
A Path-Oriented Encoding Evolutionary Algorithm for Network

Coding Resource Minimization

Huanlai Xing
1
, Rong Qu

1
, Graham Kendall

1,2
, and Ruibin Bai

3

1
University of Nottingham, Nottingham, UK;

12
University of Nottingham, Malaysia Campus;

3
University of Nottingham Ningbo, Ningbo, China

Abstract:

Network coding is an emerging telecommunication technique, where any intermediate node is allowed

to recombine incoming data if necessary. This technique helps to increase the throughput, however, very

likely at the cost of huge amount of computational overhead, due to the packet recombination performed (i.e.

coding operations). Hence, it is of practical importance to reduce coding operations while retaining the

benefits that network coding brings to us.

In this paper, we propose a novel evolutionary algorithm (EA) to minimize the amount of coding

operations involved. Different from the state-of-the-art EAs which all use binary encodings for the problem,

our EA is based on path-oriented encoding. In this new encoding scheme, each chromosome is represented

by a union of paths originating from the source and terminating at one of the receivers. Employing

path-oriented encoding leads to a search space where all solutions are feasible, which fundamentally

facilitates more efficient search of EAs. Based on the new encoding, we develop three basic operators, i.e.

initialization, crossover and mutation. In addition, we design a local search operator to improve the solution

quality and hence the performance of our EA. The simulation results demonstrate that our EA significantly

outperforms the state-of-the-art algorithms in terms of global exploration and computational time.

Keywords:

Evolutionary computation, multicast routing, network coding

1. Introduction

Network coding is a new routing paradigm, where each intermediate node is not only able to forward

the incoming data but also allowed to mathematically recombine (code) them if necessary (Ahlswede et al,

2000; Li et al, 2003). In essence, by introducing extra computations at intermediate nodes, network coding

can efficiently make use of the bandwidth resource of a network and accommodate more information flows

than traditional routing (Li et al, 2003). Multicast is a routing scheme for one-to-many data transmission,

where the same information is delivered from a source to a set of receivers simultaneously (Miller, 1998).

When applied in multicast, network coding can always guarantee a theoretically maximal throughput

(Ahlswede et al, 2000; Li et al, 2003). However, performing coding operations will consume extra

computational overhead and buffers. Hence, a natural concern is how to route the data from the source to all

receivers at the expected data rate while minimizing the number of coding operations necessarily performed.

The above problem is NP-hard (Kim et al, 2006) and a number of evolutionary algorithms (EAs) have

been proposed (see Section 2.2), where all of them adopt binary encodings to represent chromosomes (see

Section 3.2). However, it is observed in this paper that a major weakness of these encodings is that the search

space will include a large proportion of infeasible solutions. These solutions are potential barriers during the

search and may significantly deteriorate the performance of EAs. This motivates us to investigate a more

suitable encoding approach for EAs to effectively address the problem concerned.

In telecommunications, EAs are widely used as an optimizer to select appropriate routes within limited

time. When designing EAs, path-oriented encoding is a direct and natural choice since routing itself is to

select paths in a network along which the traffic is delivered. In the literature, path-oriented encoding has

been adopted by EAs for solving shortest path routing and multicast routing problems. A number of GAs

(Ahn and Ramakrishna, 2002; Cheng and Yang, 2010; Yang et al, 2010a) are employed to find the

cost-optimal path connecting the given source and receiver. Each chromosome is represented by a path

containing a string of IDs of nodes through which the path passes. Also, EAs are used to construct least-cost

spanning trees, where each chromosome is represented by a set of paths from the source to receivers (Palmer

and Kershenbaum, 1994; Siregar et al, 2005; Oh et al, 2006; Cheng and Yang, 2008, 2010b). Similar to

construct a spanning tree, network coding based multicast (NCM) finds a subgraph which owns multiple

paths. Hence, path-oriented encoding could be a potential choice as the chromosome representation to the

network coding resource minimization problem. However, to our knowledge no research in the literature

concerns path-oriented encoding for the problem concerned.

In this paper, we propose an EA using path-oriented encoding to address the network coding resource

minimization problem. In this EA, a chromosome is comprised of d basic units (BUs), where d is the number

of receivers. Each basic unit consists of a set of paths connecting the source and a certain receiver, and do not

share any common link. The number of paths in each basic unit is the same, i.e. the data rate R. We develop

three genetic operators, i.e. initialization, crossover and mutation based on the proposed path-oriented

encoding. In the initialization, an allelic BU pool is generated for each receiver. Then, each chromosome in

the population is created by randomly selecting one BU for each receiver. To explore the search space we use

a single-point crossover which operates upon BUs without damaging the structure of any BU. In mutation, a

max-flow algorithm is carried out on a BU of a chromosome, chosen based on the mutation probability

which is associated with the number of receivers, d. In addition to these genetic operators, we also develop a

problem-specific local search operator to improve solution quality and avoid prematurity. Experimental

results show that the path-oriented encoding EA is capable of finding optimal solutions in most of the test

instances within a very short time, and the proposed EA outperforms the existing EAs due to the new

encoding and the well-designed associated operators.

2. Problem Formulation and Related Work

2.1 Problem Formulation

In this paper, a communication network is modeled as a directed graph G = (V, E), where V and E are

the node set and link set, respectively. Assume each link eE is with a unit capacity. Only integer flows are

allowed in G, hence a link is either idle or occupied by a flow of unit rate (Kim et al, 2007a, 2007b). A

network coding based multicast (NCM) request can be defined as a source sV expects to send the same

data to a number of receivers T = {t1,…,td}V at rate R, where R is an integer (Xing and Qu, 2012, 2013).

Each receiver tT can receive the data sent from the source at rate R (Kim et al, 2007a, 2007b).

Given a NCM request, the task is to find a connected subgraph in G to support the multicast with

network coding (Xing and Qu, 2012, 2013). This subgraph is called NCM subgraph (denoted by GNCM). In a

NCM subgraph, there are R link-disjoint paths connecting s and each receiver; a coding node is a node that

performs coding operations; an outgoing link of a coding node is called a coding link if the data sent out via

this link are a combination of the data received by the coding node. In network G, a non-receiver

intermediate node with multiple incoming links is referred to as a merging node (Kim et al, 2007a, 2007b).

Only merging nodes are possible to become coding nodes. The number of coding links is used to estimate the

amount of coding operations performed during the data transmission (Langberg et al, 2006). More

descriptions can be found in Xing and Qu (2012). The following lists some notations.

MG: the set of merging nodes in G, where m  MG is an arbitrary merging node in G.

Lm: the set of outgoing links of merging node m, where e  Lm is an arbitrary outgoing link of node m.

σe: a binary variable associated with each link e  Lm, m  MG. σe = 1 if link e is a coding link; σe = 0

otherwise.

(GNCM): the number of coding links in the NCM subgraph.

R(s, tk): the data rate between s and tk in the NCM subgraph.

pi(s, tk) : the i-th link-disjoint path from s to tk in GNCM, i = 1,2,…,R.

The network coding resource minimization problem is defined as to find a NCM subgraph with the

number of coding links minimized and the data rate R satisfied, shown as follows:

Minimize:

  
 
















G mm e

eNCMG
M L

)(Φ  (1)

Subject to:

 R(s, tk) = R,  tk  T (2)

Objective (1) defines the optimization problem as to minimize the number of coding links; Constraint (2)

defines the achievable rate from s and each receiver is exactly R in the NCM subgraph, also indicating that

there are R link-disjoint paths between the source and each receiver.

2.2 Related Work

By far, a number of EAs have been proposed for solving the minimization problem. These EAs can be

classified into four categories, i.e. genetic algorithms (GAs), estimation of distribution algorithms (EDAs),

EAs with efficiency enhancement techniques, and hybridized EAs.

Kim et al developed several GAs to minimize the involved network coding resource. The first GA was

only applicable to acyclic networks (Kim et al, 2006). Then, a distributed GA was designed for both acyclic

and cyclic networks, where a graph decomposition method (see Section 3.1) was proposed to map the target

problem to an EA framework (Kim et al, 2007a). Besides, two binary encoding approaches, i.e. the binary

link state (BLS) and the block transmission state (BTS), and their associated operators were evaluated (Kim

et al, 2007b) (see Section 3.2).

EDAs have also been used to solve the problem. They maintain one or more probability vectors, rather

than a population of explicit solutions. The probability vectors, when sampled, will generate promising

solutions with increasingly higher probabilities during the evolution. So far, quantum-inspired evolutionary

algorithm (QEAs) and population based incremental learning algorithm (PBIL) have been developed to

optimize the problem concerned (Xing et al, 2010; Ji and Xing, 2011; Xing and Qu, 2011a, 2011b).

In addition, Ahn (2011) and Luong et al (2012) studied the minimum-cost network coding problem

using evolutionary approaches, where entropy-based evaluation relaxation techniques were introduced to

EAs in order to reduce the computational cost incurred during the evolution. By making use of the inherent

randomness feature of the individuals, the proposed EAs can rapidly recognize promising solutions with

much fewer individuals to be evaluated.

Xing and Qu (2012) proposed a hybridized EA. They designed a local search procedure and

incorporated it into the EA framework. Strong global exploration and local exploitation capabilities can both

be obtained during the evolution.

Note that all the EAs above adopt binary encodings to represent chromosomes. However, these

encodings have their intrinsic drawback as the search space may contain many infeasible solutions which

would significantly increase the difficulty of tackling the problem. It is hence worth designing a more

appropriate encoding scheme for EAs to effectively address the problem.

3. The Proposed Evolutionary Algorithm

We first review the graph decomposition method based on which the path-oriented encoding is designed.

We then review the existing encodings for network coding resource minimization, i.e. the binary link state

(BLS) and the block transmission state (BTS). After that, we describe the new encoding, its associated

operators and the overall procedure of the proposed EA.

3.1 The Graph Decomposition Method

The graph decomposition method is a means of explicitly showing how information flows pass through

merging nodes in network G. This method decomposes each merging node into a number of auxiliary nodes,

as described below (Kim et al, 2007a, 2007b).

Suppose merging node i owns In(i) incoming links and Out(i) outgoing links. This node is decomposed

into two node sets: In(i) incoming auxiliary nodes and Out(i) outgoing auxiliary nodes. Each incoming link

of i is redirected to the corresponding incoming auxiliary node and each outgoing link of i is redirected to the

corresponding outgoing auxiliary node. In addition, an auxiliary link is inserted between arbitrary pair of

incoming and outgoing auxiliary nodes. Fig.1 shows an example of the graph decomposition. The original

graph with source s and receivers t1 and t2 is shown in Fig.1(a), where v1 and v2 are merging nodes. Fig.1(b)

illustrates the decomposed graph, where eight auxiliary links are inserted, showing all possible routes that

information flows may pass through v1 and v2.

(a) Original graph. (b) decomposed graph.

Fig.1 An example of graph decomposition.

3.2 The BLS and BTS Encodings

BLS and BTS are the only two existing encoding approaches in the literature for the problem concerned

(Kim et al, 2007a, 2007b). They are based on the graph decomposition method. For an arbitrary merging

node with In incoming links and Out outgoing links, there are In auxiliary links heading to each outgoing

auxiliary node after graph decomposition, e.g. links u1w1 and u2w1 connect w1 and links u1w2 and

u2w2 connect w2, as shown in Fig.1(b). Each auxiliary link can be either active or inactive, indicating

whether the link allows flow to pass.

Assume there are OAN outgoing auxiliary nodes in the decomposed graph GD, where OAN is an integer.

In BLS, a chromosome (solution) X consists of a number of binary arrays bi, i = 1, 2, …, OAN, each

determining the states of the auxiliary links heading to a certain outgoing auxiliary node in GD. In BTS, the

chromosome representation is the same as that in the BLS encoding. However, for each array bi in

BTS-based chromosome, once there are at least two 1’s in bi, the remaining 0’s in bi are replaced with 1’s.

Using BLS or BTS encoding has two disadvantages. First, the search space contains a considerable

amount of infeasible solutions (see section 4.2). As aforementioned, how flows pass the merging nodes is

determined by the states of all incoming auxiliary links in GD. If many of the incoming auxiliary links are

inactive (i.e. many 0’s in chromosome), an infeasible solution is very likely to be resulted. Infeasible

solutions are barriers that disconnect feasible regions in the search space and decrease the search efficiency

of EAs. Second, the evaluation procedure is complex and indirect, requiring a number of processing steps, i.e.

chromosome X  GD  GNCM  f(X). Meanwhile, the computational overhead involved in the step GD 

GNCM is quite high since the max-flow between the source and each receiver tkT needs to be computed. The

two drawbacks motivate us to devise a more efficient encoding to represent the solutions to the problem

concerned.

3.3 The Path-Oriented Encoding and Evaluation

In this paper, we adapt the path-oriented encoding within our proposed EA. Each chromosome consists

of a set of paths originating from the source and terminating at one of the receivers. Each path is encoded as

a string of positive integers representing the IDs of nodes through which the data passes. The set of paths is

classified into d subsets, i.e. d basic unit (BU), where paths in BU connect to the same receiver and they do

not share any common link (i.e. they are link-disjoint). Besides, there are R paths in each BU, where R is the

expected data rate. Each chromosome is feasible since each BU of the chromosome satisfies the data rate

requirement. Each BU can be easily obtained by max-flow algorithms. For example, we find a NCM

subgraph from Fig.1(b) which consists of four paths, as shown below.

p1(s,t1) = s→a→t1; p2(s,t1) = s→b→u2→w1→c→u3→w3→t1;

p1(s,t2) = s→a→u1→w1→c→u3→w4→t2; p2(s,t2) = s→b→t2;

The corresponding chromosome is illustrated in Fig.2.

Fig.2 An example chromosome

Based on the path-oriented encoding, the chromosome evaluation is simple. For chromosome X, the

union of all paths in X forms the corresponding NCM subgraph. The fitness of X, f(X), is known by counting

the number of coding links used in the NCM subgraph. So, the computation complexity here is significantly

lower than that of BLS and BTS encodings.

Compared with BLS and BTS, path-oriented encoding has two advantages. First, for any instance, the

search space consists of feasible solutions only. The absence of infeasible solutions leads to a connected

search space, and thus helps to reduce the problem difficulty for EAs. Second, the chromosome evaluation is

less time-consuming.

3.4 Initialization

It is widely recognized that, for EAs, a good initial population is more likely to lead to a better

optimization result. For the proposed algorithm, we initialize the population in the following way. First, we

create an allelic BU pool (pool-i) for each receiver ti, where i = 1,…,d. Second, we randomly choose one BU

from pool-i, i = 1,…,d, and combine the selected BUs as a chromosome. The second step is repeated to

create a population of a predefined size.

Let pop be the population size and GD be the decomposed graph. Let R denote the expected data rate and

hence each BU contains R link-disjoint paths. Let Flow(s,ti) and Vol(s,ti) be the max-flow (made of

link-disjoint paths) and its volume from s to receiver ti, respectively. The max-flow algorithm (Goldberg,

1985) is used to calculate Flow(s,ti) and Vol(s,ti). Fig.3 shows the initialization procedure of our EA based on

the path-oriented encoding.

 // Generation of BU pools

1. for i = 1 to d do

2. Set Gtemp = GD and pool-i = 

3. for j = 1 to pop do

3. Find Flow(s,ti) from Gtemp by the max-flow algorithm (Goldberg, 1985)

4. if Vol(s,ti)  R then

5. Randomly select R paths from Flow(s,ti) as a new BU

6. if the new BU is not in pool-i then

7. Put this BU into pool-i

8. Set Gtemp = GD

9. Randomly select a BU (with at least one auxiliary link) from pool-i

10. Randomly choose an auxiliary link owned by the selected BU

11. Delete this auxiliary link from Gtemp

 // Generation of the population

12. for j = 1 to pop do

13. for i = 1 to d do

14. Randomly select a BU from pool-i

15. Include the BU in the j-th chromosome

16. Output the initial population

Fig.3 The procedure of initialization

For a specific graph Gtemp, only one BU can be obtained by the max-flow algorithm. To obtain an allelic

BU pool for receiver ti, we have to change the structure of Gtemp by deleting different links from GD at each

time. As aforementioned, how the information flows pass through a given network depends on the states of

all auxiliary links in the decomposed network. So, only the auxiliary links are considered for deletion in our

EA. To generate a new BU for receiver ti, we randomly pick up a BU from pool-i and randomly select an

auxiliary link owned by the BU, as shown in steps 9 and 10. The selected link is then removed from Gtemp to

make sure the new Gtemp is different graph.

3.5 Crossover

In the proposed EA, we use single-point crossover to each pair of selected chromosomes with a

crossover probability pc. As aforementioned, there are d BUs in a chromosome. The crossover point is

randomly chosen from the (d – 1) positions between two consecutive BUs. Two offspring are created by

swapping the BUs of the two parents after the crossover point. An example crossover operation is illustrated

in Fig.4, where each parent consists of four BUs and the crossover point is between the second and third

BUs.

First, the proposed crossover does not destroy any BU. So, after crossover, the offspring are all feasible

to warrantee a connected search space. No repair is required, which is usually needed in EAs based on the

BLS and BTS encodings. Second, the genetic information of the parents could be mixed and spread over

offspring chromosomes so that new regions in search space are explored.

Fig.4 An example of the crossover operator

3.6 Mutation

Mutation is to help the local exploitation and avoid the prematurity of EAs. As mentioned in section 3.3,

each BU is a set of R link-disjoint paths from the source to a particular receiver. Mutation upon a BU leads to

another set of R link-disjoint paths. The idea behind the mutation is that some auxiliary links owned by the

chosen BU are deleted from the secondary graph GD. Then, the new BU is generated by implementing the

max-flow algorithm on the new GD. We propose two mutation operators, the ordinary mutation M1 and

greedy mutation M2, where each BU of a chromosome is to be mutated with a mutation probability pm. The

difference between M1 and M2 is on which links in the chosen BU are deleted. In this paper, we only concern

the removal of auxiliary links since they determine the amount of coding resources required.

In M1, for a chosen BU, we randomly select an auxiliary link in the BU and delete the link from the

decomposed graph GD. After that, we compute the max-flow, i.e. Flow(s,ti), by using the max-flow algorithm

on GD (Goldberg, 1985). If the volume of Flow(s,ti), Vol(s,ti), is not smaller than the expected data rate R, a

new BU is obtained by randomly selecting R paths in Flow(s,ti). The new BU then replaces the old BU. If

Vol(s,ti) is smaller than R, the data rate requirement cannot be met and the old BU remains. The procedure of

M1 is shown in Fig.5, where rnd() generates a random value uniformly distributed in the range [0,1]. Fig.6

shows an example of BU mutation using M1, where the example network G and its decomposed network GD

are illustrated in Fig.1. Note that links u2→w1 and u3→w3 are the only auxiliary links in the chosen BU. In

the example, link u3→w3 is removed from GD and a new BU is found based on the new GD.

In M1, a random auxiliary link is deleted from GD to compute a new BU. The new BU, combined with

the remaining (d – 1) BUs of the chromosome, may lead to an increased number of coding links. This is

because no domain knowledge is taken into consideration in M1. To avoid this we propose the greedy

mutation M2 which is the same as M1 except the way of which auxiliary links are chosen to be deleted.

In M2, when deleting auxiliary links from GD, we concern not only the chosen BU but also the

remaining (d – 1) BUs. A random auxiliary link owned by the chosen BU is deleted from GD to make sure

that a new different BU is introduced. We also delete in GD those unoccupied auxiliary links which connect

to one of the outgoing auxiliary nodes being occupied by the remaining (d – 1) BUs, to make sure that no

additional coding links are introduced after M2. One advantage of M2 is that the fitness value of a

chromosome tends to be smaller after mutation. However, M2 may lead the search to local optima.

1. for j = 1 to pop do

2. for i = 1 to d do

3. if rnd() < pm then

 // the i-th BU of the j-th chromosome is chosen

4. Set Gtemp = GD

5. if the i-th BU owns at least one auxiliary link then

6. Randomly select an auxiliary link owned by the i-th BU

7. Delete the link from Gtemp

8. Compute Flow(s,ti) from Gtemp using the max-flow algorithm

9. if Vol(s,ti)  R then

10. Randomly select R paths from Flow(s,ti) and replace

 the old BU with the R paths

11. Output the mutated population

Fig.5 The procedure of the ordinary mutation M1

(a) the chosen BU (b) link deletion from GD (c) the new BU

Fig.6 An example of the mutation operator M1

Regarding the mutation probability pm, a fixed value may not be a wise choice since the number of BUs

in a chromosome changes according to d, i.e. the number of receivers. A fixed pm value, e.g. 0.1, could lead

to a dramatically different number of mutation operations during the evolution, which may not generally

applicable for different multicast sessions. In our EA, we set pm = 1/d, thus the amount of mutation

operations involved does not change too much in different multicast sessions, hence more likely to lead to a

stable optimization performance of EA.

3.7 The Local Search Operator

To enhance local exploitation, we propose a local search (LS) operator which is performed on a

randomly selected chromosome at each generation.

The aim of this operator is to revise some BUs of the selected chromosome to gradually reduce the

number of coding links involved in the multicast. Note that each outgoing link of a merging node is

redirected to an outgoing auxiliary node after the graph decomposition, as discussed in section 3.1. So in the

NCM subgraph of an arbitrary chromosome, each coding link corresponds to a certain coding node (i.e. an

outgoing auxiliary node that performs coding). To reduce the number of coding nodes is to decrease the

number of coding links. Assume there is a chromosome X of which the NCM subgraph contains K coding

nodes, where K is an integer. The LS operator aims to remove the occurrence of coding operation at each

coding node. The K coding nodes will be processed one by one, in an ascending order according to their

node IDs.

We assume the k-th coding node (denoted by cnode-k, k = 1, 2, …, K) is to be processed by the LS

operator. We also assume that there are C (C  2) auxiliary links connecting to cnode-k in the NCM

subgraph of X, meaning information via these links is involved in the coding at cnode-k. To remove the

coding from cnode-k, one simple idea is to delete arbitrarily (C – 1) auxiliary links from the NCM subgraph

of X. However, directly removing these links leads to an infeasible X since BUs which occupy these (C – 1)

links are damaged. To overcome this, our LS operator reconstructs the affected BUs so that they bypass the

use of the (C – 1) auxiliary links mentioned above, explained as follows.

First of all, we randomly select (C – 1) auxiliary links connecting to cnode-k and check which BUs are

occupying these links. The affected BUs will be reconstructed, while the others remain in the NCM subgraph.

Next, we delete the selected (C – 1) auxiliary links from the decomposed graph GD. Besides, we also delete

those currently unoccupied auxiliary links from GD which connect to one of the outgoing auxiliary nodes

being occupied by the unaffected BUs. The reason to remove the unoccupied auxiliary links is that we expect

to reduce the chance of removing one coding node at the expense of introducing other coding node(s).

Finally, we reconstruct the affected BUs by using the max-flow algorithm over GD. If all the affected BUs

are successfully constructed, we obtain a new chromosome Xnew. If Xnew owns less coding links than X, we

replace the incumbent X with Xnew (i.e. the LS moves to an improved solution Xnew) and repeat the LS

operator to improve the new incumbent Xnew. Otherwise, we retain X and proceed to the next coding node of

X. The LS operator stops when either no improvement is made to the incumbent chromosome after checking

all its coding nodes, or a new chromosome with no coding involved (i.e. optimal) is found.

An example LS is shown in Fig.7, where Fig.1(a) is the example network. The example NCM subgraph

GNCM consists of two BUs, i.e. BU1 = {s→a→t1, s→b→u2→w2→d→u4→w3→t1} and BU2 = {s→b→t2,

s→a→u1→w2→d→u4→w4→t2}, as seen in Fig.7(a). Obviously, node w2 is the only coding node in GNCM.

According to the rule of LS, one of the incoming auxiliary links, i.e. u1→w2 and u2→w2, needs to be

removed from GD. In the example, link u1→w2 is chosen for removal and hence the affected BU, i.e. BU2,

has to be reconstructed. Besides, as auxiliary nodes w2 and w3 are currently occupied by BU1, all unoccupied

auxiliary links heading to w2 and w3 also need to be deleted from GD. So, link u3→w3 is deleted. Based on the

new GD, a new BU2 = {s→b→t2, s→a→u1→w1→c→u3→w4→t2} is rebuilt, as shown in Fig.7(c). It is easily

seen that the combination of BU1 and BU2 results into a NCM subgraph without coding operation. Hence,

the LS procedure stops and returns the resulting NCM subgraph.

The LS operator is useful to improve the solution-quality (i.e. better fitness) of the selected chromosome.

Also, it changes the structure of the chromosome. Hence, the new chromosome may also help to increase the

population diversity. The evaluation of the LS operator is discussed in section 4.7.

(a) GNCM before LS (b) link deletion from GD (c) GNCM after LS

Fig.7 An example of the local search (LS)

3.8 The Overall Procedure of the Proposed EA

The procedure of the proposed EA is shown in Fig.8. The evaluation of chromosome Xi(t) (in step 4) is

simple. In GD, we mark those nodes and links being occupied by the BUs in Xi(t). The union of the marked

nodes and links forms the NCM subgraph GNCM of Xi(t). The number of coding links in GNCM, i.e. (GNCM),

is assigned to Xi(t) as its fitness. In step 8, tournament selection (Mitchell, 1996) is adopted in our proposed

EA. The tournament size is set to 2, which is a typical setting for EAs. In step 9, the elitism scheme is used to

preserve the best-so-far chromosome. In step 11, either the ordinary mutation or the greedy mutation can be

used here. The termination conditions are that, either the EA has found a chromosome of which the NCM

subgraph has no coding link, or EA has evolved a predefined number of generations.

1. Initialization

2. Set t = 0;

3. Create an initial population {X1(t), …, Xpop(t)} by using the proposed initialization operator; // see section 3.4

4. Evaluate each chromosome Xi(t), i = 1,…, pop;

5. Randomly select one chromosome and perform LS operator on it; // see section 3.7

6. Repeat

7. Set t = t + 1;

8. Select a new population {X1(t), …, Xpop(t)} from the old one by using the tournament selection;

9. Replace a random chromosome with the best chromosome of the previous generation, e.g. Xbest(t-1);

10. Execute crossover to each pair of selected chromosomes with crossover probability pc; // see section 3.5

11. Execute mutation to each BU of each chromosome with mutation probability pm; // see section 3.6

12. Evaluate each chromosome Xi(t), i = 1,…, pop;

13. Randomly select one chromosome and perform the LS operator on it; // see section 3.7

14. until the termination condition is met

Fig.8 The procedure of the proposed EA

4. Performance Evaluation

In this section, we first introduce the test instances used to evaluate the performance of the proposed EA

(we hereafter call it pEA). We then investigate the deficiency of BLS and BTS encodings. After that we

study the effectiveness of the crossover and mutation of pEA, and compare EAs with path-oriented, BLS and

BTS encodings. The LS operator is studied next. Finally, we compare pEA with the existing EAs in terms of

optimization performance and computational time.

4.1 Test Instances

We consider 14 test instances, four on fixed networks and 10 on randomly generated networks. The four

fixed networks are 3-copy, 7-copy, 15-copy and 31-copy networks which have been used to test the

performance of EAs for a number of network coding based optimization problems (Kim et al, 2007b; Xing

and Qu, 2011a, 2012, 2013). Fig.9 illustrates an example of n-copy network, where Fig.9(b) is a 3-copy

network constructed by cascading 3 copies of the original network in Fig.9(a). In a n-copy network, the

source is the node on the top and the receivers are at the bottom. The n-copy network has n + 1 receivers to

which data rate from the source is 2. We hereafter call 3-copy, 7-copy, 15-copy and 31-copy networks as

Fix-1, Fix-2, Fix-3, and Fix-4 networks, respectively. The 10 random networks (Rnd-i, i = 1,…,10) are

directed networks with 20 to 60 nodes. Table 1 shows the 14 instances and their parameters. To encourage

scientific comparisons, all instances are provided at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm. The

predefined number of generations for all algorithms tested is set to 200. All experiments were run on a

Windows XP computer with Intel(R) Core(TM)2 Duo CPU E8400 3.0GHz, 2G RAM. The results are

achieved by running each algorithm 50 times.

Fig.9 An example of n-copy network (a) original network (b) 3-copy

Table 1 Experimental Networks and Instance Parameters

Networks

Original network G Decomposed graph GD

nodes links receivers rate nodes links
auxiliary

links

Fix-1 25 36 4 2 49 68 32

Fix-2 57 84 8 2 117 164 80

Fix-3 121 180 16 2 253 356 176

Fix-4 249 372 32 2 617 740 368

Rnd-1 20 37 5 3 54 81 43

Rnd-2 20 39 5 3 65 89 50

Rnd-3 30 60 6 3 94 146 86

Rnd-4 30 69 6 3 113 181 112

Rnd-5 40 78 9 3 124 184 106

Rnd-6 40 85 9 4 91 149 64

Rnd-7 50 101 8 3 178 246 145

Rnd-8 50 118 10 4 194 307 189

Rnd-9 60 150 11 5 239 385 235

Rnd-10 60 156 10 4 262 453 297

4.2 Deficiency of BLS and BTS encodings

Different encoding approaches could greatly affect the performance of EAs (Mitchell, 1996). The

resulting search spaces may be significantly different with respect to not only the size but also the structure

and connectivity of the underlying landscape. As discussed in subsection 3.2, in theory, the search space of

BLS or BTS encoding may contain many infeasible solutions. The solutions are thus scattered in

disconnected feasible regions in the search space. The connectivity among feasible solutions may be so weak

that to find optimal solution(s) by EAs becomes extremely difficult.

In this section, we statistically measure the proportion of infeasible solutions (PIS) over search space by

randomly sampling. The number of samples is fixed at 10 000 for each instance. Table 2 shows the results of

PIS over 10 000 samples. For all instances, the PIS values are more than 99%. In particular, in Fix-2,3,4 and

Rand-5,7,8,9,10, the PISs of BLS and BTS are always 100%, meaning that all samples are infeasible

solutions which constitute the majority of the search space. Large amount of infeasible solutions could

disconnect feasible regions in the search space and dramatically increase the problem difficulty for search

algorithms. Hence, the BLS and BTS encodings may not be appropriate encoding schemes for our target

problem.

Table 2 Results of PIS over 10 000 Samples (%)

Networks BLS BTS Networks BLS BTS

Fix-1 99.83 99.85 Rnd-4 99.83 99.35

Fix-2 100.00 100.00 Rnd-5 100.00 100.00

Fix-3 100.00 100.00 Rnd-6 99.98 99.91

Fix-4 100.00 100.00 Rnd-7 100.00 100.00

Rnd-1 99.41 99.25 Rnd-8 100.00 100.00

Rnd-2 99.96 99.99 Rnd-9 100.00 100.00

Rnd-3 99.89 99.84 Rnd-10 100.00 100.00

4.3 Performance Measures

To show the performance of pEA in various aspects, such as the optimal solution obtained, the

convergence characteristic, and the consumed running time, the following performance metrics are used

throughout section 4.

 Mean and standard deviation (SD) of the best solutions found over 50 runs. One best solution is

obtained in one run. The mean and SD are important metrics to show the overall performance of a search

algorithm.

 Student’s t-test (Walpole et al, 2007; Yang and Yao, 35) to compare two algorithms (e.g. A1 and A2)

in terms of the fitness values of the 50 best solutions obtained. In this paper, two-tailed t-test with 98 degrees

of freedom at a 0.05 level of significance is used. The t-test result can show statistically if the performance of

A1 is better than, worse than, or equivalent to that of A2.

 Successful ratio (SR) of finding an optimal solution in 50 runs. The successful ratio, to some extent,

reflects the global exploration ability of an EA to find optimal solutions.

 Evolution of the best fitness averaged over 50 runs. The plot of the evolution illustrates the

convergence process of an algorithm.

 Average computational time (ACT) consumed by an algorithm over 50 runs. This metric is a direct

indication of the time complexity of an algorithm.

4.4 The Effectiveness of Crossover in pEA

As mentioned in subsection 3.5, the single-point crossover is used in pEA. We investigate the feasibility

of this operator and the impact of different settings of the crossover probability pc on the performance of

pEA. Mutation and LS operator is excluded in pEA in this experiment. We set the population size pop = 20

and compare the performance of pEA with four different pc, i.e. 0.0, 0.3, 0.6, and 0.9, where pc = 0.0 means

the algorithm stops after initialization since no crossover is involved. By comparing the results of different pc

and those of pc = 0.0, one could see the effectiveness of the crossover.

The results of the mean and standard deviation of pEA with different pc are shown in Table 3. It can be

seen that pEA with crossover performs better than pEA without crossover in each instance, indicating

crossover can properly drive the evolution process. Besides, we find with larger pc the mean and SD become

increasingly better. The variant of pEA with pc = 0.9 performs the best, showing that rapid exchange of

genetic information over different chromosomes helps to explore different areas in the search space.

However, we may also find that there remain big gaps between the best solutions obtained by pEA with only

crossover and the optimal solutions in each instance. This is mainly because employing crossover only is not

enough to guide pEA to escape from local optima. We need mutation to enhance local exploitation and avoid

prematurity.

Table 3 Comparisons of pEA with Different Crossover Probabilities (Best Results are in Bold)

Networks

pc = 0.0 pc = 0.3 pc = 0.6 pc = 0.9

Mean SD Mean SD Mean SD Mean SD

Fix-1 2.84 0.37 1.70 0.61 1.32 0.51 1.08 0.27

Fix-2 9.58 1.45 7.64 1.43 6.78 1.35 6.16 1.23

Fix-3 22.88 0.47 20.68 1.92 19.74 2.00 17.54 1.98

Fix-4 46.94 0.42 45.32 1.89 44.72 1.79 43.20 2.26

Rnd-1 2.44 0.64 1.70 0.64 1.18 0.66 0.96 0.66

Rnd-2 0.62 0.56 0.12 0.32 0.04 0.19 0.02 0.14

Rnd-3 2.64 0.56 1.86 0.70 1.40 0.72 1.22 0.64

Rnd-4 0.72 0.45 0.38 0.49 0.22 0.41 0.10 0.30

Rnd-5 7.58 0.81 5.60 1.08 5.06 1.13 4.46 1.32

Rnd-6 0.40 0.49 0.00 0.00 0.00 0.00 0.00 0.00

Rnd-7 3.86 1.01 3.06 0.79 2.96 1.02 2.34 0.77

Rnd-8 6.84 0.42 5.76 1.04 5.28 1.10 4.64 1.10

Rnd-9 6.00 0.00 5.42 0.67 5.14 0.63 4.98 0.58

Rnd-10 7.94 1.39 6.40 1.22 5.54 1.51 5.18 1.17

4.5 The Effectiveness of Mutation in pEA

We propose two mutation operators with pm = 1/d in section 3.6, i.e. the ordinary mutation M1 and

greedy mutation M2, where d is the number of receivers. To mutate a BU, M1 deletes a random auxiliary link

of the BU from GD while M2 deletes a random auxiliary link of the BU and a number of unoccupied

auxiliary links from GD. The removal of the random link is to make sure that the mutated BU is different

from the old one. Besides, the removal of those unoccupied links is to ensure no extra coding link will be

introduced after mutation.

In the following experiment, we compare the performance of pEA with the proposed crossover and

different mutations. The comparison between M1 and M2 can show whether the removal of those unoccupied

auxiliary links helps to improve the performance of pEA. When comparing M1 and M2, we also study the

impact of different pm, i.e. 2/d, 1/d, and 0.5/d. Let M1(pm) and M2(pm) denote the two mutations with pm,

respectively. In the experiment, LS operator is excluded. We set pop = 20 and pc = 0.9.

Table 4 shows the results of mean and standard deviation of the obtained best fitness values by pEA

with different mutations and different pm. Between the two mutations, we find that pEA with M2 performs

better than pEA with M1 if taking into account the results for all instances. The worst pm for M2 is 0.5/d while

the best pm for M1 is 1/d. If comparing the results of M2(0.5/d) and those of M1(1/d), we see that M2(0.5/d)

wins in 9 instances while M1(1/d) wins in 2 instances, indicating M2 is more effective than M1. In addition,

having a look at M2 with different pm, we also find that the mean and SD become better and better with pm

changing from 0.5/d to 2/d. This is because when mutating a BU, M2 makes sure that the rebuilt BU does not

increase the amount of coding operations to the corresponding chromosome. On the contrary, it is possible

that coding at one or more nodes of a chromosome is eliminated after M2. Hence, imposing reasonably more

M2 operations to the evolving population is more likely to obtain a better optimization performance of pEA.

We hereafter only use the greedy mutation as the mutation operator in our pEA.

Table 4 Results of Mean and Standard Deviation for Different Mutations and Different Mutation

Probabilities (Best Results are in Bold)

Networks










d

2
M1 









d

1
M1 









d

5.0
M1 









d

2
M2 









d

1
M2 









d

5.0
M2

Mean SD Mean SD Mean

Mean

ean

SD Mean SD Mean SD Mean SD

Fix-1 1.00 0.00 1.00 0.00 1.00 0.00 0.04 0.19 0.14 0.35 0.26 0.44

Fix-2 4.06 0.23 4.00 0.00 4.00 0.00 1.26 0.59 1.64 0.80 1.94 0.79

Fix-3 10.52 1.05 8.50 0.54 8.44 0.57 5.72 1.22 6.04 0.92 6.68 0.84

Fix-4 29.08 1.81 24.30 0.92 23.54 0.88 17.60 1.50 18.20 1.19 18.30 1.55

Rnd-1 0.00 0.00 0.00 0.00 0.06 0.23 0.00 0.00 0.04 0.19 0.06 0.23

Rnd-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rnd-3 0.02 0.14 0.00 0.00 0.06 0.23 0.00 0.00 0.04 0.19 0.02 0.14

Rnd-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rnd-5 1.88 0.43 1.40 0.53 1.50 0.61 0.00 0.00 0.02 0.14 0.12 0.32

Rnd-6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rnd-7 1.06 0.23 1.02 0.14 1.10 0.30 0.12 0.32 0.34 0.47 0.56 0.50

Rnd-8 2.10 0.30 2.16 0.37 2.34 0.51 0.02 0.14 0.04 0.19 0.30 0.46

Rnd-9 2.46 0.57 2.06 0.46 2.36 0.66 0.80 0.40 0.86 0.35 0.94 0.23

Rnd-10 1.92 0.48 1.62 0.49 1.76 0.59 0.00 0.00 0.00 0.00 0.06 0.23

To further support our findings, we compare different mutations with different pm by using Student’s

t-test (see subsection 4.3), where results are given in Table 5. The result of comparison between A1↔A2 is

shown as “+”, “–”, or “~” when A1 is significantly better than, significantly worse than, or statistically

equivalent to A2, respectively. The table shows that M2 is significantly better than M1 in 9 instances and

statistically equivalent to M1 in the remaining instances, which undoubtedly reflects the superiority of M2

over M1. Moreover, M2 with a larger pm performs better than M2 with a smaller pm. However, their

performances do not differ too much. For example, between M2(2/d) and M2(1/d), the former only wins 2

instances.

Table 5 t-Test Results for Different Mutations and Different Mutation Probabilities

Networks









d

2
2M  









d

1
2M 









d

2
2M  









d

5.0
2M 









d

1
2M  









d

5.0
2M 









d

2
2M  









d

2
1M 









d

2
2M  









d

1
1M 









d

2
2M  









d

5.0
1M

Fix-1      

Fix-2      

Fix-3      

Fix-4      

Rnd-1      

Rnd-2      

Rnd-3      

Rnd-4      

Rnd-5      

Rnd-6      

Rnd-7      

Rnd-8      

Rnd-9      

Rnd-10      

Networks









d

1
2M  









d

2
1M 









d

1
2M  









d

1
1M 









d

1
2M  









d

5.0
1M 









d

5.0
2M  









d

2
1M 









d

5.0
2M  









d

1
1M 









d

5.0
2M  









d

5.0
1M

Fix-1      

Fix-2      

Fix-3      

Fix-4      

Rnd-1      

Rnd-2      

Rnd-3      

Rnd-4      

Rnd-5      

Rnd-6      

Rnd-7      

Rnd-8      

Rnd-9      

Rnd-10      

The results of the successful ratio and average computational time are collected in Table 6. For the

successful ratio, the results match to our findings from Table 4, where M2 is better than M1 and a larger pm

results into a better performance of M2. For the average computational time, we find that the computational

complexity of mutation is higher than that of evaluation.

Table 6 Results of Successful Ratio and Average Computational Time

Networks

SR (%) ACT (sec.)










d

2
M1 









d

1
M1 









d

5.0
M1










d

2
M 2 









d

1
M 2 









d

5.0
M2










d

2
M1 









d

1
M1 









d

5.0
M1










d

2
M 2 









d

1
M 2 









d

5.0
M2

 Fix-1 0 0 0 96 86 74 8.89 4.7475 2.6437 0.39 0.61 0.69

Fix-2 0 0 0 6 8 2 23.97 12.50 7.29 22.29 11.72 7.81

Fix-3 0 0 0 0 0 0 67.80 40.88 22.81 80.69 38.52 22.51

Fix-4 0 0 0 0 0 0 253.66 153.67 88.27 306.12 180.47 100.42

Rnd-1 100 100 94 100 96 94 2.21 0.69 0.61 0.20 0.39 0.33

Rnd-2 100 100 100 100 100 100 0.13 0.10 0.09 0.11 0.09 0.09

Rnd-3 98 100 94 100 96 98 5.12 1.55 1.80 0.42 0.77 0.49

Rnd-4 100 100 100 100 100 100 0.39 0.29 0.23 0.25 0.18 0.20

Rnd-5 0 0 0 100 98 88 30.84 17.23 9.03 4.07 2.85 3.66

Rnd-6 100 100 100 100 100 100 0.23 0.22 0.21 0.23 0.20 0.21

Rnd-7 0 0 0 88 66 44 38.36 20.65 13.23 11.22 11.31 9.49

Rnd-8 0 0 0 98 96 70 59.22 30.28 17.76 10.61 10.00 12.97

Rnd-9 0 0 0 20 14 6 76.46 47.11 28.57 74.10 38.86 29.85

Rnd-10 0 0 0 100 100 94 108.34 57.63 32.65 6.81 9.01 11.43

In general, fitness evaluation is assumed to be the most time-consuming operation compared with other

operations such as selection, crossover and mutation for highly complex optimization problems. However,

the above assumption is no longer held in pEA (without the LS operator) where mutation takes a comparable

larger computation time over the fitness evaluation. In mutations (i.e. M1 and M2), computation is spent on

two steps, i.e. the removal of some auxiliary links from the decomposed graph GD and the reconstruction of a

new BU. The max-flow algorithm in (Goldberg, 1985) is used, leading to a time complexity of

O(|VD|
2
·|ED|

1/2
), where |VD| and |ED| are the number of nodes and links in GD, respectively. Compared with the

reconstruction of the BU, the removal of auxiliary links consumes very limited computation and can be

ignored. Hence, to mutate a chromosome (no matter M1 or M2), we require a complexity of OM, where OM =

O(pm·d·|VD|
2
·|ED|

1/2
). In contrast, to evaluate a chromosome, we only need to obtain the NCM subgraph GNCM

of this chromosome and check how many outgoing auxiliary nodes perform coding in GNCM. As mentioned in

section 3.3, each GNCM consists of d BUs, each of which contains R paths, e.g. pi(s,tk) is the i-th path of the

k-th BU. Let Lik be the string length of pi(s,tk) in the chromosome. To obtain a GNCM from the corresponding

chromosome, the amount of computation involved is ∑i∑kLik, where Lik < |VD|. We assume there are Y

outgoing auxiliary nodes in GD where Y < |VD| since at least the source and receivers are not decomposed. To

check the status of all outgoing auxiliary nodes in GNCM, the amount of computation involved is Y. Therefore,

to evaluate a chromosome requires a complexity of OE < O(|VD|
2
) < OM.

According to the above finding, the computational time in pEA is mainly spent on the mutation

operations during the evolution. Hence, the computational time of pEA should be proportional to the amount

of mutation operations. Let us take some examples to show the linear relationship between them. Note that

pEA stops at two conditions, either a chromosome without coding is found or a predefined number of

generations is reached. To show if the computational time changes proportionally to the amount of mutation

operations during the evaluation, we should look at those instances where the successful ratios for different

mutation rates are all 0%. In these instances the amount of mutation operations for different pm is

proportional and we only need to check if the computational time is also proportional. Taking instance Fix-3

as an example, theoretically, the ratio of the amount of mutations during the evolution for M2(2/d), M2(1/d)

and M2(0.5/d) is 4:2:1. In practice, the ratio of the average computational time of M2(2/d), M2(1/d) and

M2(0.5/d) are calculated as 3.58:1.71:1.00 which is similar to the theoretical ratio.

4.6 Comparisons of Different Encoding Approaches

In this section, we show the superiority of the path-oriented encoding over other existing encoding

approaches by comparing the performance of three EAs, i.e. pEA, GA with BLS encoding (BLSGA) and GA

with BTS encoding (BTSGA). For the BLS and BTS encoding approaches please see (Kim et al, 2007b) and

section 3.2 for details. Note that an all-one chromosome is inserted into the initial population of BLSGA and

BTSGA to make sure they begin with at least one feasible solution; otherwise, the two GAs may never

converge since no feasible solution may be obtained during the search (Kim et al, 2007b). This has showed

to be an effective method in previous work (Kim et al, 2007a, 2007b; Xing and Qu, 2011a, 2011b, 2012,

2013).

The comparison is based on a standard GA framework, where genetic operators in each EA include

selection, crossover and mutation. The population size and the tournament size are set to 20 and 2 for each

algorithm, respectively. In pEA, we use the greedy mutation and set pc = 0.9 and pm = 1/d. We adopt the best

parameter settings for BLSGA and BTSGA in (Kim et al, 2007b). In BLSGA, pc = 0.8 and pm = 0.006. In

BTSGA, pc = 0.8 and pm = 0.012. Besides, BLSGA and BTSGA use the uniform crossover with a mixing

ratio of 0.5 and a simple mutation where each bit of a chromosome is flipped at pm.

The performance comparisons of EAs with different encodings are shown in Table 7. Besides, the t-test

results are provided in Table 8. Undoubtedly, pEA achieves better optimization results and consumes less

ACT than BLSGA and BTSGA in almost all instances.

Table 7 Comparisons of GA with Different Encoding Approaches

 Mean and SD SR (%) ACT (sec.)

 BLSGA BTSGA pEA BLSGA BTSGA pEA BLSGA BTSGA pEA

Networks Mean SD Mean SD Mean SD

Fix-1 0.46 1.01 0.74 1.20 0.14 0.35 80 68 86 1.13 1.47 0.61

Fix-2 3.82 4.26 3.86 3.93 1.64 0.80 8 2 8 11.47 11.85 10.72

Fix-3 7.92 5.64 11.92 6.00 6.04 0.92 0 0 0 54.57 51.19 38.52

Fix-4 37.60 9.19 43.22 4.47 18.20 1.19 0 0 0 98.51 72.55 180.47

Rnd-1 0.96 1.29 1.00 1.48 0.04 0.19 46 54 96 3.17 2.86 0.39

Rnd-2 0.44 0.83 0.38 0.75 0.00 0.00 78 78 100 0.91 1.12 0.09

Rnd-3 0.40 0.98 0.66 1.20 0.04 0.19 84 74 96 4.02 4.21 0.77

Rnd-4 0.28 0.45 0.08 0.27 0.00 0.00 72 92 100 2.95 1.98 0.18

Rnd-5 2.98 4.01 4.22 4.70 0.02 0.14 8 10 98 15.75 13.45 2.85

Rnd-6 0.42 0.81 0.36 0.77 0.00 0.00 78 82 100 3.05 2.67 0.20

Rnd-7 2.14 1.95 2.72 2.16 0.34 0.47 10 6 66 21.11 19.15 11.31

Rnd-8 3.04 1.94 3.88 1.96 0.04 0.19 2 0 96 32.60 29.23 10.00

Rnd-9 3.68 1.40 4.24 1.59 0.86 0.35 0 2 14 51.49 45.81 38.86

Rnd-10 3.52 3.40 3.76 3.50 0.00 0.00 4 0 100 62.04 57.25 9.01

Table 8 t-Test Results for Different GAs

Networks pEABLSGA pEABTSGA Networks pEABLSGA pEABTSGA

Fix-1   Rnd-4  

Fix-2   Rnd-5  

Fix-3   Rnd-6  

Fix-4   Rnd-7  

Rnd-1   Rnd-8  

Rnd-2   Rnd-9  

Rnd-3   Rnd-10  

To show the convergence of the three EAs, we plot the evolution of the best fitness in each generation,

averaged over 50 runs for two fixed and four random instances, as shown in Fig.10. First, we can see that

pEA always obtains better initial solutions than BLSGA and BTSGA. For example, in Fig.10(a), at the

beginning of the evolution, the average best fitness for pEA is around 7 while those of BLSGA and BTSGA

are both 11. Moreover, we find that pEA converges very fast especially in the early generations. To find a

good solution, pEA needs much less generations than BLSGA and BTSGA. This is an outstanding advantage

of pEA especially in real-time and dynamic applications, where a decent solution must be found within a

very short time.

 (a) Fix-2 (b) Fix-3

 (c) Rnd-4 (d) Rnd-6

 (e) Rnd-8 (f) Rnd-10

Fig.10 Best fitness vs. generation for six instances

Based on the analysis above, we conclude that the path-oriented encoding is more efficient than the BLS

and BTS encodings in terms of global optimization, convergence, and computational time.

4.7 The Effectiveness of the LS Operator

As discussed in subsection 3.7, a LS operator is applied to a randomly chosen chromosome at each

generation to improve the solution quality. To verify the effectiveness of this operator, we randomly

construct five chromosomes for each instance by using the initialization method in section 3.4. We apply the

LS operator on each chromosome and compare the fitness values of the chromosome before and after

implementing the LS operator, i.e. ФBEF and ФAFT. Let X and X denote the chromosome before and after the

LS, and EA(X) and EA(X) be the set of auxiliary links owned by X and X, respectively. We define the

structural difference coefficient (SDC) ρ between X and X according to the Marczewski-Steinhaus concept

of distance (Marczewski and Steinhaus, 1958), as follows:

%100
|)'()(|

|)'()(||)'()(|







XX

XXXX

AA

AAAA

EE

EEEE
 (3)

The value of SDC is between 0.0 and 1.0, which tells us to what degree X and X are different, showing

the effect of LS operator on the structure change of solutions. A larger SDC indicates a severer structural

change caused by the LS operator.

Table 9 Results of the LS Operator

Networks

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5

ΦBEF ΦAFT ρ (%) ΦBEF ΦAFT ρ (%) ΦBEF ΦAFT ρ (%) ΦBEF ΦAFT ρ (%) ΦBEF ΦAFT ρ (%)

Fix-1 3 0 54.5 4 0 20.0 3 0 30.0 5 0 36.3 6 0 50.0

Fix-2 12 0 51.7 18 0 53.1 13 0 54.8 16 0 56.2 14 0 53.3

Fix-3 30 0 54.5 35 0 56.3 27 0 54.5 29 0 55.2 40 0 52.8

Fix-4 47 0 53.4 69 0 53.8 60 0 53.9 71 0 54.9 70 0 57.3

Rnd-1 4 2 36.0 5 3 17.3 2 0 30.0 7 3 26.9 6 1 38.4

Rnd-2 2 0 8.33 3 2 18.5 5 3 7.41 4 2 11.5 3 1 33.3

Rnd-3 3 0 38.8 3 0 19.3 5 1 34.1 7 0 45.2 6 0 50.0

Rnd-4 4 1 25.7 5 2 25.6 4 0 22.8 1 0 13.7 2 1 42.1

Rnd-5 12 7 20.0 9 3 17.8 11 3 21.8 8 4 23.6 10 2 39.6

Rnd-6 2 0 21.7 1 0 14.2 1 0 44.0 3 0 24.0 2 0 25.0

Rnd-7 8 4 20.0 6 2 28.3 4 1 10.2 9 3 13.5 6 5 8.33

Rnd-8 8 5 10.5 12 7 15.8 11 3 29.8 15 8 20.4 14 5 22.0

Rnd-9 13 7 15.7 18 5 21.7 8 4 12.3 14 4 19.7 12 7 15.9

Rnd-10 12 3 30.8 15 5 24.5 8 5 8.89 9 5 10.9 7 3 31.1

The experimental results of ФBEF, ФAFT and ρ are shown in Table 9. First, it is seen that ФEND is smaller

than ФSTART especially for instances Fix-3,4, showing that the LS operator can improve the quality of

chromosomes. Meanwhile, regarding the values of ρ in all instances, 32 chromosomes (45% of the 70

chromosomes) are at least 30% different on the structure, meaning the LS operator may also help to

introduce extra diversity to the population.

4.8 Overall performance Evaluation

This section evaluates the overall performance of pEA by comparing it with six state-of-the-art

algorithms in the literature. The following explains the algorithms for comparison.

 GA1: BLS encoding based GA (Kim et al, 2007b). Different from BLSGA used in section 4.6, GA1

employs a greedy sweep operator after the evolution to further improve the quality of the best solution found

by flipping each of the remaining 1’s to 0 if it does not result into an infeasible solution.

 GA2: BTS encoding based GA (Kim et al, 2007b). The same greedy sweep operator is applied at the

end of evolution as in GA1.

 QEA1: Quantum-inspired evolutionary algorithm (QEA) (Xing et al, 2010). QEA maintains a

population of quantum-bit chromosomes. Each chromosome is a probabilistic distribution model over the

solution space. Each sampling on a chromosome results into a solution. Rotation angle step (RAS) and

quantum mutation probability (QMP) are used to update each chromosome. QEA1 is based on the BLS

encoding. For each chromosome, the RAS value is randomly generated and the QMP value is set according

to the current fitness of the chromosome.

 QEA2: Another QEA proposed by Ji and Xing (2011). The main difference between QEA2 and

QEA1 is that in QEA2 the RAS and QMP values of a chromosome are adjusted according to the current and

previous fitness values of the chromosome.

 PBIL: Population based incremental learning algorithm (Xing and Qu, 2011a). BLS encoding is used.

PBIL maintains a real-valued probability vector (PV) which, when sampled, produces promising solutions

with higher probabilities. At each generation, the statistic information of high quality samples is used to

update the PV. A restart scheme is introduced to help PBIL to escape from local optima.

 cGA: Compact genetic algorithm (Xing and Qu, 2012). Similar to PBIL, cGA also maintains a PV.

However, the PV in cGA is only sampled once at each generation. The new sample is compared with the

best-so-far sample and between the two the winner is used to update the PV. Based on BLS encoding, cGA is

featured by a restart scheme and a local search operator.

 pEA1: the path-oriented encoding EA. Note that LS operator is excluded. The performance of pEA1

will demonstrate the pure evolutionary search ability of the proposed algorithm.

 pEA2: pEA1 with LS operator, which indicates the overall performance of the proposed algorithm.

The population size is set to 20 for each algorithm. For GA1, we set pc = 0.8 and pm = 0.006. For GA2,

we have pc = 0.8 and pm = 0.012. For QEA1, QEA2, PBIL and cGA, we adopt their best parameter settings

(Xing et al, 2010; Ji and Xing, 2011; Xing and Qu, 2011a, 2012). For pEA\LS and pEA, we set pc = 0.9 and

pm = 1/d, where d is the number of receivers.

The comparison results are collected in Table 10, where the best results in mean are in bold. First, we

analyze the data in Mean and SR for each algorithm. It can be seen that pEA2 always performs the best in

each instance while cGA is the second best. The third best algorithm is PBIL. Compared with QEA1 and

QEA2, PBIL performs better in 6 instances (see Fix-2,3 and Rnd-5,7,9,10) and worse in 2 instances (see

Fix-4 and Rnd-8). The comparison of pEA1 and pEA2 illustrates that LS operator help to improve the overall

performance of the proposed algorithm. In some cases the improvement is substantial, e.g. the mean and SR

in instances Fix-2,3,4. When comparing pEA1 with the existing algorithms, we can see that in fix networks,

pEA1 has similar performance with GA1. In random networks, pEA1 gains similar performance with PBIL

except for instances Rnd-8,9 and illustrates better performance than GAs and QEAs in most instances.

Next, we compare the ACT of the algorithms. Before analyzing the data, we divide the 14 instances into

two groups according to their PIS values (see subsection 4.2). Those with a PIS value less than 100% belong

to the first group (called easy instances) while the rest belong to the second group (called hard instances).

Easy instances includes Fix-1 and Rnd-1,2,3,4,6 while hard instances are Fix-2,3,4 and Rnd-5,7,8,9,10.

Regarding easy instances, one can find that more than half of the state-of-the-art algorithms (GA1, GA2,

QEA1, QEA2, PBIL, and cGA) can find an optimal solution with a successful ratio of 100%. As for hard

instances, most of the state-of-the-art algorithms have a lower successful ratio than 100%. In easy instances,

most of algorithms can obtain an optimal solution within a short time (e.g. less than 1 second). However, in

each hard instance, the ACT spent by each algorithm differs significantly. In easy instances, QEA1, QEA2,

PBIL, cGA, pEA1 and pEA2 all consume similar ACT (i.e. less than 1 second) while GA1 and GA2 are the

two worst. In hard instances, pEA2 and cGA are the two fastest algorithms. Besides, the former costs

significantly less time than the latter in instances Fix-3,4 and Rnd-5,8,9,10. pEA1 is the third fastest

algorithm. The difference between pEA1 and pEA2 also indicates the effectiveness of LS in reducing the

computational time.

Table 10 Comparisons of Different Algorithms

Networks

Mean and SD

GA1 GA2 QEA1 QEA2 PBIL cGA pEA1 pEA2

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Fix-1 0.36 0.74 0.08 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.35 0.00 0.00

Fix-2 1.96 1.92 0.68 0.84 0.18 0.62 0.48 0.70 0.00 0.00 0.00 0.00 1.64 0.80 0.00 0.00

Fix-3 7.48 5.12 3.66 2.13 3.10 4.18 5.80 1.62 2.14 4.31 0.00 0.00 6.04 0.92 0.00 0.00

Fix-4 28.75 7.97 18.66 22.58 19.10 5.76 20.00 0.00 28.90 10.30 0.00 0.00 18.20 1.19 0.00 0.00

Rnd-1 0.52 0.88 0.44 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.19 0.00 0.00

Rnd-2 0.26 0.66 0.02 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rnd-3 0.44 0.83 0.02 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.19 0.00 0.00

Rnd-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rnd-5 2.78 2.71 1.16 0.61 0.46 0.50 0.48 0.54 0.04 0.28 0.04 0.19 0.02 0.14 0.00 0.00

Rnd-6 0.22 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rnd-7 1.58 0.92 1.36 0.66 0.66 0.47 0.58 0.53 0.38 0.60 0.22 0.41 0.34 0.47 0.00 0.00

Rnd-8 2.52 1.44 2.28 0.94 0.98 0.82 0.48 0.61 0.60 1.56 0.24 0.43 0.04 0.19 0.00 0.00

Rnd-9 2.82 1.22 2.34 1.34 1.64 0.98 1.94 1.16 0.06 0.23 0.04 0.19 0.86 0.35 0.00 0.00

Rnd-10 3.26 2.68 1.38 0.69 0.66 0.68 0.42 0.64 0.00 0.00 0.08 0.27 0.00 0.00 0.00 0.00

Networks

SR (%) ACT (sec.)

GA1 GA2 QEA1 QEA2 PBIL cGA pEA1 pEA2 GA1 GA2 QEA1 QEA2 PBIL cGA pEA1 pEA2

Fix-1 80 92 100 100 100 100 86 100 0.99 1.61 0.24 0.21 0.10 0.02 0.61 0.09

Fix-2 14 52 88 62 100 100 8 100 12.42 11.98 8.54 10.41 2.20 0.15 10.72 0.33

Fix-3 0 4 26 0 58 100 0 100 55.85 49.27 89.88 91.61 66.14 2.09 38.52 1.57

Fix-4 0 0 0 0 0 100 0 100 232.92 200.73 728.13 750.70 543.64 29.55 180.47 20.79

Rnd-1 62 56 100 100 100 100 96 100 2.95 3.30 0.73 0.50 0.29 0.23 0.39 0.16

Rnd-2 86 98 100 100 100 100 100 100 1.14 1.33 0.37 0.40 0.13 0.02 0.09 0.11

Rnd-3 76 98 100 100 100 100 96 100 5.13 5.07 0.68 0.75 0.23 0.06 0.77 0.27

Rnd-4 100 100 100 100 100 100 100 100 3.19 3.13 0.57 0.81 0.26 0.16 0.18 0.23

Rnd-5 4 10 54 54 98 96 98 100 16.57 14.52 13.82 14.38 6.09 3.14 2.85 0.63

Rnd-6 78 100 100 100 100 100 100 100 3.54 3.34 0.72 0.84 0.17 0.03 0.20 0.23

Rnd-7 8 8 34 44 68 78 66 100 24.13 20.78 24.35 22.52 24.29 6.83 11.31 2.10

Rnd-8 2 0 30 58 82 76 96 100 38.37 30.89 38.04 31.47 27.43 20.11 10.00 0.95

Rnd-9 4 8 14 10 94 96 14 100 62.46 50.73 73.73 73.94 47.29 16.40 38.86 1.93

Rnd-10 4 6 46 64 100 92 100 100 71.25 55.46 64.12 52.39 31.81 17.42 9.01 1.15

Regarding the overall performance in Table 10, we see that pEA2 is the best among the eight algorithms.

Besides, pEA1 has similar performance with GA1 in fix networks and PBIL in random networks,

respectively. Meanwhile, the LS operator has a positive impact on improving the overall performance of the

proposed algorithm. To further support the finding, we show the t-test results comparing pEA2 and pEA1

with the others in Table 11.

Table 11 t-Test Results for Comparing Different Algorithms

Networks Fix-1 Fix-2 Fix-3 Fix-4 Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 Rnd-9 Rnd-10

pEA2GA1              

pEA2GA2              

pEA2QEA1              

PEA2QEA2              

pEA2PBIL              

pEA2cGA              

pEA2pEA1           +  + 

pEA1GA1           + + + +

pEA1GA2           + + + +

pEA1QEA1           + + + +

pEA1QEA2           + + + +

pEA1PBIL            +  

pEA1cGA            +  +

Note: The result of comparison between Algorithm1↔Algorithm2 is shown as “+”, “–”, or “~” when the former is significantly

better than, significantly worse than, or statistically equivalent to the latter, respectively.

5. Conclusions

This paper investigates the network coding resource minimization problem and develops a path-oriented

encoding evolutionary algorithm (pEA) based on a new encoding approach. Different from the existing EAs

which are based on the BLS or BTS encodings, the new EA is based on path-oriented encoding. Each

chromosome consists of a number of basic units (BUs), each of which contains a set of link-disjoint paths

from the source to the same receiver. In accordance to the new encoding approach, we develop the associated

initialization, crossover and two mutation operators in the proposed EA. It is observed that between the two

proposed mutation operators, the greedy mutation is more likely to result into a better performance than the

ordinary mutation. Besides, a problem-specific local search operator is also developed to improve the

solution quality. The simulation results show that the proposed pEA outperforms six existing state-of-the-art

algorithms regarding the best solutions obtained and the computational time consumed, due to the new

path-oriented encoding and the associated operators designed accordingly.

References

Ahlswede R, Cai N, Li S Y R, and Yeung R W (2000). Network information flow. IEEE Transactions on Information

Theory 46(4): 1204-1216.

Ahn C W and Ramakrishna R S (2002). A genetic algorithm for shortest path routing problem and the sizing of

populations. IEEE Transactions on Evolutionary Computation 6(6): 566-579.

Ahn C W (2011). Fast and adaptive evolutionary algorithm for minimum-cost multicast with network coding.

Electronics Letters 47(12): 700-701.

Cheng H and Yang S (2008). A genetic-inspired joint multicast routing and channel assignment algorithm in wireless

mesh networks. In: Proceedings of the 2008 UK Workshop on Computational Intelligence, pp. 159-164.

Cheng H and Yang S (2010a). Multi-population genetic algorithms with immigrants scheme for dynamic shortest path

routing problems in mobile Ad Hoc networks. In: Proceedings of EvoApplications 2010, pp. 562-571.

Cheng H and Yang S (2010b). Genetic algorithms with immigrants schemes for dynamic multicast problems in mobile

Ad Hoc networks. Engineering Applications of Artificial Intelligence 23(5): 806-819.

Fragouli C, Boudec J Y L and Widmer J (2006). Network coding: an instant primer. Computer Communications Review

36(1): 63-68.

Fragouli C and Soljanin E (2006). Information flow decomposition for network coding. IEEE Transactions on

Information Theory 52(3): 829-848.

Goldberg A V (1985). A new max-flow algorithm. MIT Technical Report MIT/LCS/TM-291, Laboratory for Computer

Science, MIT.

Ji Y and Xing H (2011). A memory-storable quantum-inspired evolutionary algorithm for network coding resource

minimization. In: Kita E. (Ed.), Evolutionary Algorithm. InTech, pp.363-380.

Kim M, Ahn C W, Médard M and Effros M (2006). On minimizing network coding resources: An evolutionary

approach. In: Proceedings of Second Workshop on Network Coding, Theory, and Applications (NetCod2006),

Boston.

Kim M, Médard M, Aggarwal V, O’Reilly U M, Kim W, Ahn C W and Effros M (2007a). Evolutionary approaches to

minimizing network coding resources. In: Proceedings of 26th IEEE International Conference on Computer

Communications (INFOCOM2007), Anchorage, pp. 1991-1999.

Kim M, Aggarwal V, Reilly V O, Médard M and Kim W (2007b). Genetic representations for evolutionary

minimization of network coding resources. In: Proceedings of EvoWorkshops 2007, LNCS 4448, Valencia, pp 21-31.

Langberg M, Sprintson A and Bruck J (2006). The encoding complexity of network coding. IEEE Transactions on

Information Theory 52(6): 2386-2397.

Li S Y R, Yeung R W and Cai N (2003). Linear network coding. IEEE Transactions on Information Theory 49(2):

371-381.

Luong H N, Nguyen H T T and Ahn C W (2012). Entropy-based efficiency enhancement techniques for evolutionary

algorithms. Information Sciences 188: 100-120.

Marczewski E and Steinhaus H (1958). On a certain distance of sets and the corresponding distance of functions.

Colloquium Mathematicum 6.

Miller C K (1998). Multicast networking and applications. Pearson Education.

Mitchell M (1996). An introduction to genetic algorithms. MIT Press.

Oh S, Ahn C W and Ramakrishna R S (2006). A genetic-inspired multicast routing optimization algorithm with

bandwidth and end-to-end delay constraints. In: Proceedings of ICONIP 2006, pp. 807-816.

Palmer C C and Kershenbaum A (1994). Representing trees in genetic algorithms. In: Proceedings of the First IEEE

Conference on Evolutionary Computation, pp. 379-384.

Qu R, Xu Y and Kendall G (2009). A variable neighborhood descent search algorithm for delay-constrained least-cost

multicast routing. In: Proceedings of Learning and Intelligent Optimization: Designing, Implementing and

Analyzing Effective Heuristics (LION 3), LNCS 5851, pp. 15-29.

Siregar J H, Zhang Y and Takagi H (2005). Optimal multicast routing using genetic algorithm for WDM optical

networks. IEICE Transactions on Communications E88-B: 219-226.

Walpole R E, Myers R H, Myers S L and Ye K (2007). Probability and statistics for engineers and scientists. Pearson

Education.

Xing H, Ji Y, Bai L and Sun Y (2010). An improved quantum-inspired evolutionary algorithm for coding resource

optimization based network coding multicast scheme. AEU-International Journal of electronics and

communications 64(12): 1105-1113.

Xing H and Qu R (2011a). A population based incremental learning for network coding resources minimization. IEEE

Communications Letters 15(7): 698-700.

Xing H and Qu R (2011b). A population based incremental learning for delay constrained network coding resource

minimization. In: Proceedings of EvoApplications 2011, Torino, pp 51-60.

Xing H and Qu R (2012). A compact genetic algorithm for the network coding based resource minimization problem.

Applied Intelligence 36(4): 809-823.

Xing H and Qu R (2013). A nondominated sorting genetic algorithm for bi-objective network coding based multicast

routing problems. Information Sciences, accepted. http://dx.doi.org/10.1016/j.ins.2013.01.014.

Yang S, Cheng H and Wang F (2010). Genetic algorithms with immigrants and memory schemes for dynamic shortest

path routing problems in mobile Ad Hoc networks. IEEE Transactions on Systems, Man, and Cybernetics-Part C:

Applications and Reviews 40(1): 52-63.

Yang S and Yao X (2005). Experimental study on population-based incremental learning algorithms for dynamic

optimization problems. Soft Computing 9(11): 815-834.

