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Abstract  
Acylcarnitine accumulation in skeletal muscle and plasma has been observed in numerous 

models of mitochondrial lipid overload and insulin resistance. Fish oil omega-3 

polyunsaturated fatty acids (n3PUFA) are thought to protect against lipid-induced insulin 

resistance. The present study tested the hypothesis that addition of n3PUFA to an 

intravenous lipid emulsion would limit muscle acylcarnitine accumulation and reduce the 

inhibitory effect of lipid overload on insulin action. On three occasions, six healthy young 

men underwent a 6-hour euglycaemic hyperinsulinaemic clamp accompanied by intravenous 

infusion of saline (Control), 10% Intralipid (n6PUFA), or 10% Intralipid + 10% Omegaven 

(2:1; n3PUFA). The decline in insulin-stimulated whole-body glucose infusion rate, muscle 

pyruvate dehydrogenase complex activation (PDCa), and glycogen storage associated with 

n6PUFA compared to Control, was prevented with n3PUFA. Muscle acetyl-CoA 

accumulation was greater following n6PUFA compared to Control and n3PUFA, suggesting 

that mitochondrial lipid overload was responsible for the lower insulin action observed. 

Despite these favourable metabolic effects of n3PUFA, accumulation of total muscle 

acylcarnitine was not attenuated when compared with n6PUFA. These findings demonstrate 

that n3PUFA exert beneficial effects on insulin-stimulated skeletal muscle glucose storage 

and oxidation independently of total acylcarnitine accumulation, which does not always 

reflect mitochondrial lipid overload. 

 

Abbreviations 
CAT, carnitine acetyltransferase; CPT2, carnitine palmitoyltransferase 2; n3PUFA, fish oil 

omega-3 polyunsaturated fatty acids; PDC, pyruvate dehydrogenase complex.  
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INTRODUCTION 
 
It is generally accepted that the accumulation of lipid-derived intermediates within skeletal 

muscle are a major cause of insulin resistance in sedentary individuals [1, 2]. However, 

although lipid-intermediates such as diacylglecerol, ceramides, and long-chain acyl-CoAs 

have the potential to impair insulin-stimulated glucose uptake, the mechanisms by which this 

may occur in vivo, if at all, and the characteristics (e.g. degree of saturation, chain length) of 

any aberrant species are still not known [1, 2]. Recent studies suggest that lipid-induced 

insulin resistance may arise secondary to mitochondrial overload, whereby excess entry of 

fatty acids into mitochondria results in an imbalance between β-oxidation and the demands 

of the tricarboxylic acid cycle [2, 3, 4, 5]. Under such circumstances free carnitine, acting 

predominantly via carnitine acetyltransferase (CAT) and the reverse carnitine 

palmitoyltransferase (CPT) 2 reactions, sequesters excess acyl-groups from β-oxidation in 

the form of acylcarnitine, which can then be efficiently exported across the otherwise 

impermeable mitochondrial membrane to the cytosol [6]. Although muscle and plasma 

acylcarnitine accumulation has been observed in numerous models of lipid overload and 

insulin resistance, it is uncertain to what extent this incomplete β-oxidation can impair 

glucose uptake and metabolism in human skeletal muscle [5].  

 

The intravenous infusion of lipid emulsion combined with heparin in healthy individuals 

during euglycaemic hyperinsulinaemia results in impaired insulin-stimulated oxidative and 

non-oxidative glucose disposal, with inhibition of the pyruvate dehydrogenase complex 

(PDC) by increased fatty acid β-oxidation and/or lipid intermediate accumulation as a 

primary event [7]. Interestingly, slightly varying the lipid composition of the infused emulsion 

in individuals with type 2 diabetes mellitus by the addition of fish oil omega-3 long-chain 

polyunsaturated fatty acids (n3PUFA) has been demonstrated to partially reduce the lipid 

infusion-induced increase in fatty acid oxidation [8]. Furthermore, n3PUFA are thought to 

protect against lipid-induced skeletal muscle insulin resistance in rodents [9], and 

preincubation of primary myotubes from obese individuals with or without type 2 diabetes 

mellitus with n3PUFA has been demonstrated to increase glucose oxidation compared to 

oleic acid [4]. Studies in human myotubes have also suggested that n3PUFA improves 

insulin sensitivity by diverting fatty acids away from mitochondrial β-oxidation towards 

cellular lipid incorporation [10]. Indeed, daily n3PUFA supplementation for 1-2 weeks has 

been demonstrated to reduce fat oxidation in individuals with type 2 diabetes mellitus [11] 

and improve insulin-stimulated glucose uptake [12]. However, findings from n3PUFA 

supplementation studies lasting 3-9 weeks are ambiguous with most [e.g. 11, 13, 14] 

demonstrating impaired glucose uptake in individuals with type 2 diabetes mellitus, perhaps 

suggesting a time dependent effect [11]. Thus, the aim of the present study was to provide 

further insight to the relationship between incomplete β-oxidation (skeletal muscle 

acylcarnitine accumulation) and insulin resistance in vivo, by testing the hypothesis that 

addition of n3PUFA to an intravenous lipid emulsion during 6-hours of hyperinsulinaemia 

would limit the inhibitory effect of excessive β-oxidation on PDC activation and, therefore, 

improve insulin-stimulated glucose uptake compared to lipid emulsion alone.  
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MATERIALS AND METHODS 
 
Subjects 
 
Six healthy, male volunteers (age 25.7 ± 2.3 years, body mass 84.0 ± 7.8 kg, BMI 26.8 ± 2.4 

kg/m
2
) gave their written informed consent to participate in the present study, which was 

approved by the University of Nottingham Medical School Ethics Committee in accordance 

with the Declaration of Helsinki.  

 

Protocol 
 

Volunteers reported to the laboratory following an overnight fast at 0800 on three 

randomized occasions at least one week apart (range 1 to 3 weeks). On arrival, subjects 

were asked to rest in a supine position on a bed while cannulae were inserted into a vein in 

the hand for arterialized-venous blood sampling, the forearm for the infusion of insulin 

(Actrapid; Novo Nordisk, Denmark) and 20% dextrose, and the contralateral forearm for the 

infusion of a lipid emulsion (Intralipid or Omegaven; Fresenuis Kabi, Germany) or 0.9% 

saline as described previously [7]. On each visit a 6-hour euglycaemic hyperinsulinaemic (50 

mU·m
-2

·min
-1

) clamp was performed in combination with the infusion of saline (Control), 10% 

Intralipid (n6PUFA), or 10% Intralipid + 10% Omegaven (2:1 ratio; n3PUFA) at a rate of 100 

ml/h. This insulin infusion rate was chosen as it has been previously demonstrated to 

completely supress endogenous (hepatic) glucose production under insulin resistant 

conditions known to affect acylcarnitine metabolism [15]. Thus, the variable glucose infusion 

rate required to maintain euglycaemia (4.52 ± 0.02 mmol/l) was equivalent to peripheral 

glucose disposal and, therefore, peripheral insulin sensitivity. The total Intralipid infusion 

provided 60 g of omega-6 soybean oil (2515 kJ), whereas the Omegaven + Intralipid infusion 

provided 20 g of highly refined omega-3 fish oil and 40 g soybean oil (2610 kJ). This equated 

into approximately 1 g of palmitic acid, 1 g of oleic acid, 10 g of linoleic acid, and 1 g linolenic 

acid in n6PUFA being replaced with 1 g of palmitoleic acid, 1 g of arachidonic acid, 5 g of 

eicosapentaenoic acid (EPA), 1 g of docosapentaenoic acid (DPA), and 5 g of 

docosahexanoic acid (DHA). During each lipid infusion heparin sodium was infused at rate of 

600 U/h to elevate plasma non-esterified fatty acid (NEFA) availability.  

 

Sample collection and analysis 
 
Arterialized-venous blood was obtained every hour for the analysis of plasma NEFA (NEFA 

C kit, WAKO Chemicals, Germany) after the addition of tetrahydrolipostatin (30 μg/ml 

plasma) on an automated analyzer (ABX Pentra 400, Horiba Medical Ltd., France). Plasma 

insulin was measured by ELISA (DRG diagnostics, Germany). Muscle samples were also 

obtained from the vastus lateralis before and
 
after each clamp using the Bergström needle

 

biopsy technique, and immediately frozen in liquid nitrogen cooled isopentane. One portion 

of the frozen muscle sample (~30 mg) was freeze-dried, separated free of visible blood, fat, 

and connective
 
tissue, and powdered. Acylcarnitines were then extracted using a modified 

version of the method described by Sun et al [16]. Briefly, powdered samples were 

vigorously vortexed for 2 min in 500 μl of 1M KH2PO4 buffer (pH 4.9)/isopropanol (1:1), and 

then for a further 5 min following the addition of 500 μl of acetonitrile. After centrifugation at 

14,000 g for 20 min at 4°C the supernatant was removed, dried under gentle N2 flow, and 

resuspended in 100 μl of isopropanol/1 mM acetic acid (4:1) for subsequent liquid 

chromatography-mass spectrometry (LC-MS) analysis [17]. Acylcarnitines were screened 

(electrospray positive mode) for the common carnitine moiety m/z 85 (4000 QTRAP, 

ABSciex, USA) and sensitively quantified in multiple reaction monitoring mode against a 

dilution series of known acylcarnitine standards of varying chain lengths (C2-C20). Muscle 

glycogen, glucose-6-phoshate, and acetyl-CoA content were also determined in a portion of 

freeze-dried muscle powder, whereas 5-10 mg portion of frozen muscle was used to 

determine PDC
 
activation status (PDCa) all as previously described [7]. Intramyocellular lipid 
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(IMCL) content was determined in 10 μm sections cut from frozen muscle and fixed in 4% 

paraformaldehyde phosphate buffered saline (pH 7.4). Samples were incubated at room 

temperature for 1 hour in 3 μM LD540/dimethyl sulfoxide (DMSO) and, following 3 washes in 

PBS (pH 7.4), embedded in an antifade reagent (ProLong Gold, Life Technologies, Paisley, 

UK) for subsequent visualisation of LD540 stained lipid droplets using a TCS SP2 confocal 

microscope (Leica Microsystems, Heidelberg, Germany). Briefly, 1 μm z-stacks using a 

561nm laser were captured at x40 magnification in order to control for sample depth and 

background noise, and the area of the fibre covered by fluorescence was calculated using 

Volocity software (Volocity 6.3, PerkinElmer, Cambridge, UK). LD540 is a lipophilic dye 

similar to Bodipy, and was manufactured by the University of Nottingham School of 

Chemistry according to the method of Spandl et al [18].   

 

In addition, total RNA was extracted from approximately 20 mg of wet muscle tissue by the 

method of Chomczynski and Sacchi [19] using Trizol reagent (Life Technologies, Paisley, 

UK). Following spectrophotometric quantification, first-strand cDNA was generated from 2 μg 

of RNA using the SuperScript III cDNA kit (Life Technologies, Paisley, UK) and stored at -

80°C. Thereafter, the relative mRNA abundance of 24 genes from pathways involved in fatty 

acid metabolism and insulin signalling/carbohydrate metabolism was determined using 

custom designed low density RT-PCR array microfludic cards (Applied Biosystems Inc., 

Foster City, CA, USA) in combination with the ABI PRISM 7900T sequence detection system 

and SDS 2.1 software (Applied Biosystems Inc., Foster City, CA, USA). The candidate 

genes were selected from PubMed literature searches and data obtained from our 

laboratory. A complete list of details for each gene assay is available in Supplemental Table 

1. The threshold cycle CT was automatically given by the SDS software RQ manager, and 

relative mRNA abundance was calculated using the ΔΔCT method with one of the subjects’ 

baseline sample from their first visit as the calibrator and cyclophillin (PPIA) as the 

endogenous control. CT values for PPIA did not change across time points (data not shown). 

 

Statistics 
 

All blood and muscle data, along with acylcarnitine species grouped according to their chain 

length into acetyl- (C2), short- (C3-C5), medium- (C6-C10), and long-chain (C12-C20), were 

analysed using a two-way ANOVA (GraphPad Prism 6, GraphPad Software Inc, USA). 

When a significant main effect was detected data were further analysed with a Student’s t 
test using the Sidak-Bonferroni correction. Pearson’s correlation coefficients with a Holm-

Bonferroni stepwise correction were used to analyse associations between post-clamp 

acylcarnitine content and glucose disposal, glycogen accumulation, and PDCa. Statistical 

significance was declared at P<0.05, and all the values presented are means ± standard 

error.  
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RESULTS 
 
Insulin resistance 
 

Similar steady-state (120-360 min) serum insulin concentrations of 242 ± 12, 256 ± 41 and 

274 ± 36 pmol/l, were obtained during the hyperinsulinaemic clamps in Control, n6PUFA, 

and n3PUFA, respectively. This resulted in a complete suppression of steady-state plasma 

NEFA concentration during Control (0.01 ± 0.002 mmol/l), but not during n6PUFA and 

n3PUFA, where lipid infusion maintained NEFA at similar steady-state (120-360 min) 

concentration of 0.42 ± 0.06 mmol/l. Despite the greater circulating NEFA concentration, 

IMCL content did not change following Control, n6PUFA, or n3PUFA (Table 1). However, 

whereas steady-state (240-360) whole-body glucose infusion rate was 28% lower in 

n6PUFA compared to Control (41.8 ± 2.5 vs. 57.3 ± 3.0 μmol·m
-2

·min
-1

; P<0.01), it was no 

different in n3PUFA such that it was 24% greater than n6PUFA (51.4 ± 2.4 μmol·m
-2

·min
-1

; 

P<0.05; Figure 1A). Furthermore, the greater insulin-stimulated glucose infusion rate in 

Control was associated with a 108 ± 25% and 18 ± 6% increase in PDCa (P<0.01) and 

muscle glycogen content (P<0.05), respectively (Figure 1B and C). These effects were 

impaired following n6PUFA, where there was no increase in muscle glycogen or PDCa, but 

not following n3PUFA, where muscle glycogen increased by 20 ± 8% (P<0.05) and PDCa 

increased by 49 ± 10% (P<0.05) such that it was 70 ± 24% greater than n6PUFA (P<0.05). 

However, there were no differences in muscle G6P content between n6PUFA and n3PUFA, 

which increased around 2-fold (P<0.05) following both (Figure 1D). 

 

Acylcarnitine metabolism 
 

Insulin infusion suppressed total muscle acylcarnitine (sum of C3 to C20) content in Control 

(53.2 ± 11.2 to 21.3 ± 4.7 μmol/kg dm; P<0.001), but not in n6 or n3PUFA (58.2 ± 11.5 to 

52.0 ± 14.3 and 44.5 ± 6.7 to 49.6 ± 6.8 μmol/kg dm, respectively; Figure 2 inset). The 

suppression of acylcarnitine in Control was predominantly attributable to around a 75% 

decrease in medium- (C6-C10; P<0.05) and long-chain (C12-C20; P<0.05) acylcarnitines 

(Table 1). Interestingly, this suppressive effect of insulin on long-chain acylcarnitine was also 

observed in n6PUFA (P<0.05; Table 1), but not in n3PUFA such that it was 3.1-fold greater 

than Control (P<0.05; Table 1). Similarly, medium- and short-chain acylcarnitine was 4.9- 

and 1.9-fold greater, respectively, than Control in n3PUFA (P<0.01). However, only post-

clamp short-chain acylcarnitine was negatively correlated with steady-state glucose disposal 

across all three trials (r
2
=0.38, P<0.01). Of the short-chain acylcarnitines, isovaleryl (r

2
=0.37, 

P<0.05), hydroxy/hydroxyisobutyryl (r
2
=0.31, P<0.05), and propionylcarnitine (r

2
=0.31, 

P<0.05) were negatively correlated with glucose disposal, but only isovalerylcarnitine was 

negatively correlated with muscle glycogen accumulation (r
2
=0.42, p<0.01). Short-chain 

acylcarnitine did not correlate with PDCa (r
2
=0.16). Despite muscle acetyl-CoA accumulation 

being 2.5-fold greater (P<0.05) following n6PUFA compared to Control and n3PUFA trials 

(Table I), there was no significant changes in muscle acetylcarnitine (C2) content following 

Control, n6PUFA, or n3PUFA (Table 1).  

 

Gene expression 
 

Insulin infusion per se reduced the expression of genes encoding insulin receptor substrate 

1 (IRS1) and 2 (IRS2), and increased the expression of phosphatidylinositol 3-kinase 

regulatory subunit alpha gene (PIK3R1), irrespective of lipid infusion (all time effects, 

P<0.01; Supplemental Table 1). On the other hand, lipid infusion per se reduced the 

expression of genes encoding uncoupling protein 3 (UCP3) and GLUT4 (SLC2A4), and 

prevented the insulin stimulated increase in sterol regulatory element binding protein gene 

expression (SREBF1) observed in Control (all treatment or interaction effects, P<0.05; 

Supplemental Table I). Interestingly, the expression of several genes responded differently 

to the infusion of n6PUFA and n3PUFA. The gene encoding nicotinamide phosphoribosyl 
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transferase (NAMPT) did not change following Control or n6PUFA, but increased in n3PUFA 

above baseline by 35% such that it was around 50% greater than Control and n6PUFA 

(Figure 3A). Furthermore, genes encoding peroxisome proliferator activated receptor alpha 

(PPARA; Figure 3B; P<0.05) and its targets lipoprotein lipase (LPL; Figure 3D; P<0.01) and 

medium chain acyl-CoA dehydrogenase (ACADM; Figure 3E; P<0.05) were reduced 

following n3PUFA but not n6PUFA, whereas peroxisome proliferator activated receptor delta 

(PPARD; Figure 3C; P<0.05) was reduced in n6PUFA but not n3PUFA, and fatty acid 

synthase (FASN Figure 3E; P<0.05) was increased in n6PUFA only.  
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DISCUSSION 
 
In agreement with our hypothesis, replacement of one third of an n6PUFA lipid infusion with 

an equimolar fish oil based n3PUFA emulsion prevented much of the decline in insulin-

stimulated whole-body glucose disposal and muscle PDC activation, and the inhibition of 

muscle glycogen accumulation associated with n6PUFA. These findings provide the first 

evidence in humans that acute administration of n3PUFA can have beneficial effects on 

skeletal muscle insulin sensitivity in the face of lipid excess, albeit at a 3-fold greater dose 

(11 vs. 3 g of EPA + DPA + DHA) than previously described in patients with type 2 diabetes 

mellitus [8]. Given the finding that some [12], but not all [11, 13, 14], previous studies have 

demonstrated improved insulin stimulated glucose uptake with fish-oil supplementation in 

insulin resistant individuals, and that beneficial effects on insulin sensitivity are generally 

seen in glucose tolerant individuals over a short supplementation period (<2 weeks [12]), or 

low dose (<3g/day [20]), further research is warranted to ascertain the optimal dose and 

duration of fish-oil supplementation if it is to be used as a nutritional tool to improve skeletal 

muscle insulin sensitivity and glycaemic control in individuals with type 2 diabetes mellitus. 

For example, one may speculate that the beneficial metabolic effects of acute fish-oil 

administration are lost during more prolonged supplementation due to progressive n3PUFA 

incorporation into the skeletal muscle plasma membrane, particularly as there is a 

relationship between insulin sensitivity and the fatty acid composition of skeletal muscle 

phospholipids [21]. Similarly, as acute n3PUFA has been shown to divert fatty acids away 

from mitochondrial β-oxidation towards IMCL storage [10], one may also predict that 

prolonged fish-oil supplementation may begin to have a detrimental effect on insulin 

sensitivity by increasing IMCL content [1, 2]. 

 

This study also provides a novel scenario of a similar amount of circulating NEFA producing 

a markedly different whole-body glucose disposal, allowing greater insight to the role of 

excessive lipid and β-oxidation in insulin resistance in humans in vivo. Thus, in line with 

several observational studies in insulin resistant conditions [2, 3, 4, 5, 22], the greater 

muscle acetyl-CoA (allosteric inhibitor of the PDC) accumulation following n6PUFA suggests 

that excessive intramuscular β-oxidation was responsible for the lower insulin action on 

oxidative glucose disposal (inhibited muscle PDCa) observed compared to n3PUFA. 

However, the findings that muscle total and medium-chain acylcarnitine content was similar, 

and that long-chain acylcarnitine was actually suppressed, following n6PUFA infusion 

compared to n3PUFA would suggest that longer-chain length acylcarnitines (C6-C20) do not 

accurately reflect excessive β-oxidation and insulin resistance. This is in agreement with the 

finding of Soeters et al. [15] that muscle long-chain acylcarnitines did not reflect fasting 

induced insulin resistance in humans. On the other hand, muscle short-chain acylcarnitines 

tended to be greater after n6PUFA infusion and negatively correlated with whole-body 

glucose disposal, with C5 (isovaleryl), C4OH (hydroxybutyryl/ hydroxyisobutyryl), and C3 

(propionyl) carnitine having the strongest relationship. However, it is important to note that 

these acylcarnitines are derived from branched-chain amino acid (BCAA) catabolism and not 

fatty acid β-oxidation, proving further evidence against incomplete β-oxidation (i.e. 

acylcarnitine accumulation per se as opposed to excessive acetyl-CoA accumulation) 

causing or reflecting insulin resistance. This is consistent with other studies demonstrating a 

strong association of hydroxybutyrylcarnitine [23, 24] and other short chain acylcarnitines of 

BCAA catabolism [25, 26] with insulin resistant states and the development of type 2 

diabetes [27]. Indeed, the ability of insulin to suppress BCAA catabolism is impaired in 

insulin resistance [28], and fatty acids have been shown to activate branch-chain keto-acid 

dehydrogenase (the rate limiting step in BCAA oxidation; [29]). It is also important to note 

that, unlike short-chain acyl-CoA products of mitochondrial BCAA catabolism, short-chain 

acylcarnitines do not inhibit PDC activity in vitro [30]. In support of the latter, short-chain 

acylcarnitine products of mitochondrial BCAA catabolism did not negatively correlate with 

PDCa in the present study, suggesting that acetyl-CoA per se is more important for inducing 

insulin resistance at the level of glucose oxidation. Of course, we also observed a beneficial 
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effect of n3PUFA infusion on non-oxidative glucose disposal in that there was a complete 

prevention of the inhibition of net glycogen synthesis observed in n6PUFA. Thus, whether 

short-chain acylcarnitines that are exported from mitochondria directly inhibited glucose 

uptake or storage and caused insulin resistance in the present study clearly requires further 

investigation, particularly as isovalerylcarnitine had a negative correlation with glycogen 

accumulation and acylcarnitines have previously been demonstrated to stimulate key 

cytosolic pathways implicated in lipid-induced skeletal muscle insulin resistance [31]. 

 

The differences in skeletal muscle fatty acid metabolism between n6PUFA and n3PUFA in 

the present study are in agreement with previous cell and animal studies [4, 9, 10], and are 

supported by the finding that n3PUFA supressed the expression of genes encoding 

peroxisome proliferator activated receptor alpha (PPARa), which is a key transcription factor 

controlling the expression of genes involved in fatty acid oxidation, and medium chain acyl-

CoA dehydrogenase (MCAD), which is a rate limiting step in β-oxidation downstream of 

medium- and long-chain acylcarnitine accumulation. Indeed, the PPAR transcription factors 

are known to have different affinities for saturated, mono-unsaturated and poly-unsaturated 

fatty acids [32], and this differential expression of genes between n6PUFA and n3PUFA 

infusion was also observed for other genes involved in fatty acid metabolism namely 
PPARD, NAMPT, LPL, and FASN. Also, although not significantly different, IMCL content 

increased by around 50% (range -13.4 to 264.4%) in n3PUFA in the present study, which 

would fit with the suggestion of fatty acids being diverted from oxidation toward cellular lipid 

incorporation [10], particularly as nicotinamide phosphoribosyl transferase (NAMPT) has 

been shown to be responsive to changes in cellular triglyceride and phospholipid metabolism 

[33], the gene expression of which increased in every volunteer during the n3PUFA visit. 

However, genes involved in insulin signalling and glucose metabolism that changed in the 

present study such as IRS1, IRS2, PIK3R1, SREBF1, and SLC2A4 were not differentially 

expressed between n6PUFA and n3PUFA, which is in line with cell studies [10], and 

possibly because the proteins encoded by these genes are regulated by phosphorylation or 

translocation.  

 

In conclusion, replacement of predominantly n6PUFA linoleic acid with n3PUFA fish-oil fatty 

acids in an intravenous lipid emulsion infusion during 6-hours of hyperinsulinaemia improves 

insulin-stimulated oxidative and non-oxidative glucose disposal compared to lipid emulsion 

alone. This was likely due to a reduction in the inhibitory effect of excessive β-oxidation on 

PDC activation, and possibly the inhibitory effect of lipid on glucose transport and storage by 

an unidentified mechanism. The model used in the present study provides further human in 
vivo evidence of excess entry of fatty acids into the mitochondria per se causing insulin 

resistance, but is in contrast to that speculated in the literature that skeletal muscle total 

acylcarnitine accumulation from incomplete β-oxidation may be a causative factor. 

Nevertheless, the effect of short-chain acylcarnitines from aberrant amino acid metabolism 

on insulin action in skeletal muscle requires further investigation.  
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CLINICAL PERSPECTIVES 
 

Recent clinical studies suggest that skeletal muscle insulin resistance may arise secondary 

to mitochondrial lipid overload, as reflected by plasma acylcarnitine accumulation. The 

present study provided further insight by demonstrating that addition of fish oil to an 

intravenous lipid infusion in healthy male participants partially prevented lipid-induced 

mitochondrial overload and insulin resistance. However, these effects were not reflected by 

skeletal muscle total acylcarnitine content. The findings confirm that acute fish-oil fatty acid 

administration can have positive effects in insulin resistant conditions. They also suggested 

that whilst total acylcarnitine accumulation might not reflect mitochondrial lipid overload, a 

short-chain acylcarnitine might cause skeletal muscle insulin resistance. This latter target 

requires further investigation.    
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Table 1. Skeletal muscle metabolite content before and after 6 h of euglycaemic hyperinsulinaemia (~260 pmol/l) accompanied by saline 
(Control), Intralipid (n6PUFA) or Intralipid:Omegaven (2:1 ratio; n3PUFA) infusions. 
 Control n6PUFA n3PUFA 

Pre Post Pre Post Pre Post 

Intramyocellular lipid (IMCL) 0.066 ± 0.011 0.079 ± 0.012 0.081 ± 0.008 0.082 ± 0.009 0.063 ± 0.012 0.093 ± 0.023 

Acetyl-CoA  3.9 ± 0.9 3.9 ± 0.5 3.8 ± 0.9 10.1 ± 3.3* 4.2 ± 0.9 3.3 ± 0.6 

Acetylcarnitine  2.6 ± 0.6 2.0 ± 0.7 2.5 ± 0.8 3.7 ± 1.2 2.2 ± 1.0 3.2 ± 1.4 

Short-chain acylcarnitine (C3-5) 26.5 ± 6.1 15.7 ± 4.2 25.4 ± 4.7 40.3 ± 15.5 27.5 ± 4.4 29.3 ± 3.0** 

Medium-chain (C6-10) 5.8 ± 1.4 1.7 ± 0.5† 8.1 ± 2.3  4.8 ± 0.8 5.6 ± 1.8 8.3 ± 2.0** 

Long-chain (C12-20) 20.9 ± 8.8 3.9 ± 0.8† 24.6 ± 9.6 6.9 ± 2.2† 11.4 ± 2.8 12.0 ± 2.4* 

Values represent means ± SEM expressed as % of fibre area covered for IMCL, mmol×(kg dry muscle)-1 for acetylcarnitine, and µmol×(kg dry 
muscle)-1 for acetyl-CoA and acylcarnitine (n = 6). †† P<0.01, † P<0.05, different from Pre infusion value. * P<0.05, different to corresponding 
Control value. ‡ P<0.05, different to corresponding n6PUFA value. 
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FIGURE LEGENDS 
 
Figure 1. Whole-body glucose disposal (A) during 6 h of euglycaemic hyperinsulinaemia 
(~260 pmol/l) accompanied by saline (Control; white squares), Intralipid (n6PUFA; white 
circles) or Intralipid:Omegaven (2:1 ratio; n3PUFA; black circles) infusions, and skeletal 
muscle pyruvate dehydrogenase complax activation status (PDCa; B), glycogen content (C), 
and glucose-6-phophate content (D) pre (white bars) and post (black bars) each infusion. 
Values represent means ± SEM. ** P<0.01, n6PUFA steady-state (240-360 min) glucose 
disposal (A) and PDC activation status (B) less than corresponding Control. ‡ P<0.05, 
n3PUFA steady-state (240-360 min) glucose disposal (A) and PDCa (B) greater than 
corresponding n3PUFA. †† P<0.01, † P<0.05, post different from pre infusion value. 
 
Figure 2. Skeletal muscle acylcarnitine species, and total acylcarnitine content (insert), 
before (Pre; horizontal hatched bars) and after 6 h of euglycaemic hyperinsulinaemia (~260 
pmol/l) accompanied by saline (Control; white bars), Intralipid (n6PUFA; black bars) or 
Intralipid:Omegaven (2:1 ratio; n3PUFA; cross hatched bars) infusions. The Pre infusion 
value has been presented as the mean of all three experimental visits for clarity. Values 
represent means ± SEM. † P<0.05, post different from pre infusion value. 
 
Figure 3. Skeletal muscle expression of genes pre (white bars) and post (black bars) 6 h of 
euglycaemic hyperinsulinaemia (~260 pmol/l) accompanied by saline (Control; white bars), 
Intralipid (n6PUFA; black bars) or Intralipid:Omegaven (2:1 ratio; n3PUFA; cross hatched 
bars) infusions. Values represent means ± SEM. Only gene that were differentially expressed 
between n6PUFA and n3PUFA have been illustrated. * P<0.05, different to corresponding 
Control value. ‡ P<0.05, different to corresponding n6PUFA. †† P<0.01, † P<0.05, post 
different from pre infusion value. 
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Figure 2 
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Supplemental Table 1. Skeletal muscle gene expression before and after 6 h of 
euglycaemic hyperinsulinaemia (~260 pmol/l) accompanied by saline (Control), Intralipid 
(n6PUFA) or Intralipid:Omegaven (2:1 ratio; n3PUFA) infusions. 

 
Pathway Gene Control n6lipid n3lipid 

  
Pre Post Pre Post Pre Post 

Fat 
metabolism 

ACADM-
Hs00936580_m1 

0.85 
±0.09 

0.94 
±0.05 

0.84 
±0.13 

0.64 
±0.14 

1.06 
±0.06 

0.59 
±0.14†* 

ANGPTL4-
Hs01101127_m1 

9.58 
±6.08 

3.60 
±1.65 

10.36 
±6.33 

23.43 
±9.70 

12.30 
±5.90 

24.74 
±8.19 

FASN-
Hs00188012_m1 

2.34 
±0.54 

1.47 
±0.30 

0.81 
±0.07 

5.36 
±2.90† 

0.69 
±0.07 

2.03 
±0.90 

IL6-
Hs00985639_m1 

1.32 
±0.50 

2.06 
±1.04 

0.34 
±0.06 

15.32 
±6.28 

0.93 
±0.26 

13.32 
±8.78 

LIPE-
Hs00193510_m1 

1.34 
±0.36 

1.39 
±0.55 

0.75 
±0.24 

0.67 
±0.23 

0.97 
±0.28 

0.58 
±0.23 

LPL-
Hs01012571_m1 

1.37 
±0.25 

1.24 
±0.21 

1.15 
±0.26 

0.92 
±0.29 

2.24 
±0.26 

1.04 
±0.25 

NAMPT-
Hs00237184_m1 

0.96 
±0.08 

1.09 
±0.12 

1.08 
±0.13 

1.08 
±0.13 

1.18 
±0.09 

1.61 
±0.12†*‡ 

PNPLA2-
Hs00386101_m1 

0.98 
±0.07 

1.33 
±0.14 

1.00 
±0.20 

0.67 
±0.11 

1.22 
±0.18 

0.91 
±0.30 

PPARA-
Hs00231882_m1 

0.70 
±0.09 

0.83 
±0.06 

0.63 
±0.10 

0.49 
±0.10* 

0.93 
±0.03 

0.48 
±0.10†* 

PPARD-
Hs00602622_m1 

0.72 
±0.09 

0.73 
±0.07 

0.70 
±0.06 

0.49 
±0.05† 

0.77 
±0.08 

0.63 
±0.12 

PPARG-
Hs01115513_m1 

1.41 
±0.31 

1.01 
±0.08 

0.82 
±0.14 

1.15 
±0.31 

1.12 
±0.09 

0.91 
±0.21 

PPARGC1A-
Hs00173304_m1 

0.78 
±0.11 

1.15 
±0.14 

0.71 
±0.13 

0.69 
±0.11 

0.89 
±0.06 

0.69 
±0.23 

UCP3-
Hs01106052_m1 

1.35 
±0.13 

1.27 
±0.26 

1.23 
±0.28 

0.67 
±0.07†* 

1.86 
±0.25 

0.66 
±0.20††* 

Insulin 
signalling 

and 
carbohydrate 
metabolism 

AKT1-
Hs00178289_m1 

0.77 
±0.11 

0.80 
±0.08 

0.70 
±0.11 

0.57 
±0.07 

0.90 
±0.04 

0.59 
±0.15 

AKT2-
Hs00609846_m1 

0.73 
±0.08 

0.96 
±0.12 

0.69 
±0.11 

0.57 
±0.08 

0.77 
±0.09 

0.49 
±0.15 

G6PD-
Hs00166169_m1 

1.21 
±0.11 

1.19 
±0.10 

1.15 
±0.13 

1.52 
±0.30 

1.16 
±0.12 

1.21 
±0.16 

IRS1-
Hs00178563_m1 

0.49 
±0.18 

0.40 
±0.04 

0.62 
±0.11 

0.31 
±0.08† 

0.76 
±0.12 

0.22 
±0.06†† 

IRS2-
Hs00275843_s1 

0.98 
±0.14 

0.47 
±0.09 

0.97 
±0.11 

0.56 
±0.15 

0.87 
±0.10 

0.39 
±0.10 

PIK3R1-
Hs00381459_m1 

0.63 
±0.11 

2.25 
±0.59† 

0.68 
±0.12 

1.99 
±0.36 

0.63 
±0.05 

1.76 
±0.53 

PDK4-
Hs01037712_m1 

3.59 
±1.27 

0.93 
±0.65 

2.86 
±0.70 

0.88 
±0.57 

4.40 
±1.22 

2.07 
±1.08 

SLC2A4-
Hs00168966_m1 

0.77 
±0.08 

0.97 
±0.08 

0.74 
±0.13 

0.46 
±0.07†* 

1.01 
±0.03 

0.47 
±0.13††* 

SREBF1-
Hs01088691_m1 

0.77 
±0.12 

1.29 
±0.25† 

0.68 
±0.10 

0.58 
±0.11** 

0.73 
±0.08 

0.59 
±0.17** 

 
Values represent means ± SEM (n = 5). ††† P<0.001, †† P<0.01, † P<0.05, different from Pre 
infusion value. ** P<0.01, * P<0.05, different to corresponding Control value. ‡ P<0.05, 
different to corresponding n6PUFA value 
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Summary Statement 
 
Intravenous infusion of lipid into healthy males caused insulin resistance. Addition of fish oil 
omega-3 fatty acids to the lipid infusion partially prevented the insulin resistance. This effect 
was not due to differences in muscle acylcarnitine content.   


