempo-
ral dynamics in key hydrological states (e.g., surface saturation, headwater network expansion/contraction) in 
response to changing meteorology and antecedent conditions, and linking this to how catchments produce runoff, 
represents a powerful tool for supplementing classical point-based hydrometric measures. Data acquired through 
drone-based TIR approaches opens new opportunities for better observing spatial patterns at high temporal fre-
quency, deriving hydrological connectivity across the land surface and monitoring stream network extension and 
contraction at scales needed for understanding and modeling of headwater response to future climate change (and 
understanding what parts of the landscape contribute to streamflow at specific times). By pairing this data with 
flow measurements collected at the catchment outlet via traditional gauging (Figure 2) or even via time-lapse 
thermal imagery of the outlet itself (e.g., outlet plume geometry; KarisAllen & Kurylyk, 2021), drone-based TIR 
is uniquely well-placed to provide a step-change in the variable source area concept, allowing direct observations 
on how runoff producing areas expand and connect in headwater catchments and thus govern water quality and 
quantity downstream (Figure 2). In this light, we argue that drone-based TIR has a key role to play in providing 
the key data streams necessary for combatting the ”general decline of field hydrology relative to modeling” 
(Beven et al., 2020, p. 871) by providing a remote sensing “bridge” between field (point) observations and model 
simulations. Moreover, such data sets will be of high value in spatially distributed modeling approaches for pre-
dicting the “right response for the right reason” to advance hydrological science.
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