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ABSTRACT 

Modelling dam deformation based on the monitoring data plays an important role in the assessment of a 

dam’s safety. Traditional dam deformation modelling methods generally utilize single monitoring 

points. It means it is necessary to model for each monitoring point and the spatial correlation between 

points will not be considered using traditional modelling methods. Spatio-temporal modelling methods 

provide a way to model the dam deformation with only one functional expression and analyze the 

stability of dam in its entirety. Independent Component Analysis (ICA) is a statistical method of Blind 

Source Separation (BSS) and can separate original signals from mixed observables. In this paper, ICA 

is introduced as a spatio-temporal modelling method for dam deformation. In this method, the 

deformation data series of all points were processed using ICA as input signals, and a few output 

independent signals are used to model. The real data experiment with displacement measurements by 

wire alignment of Wuqiangxi Dam was conducted and the results show that the output independent 

signals are correlated with physical responses of causative factors such as temperature and water level 

respectively. This discovery is beneficial in analyzing the dam deformation. In addition, ICA is also an 

effective dimension-reduced method for spatio-temporal modelling in dam deformation analysis 

applications. 
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INTRODUCTION 

Analysis of monitoring data plays an important role in the assessment of a dam’s 

safety (Ardito et al, 2008; Mata, 2011; Szostak-Chrzanowski et al, 2005; Xi et al, 

2011). Traditional dam deformation modelling methods, including statistical analysis 

and structural identification, are mostly for single monitoring point, i.e., “one point, one 

model” (Yu et al, 2010). It needs to model for each monitoring point and the spatial 

correlation between points will not be considered. But actually, as a whole deformation 

body, the displacements of each monitoring point are closely linked. Furthermore, with 

the development of modern deformation monitoring technologies, the deformation data 

becomes enormous and complex, while including more useful information. So, new and 

more effective analysis tools are now in active demand for dam deformation 

monitoring. 



Two main methods, statistical analysis and structural identification, are usually used 

in the area of dam deformation monitoring. From the result of comparison between 

statistical analysis and structural identification (De Sortis and Paoliani, 2007), the 

statistical model has the advantages of simplicity for functional expression, fast 

execution and suitability to any kind of correlation between the governing and 

dependent parameters. But the statistical parameters do not have any physical meaning, 

which is not conducive to interpreting the dam deformation. The method of blind source 

separation (BSS) was used to separate contributions of external loads to the 

displacements from the deformation data of several points on the dam (Popescu, 2011). 

Popescu’s work showed that the “all points, one model” (i.e. spatio-temporal model) 

with physical meaning parameters is possible for dam statistical deformation modelling. 

Independent component analysis (ICA) is a method of blind source separation proposed 

in 1990s, which transforms the observed mixed signals into a series of signals whose 

components are mutually independent in statistical sense. Since independent component 

indicates some physical meaning in some case, ICA can be taken as a data mining tool. 

In this paper, we applied ICA to extract the independent displacement components from 

the monitoring data of 11 points measured by wire alignment on Wuqiangxi Dam and 

analyzed the correlation between the independent displacement components and 

causative factors such as temperature and water level. Then, a spatio-temporal 

displacement model of Wuqiangxi Dam was established using the extracted 

independent components and the corresponding spatial response values to the 

monitoring points. 

In this paper, the fundamental theory of ICA and the FastICA algorithm are 

introduced in Section 2. The deformation monitoring data and the independent 

displacement components of Wuqiangxi Dam are analyzed in Section 3. The steps of 

spatio-temporal modelling using ICA are described in detail in Section 4. The 

spatio-temporal displacement model of Wuqiangxi dam deformation is established and 

the result analysis is described in Section 5. Finally, the conclusions are presented in 

Section 6. 

INDEPENDENT COMPONENT ANALYSIS (ICA) 

Basic model of ICA 

ICA is a useful method for blind source separation. Its fundamental principle can be 

illustrated using Figure 1. Suppose that there are M observations X , 

T

M(t),(t),(t) ][ 1 XXX  , from N independent components Nit ,,2,1),( iS , we 

have: 

 NM(t)(t)  ;ASX  （1） 

 

Fig. 1.  The fundamental principles of ICA 



Without any other priori information about matrix A  or source signals, ICA aims 

to obtain a separating matrix W  to separate the original signals )(tS  in Eq. 1 based 

on some optimization criteria and learning methods. Generally, the process of 

calculating W  can be divided into two steps: 1) Whiten the observed signals )(tX  by 

a whitening matrix B , to let BXZ   and IZZE )( T  ( I is a unit matrix). 2) 

Calculate the rotation matrix by the specific independence optimize rule, to let 

UZY )(t , where )(tY  is the best approximation vector of (t)S . 

FastICA Algorithms 

ICA algorithms can be divided into two main categories, and both of them are based 

on the non-gaussianity and independence of the source signals. The FastICA is a fast 

optimization iterative algorithm with a good stability (Hyvärinen, 1999; Hyvärinen and 

Oja, 2000). It is based on the negentropy which is a common quantitative measure of 

the non-gaussianity of a random variable. The stronger the non-gaussianity of a random 

variable is, the greater the negentropy will be. The detailed steps are as follows: 

1. Centralize and whiten the observed data. 

2. Choose an initial weight vector of unit norm (random) w . 

3. Update w  through wxwxwxw
TT )])(('[)])(([)1( kgEkgEk  . 

4. Normalizate w  by 
)1(

)1(
)1(




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k

k
k

w

w
w . 

5. Go back to step (3) if not converged.. 

 

INDEPENDENT DISPLACEMENT COMPONENTS OF WUQIANGXI DAM 

Wuqiangxi Dam and Its Monitoring Data 

The Wuqiangxi Dam, built in 1994, is located in the main stream of Yuanshui River 

in Hunan province, China. The river is about 73km going through the city of Yuanling. 

The dam is equipped with the automated monitoring system of wire alignment, inverted 

plumb, hydrostatic leveling, seepage monitoring, uplift pressure monitoring, water level 

measuring, and so on.  

 



Fig. 2.  Picture of Wuqiangxi Dam 

Two tension wire alignments are mainly used to monitor the horizontal 

displacements of the Wuqiangxi Dam. The displacement data of 12 different 

monitoring points in the second tension wire alignment was selected for the 

spatio-temperal modelling experiment, in which 11 points are used to model and 

another point is used to check the accuracy of the model. The measurements of water 

level (the difference between the water level of upstream and downstream) and air 

temperature are also collected for the modelling experiment. All the data are measured 

daily. The displacement data series of the 11 points are shown in Fig. 3 and the data 

series of causative factors, including air temperatures and water level, are shown in Fig. 

4. 

2005 2009
-10

0

10

ex
2-

11
(m

m
)

2005 2009
-10

0

10

ex
2-

12
(m

m
)

2005 2009
-10

0
10

ex
2-

13
(m

m
)

2005 2009
-10

0
10

ex
2-

14
(m

m
)

2005 2009
-10

0
10

ex
2-

15
(m

m
)

2005 2009
-10

0
10

ex
2-

17
(m

m
)

2005 2009

0
10
20

ex
2-

18
(m

m
)

2005 2009

0
10
20

ex
2-

19
(m

m
)

2005 2009
0

10

20

ex
2-

20
(m

m
)

Date(year)

2005 2009
0

10

20

ex
2-

21
(m

m
)

Date(year)

2005 2009
0

10

20

ex
2-

22
(m

m
)

Date(year)

 

Fig. 3.  Displacement data series of the 11 monitoring points  
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Fig. 4.  Data series of water level and air temperature 

Common Displacement Components Separation 

Before processing the displacement data using ICA, all the data series of 11 points 

have been centralized by subtracting the mean values which are taken as the constant 

displacements of each point. And then the FastICA algorithm was applied to extract 

displacement components from the centralized displacement monitoring data. Three 

independent components (ICs), including almost 99.9% information of the observed 

data, have been determined and are shown in Fig. 5.  
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Fig. 5.  Independent components extracted from the data of dam displacements 

To probe the relationship between ICs and causative factors, comparisons are made 

between some ICs and air temperature and water level as shown in Fig. 6. All the data 

have been standardized with mean 0 and variance 1 by 
S

XX
Z


  ( X  is the mean 

value and S  is the variance) and adjusted in the same sign in order to make clear 

comparisons. It can be noted that, the common components of each point extracted by 

ICA have strong correlation with the air temperature and water level. The data series of 

IC1 has the similar variation with the data series of air temperature, and a lag effect 

exists at the same time, which is consistent with the effect of air temperature to the dam 

deformation (He, 2010). The data series of IC2 has a similar variation with the data 

series of water level, which means IC2 represents the common water level displacement 

response of each point. IC3 has no obvious features and it has a little spatial response to 

each point of the dam. We guess it may be due to the other unknown external loads or 

some minor combined effects of water level and air temperature on the dam 

deformation. 

From the above results and analysis, it can be concluded that ICA can extract the 

independent displacement components which can be correlated with the causative 

factors respectively without a priori knowledge.  
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Fig. 6.  Comparison between ICs and environmental factorsSpatio-temporal Model based on ICA 

As we can see from the conclusion in the third section, ICA can effectively extract 

the common displacement components of the all points caused by air temperature and 

water level. It means that ICA can provide a method to investigate relationship between 



displacements over an entire structure (i.e. spatio-temporal model) and to describe its 

global behavior with only a few independent components. Furthermore, each 

independent component is related to only one causative factor. When extracting the 

independent displacement components using ICA, we can also get the spatial response 

values of ICs for each point to the dam displacements from the mixing matrix. The 

spatial response values of ICs to each point are shown in Fig.7, from which it seems 

that the response values may be related to the structure of the dam.  
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Fig. 7.  Spatial response values of ICs to each point 

   From the displacement measurements of each point, we can see that the 

displacement responses to the external loads are different. From the physical view, it is 

due to different structure features and external loads in the different positions.  

However, as an entire structure, there will be an entire displacement response to 

external loads. This entire displacement can be measured by all monitoring points 

although it hides in the displacement data of the points. The three independent 

displacement components extracted from data of the 11 points using ICA can be 

interpreted as the entire displacement responses to hydrostatic load, thermal effect and 

time effect or other unknown external loads. The spatial response values of ICs reflect 

the different displacement responses to external loads in different positions. From the 

fundamental principle of ICA, the displacement of a point is the entire displacement 

response multiplying the corresponding spatial response value.  It means that the 

spatio-temporal modelling procedures can be divided to spatial modelling with spatial 

response values and temporal modelling with displacement ICs respectively. 

The steps of spatio-temporal modelling dam deformation based on ICA are shown as 

follows: 

1. Extract the independent components (ICs) from the observed monitoring data X  

using FastICA algorithms and the ICs and the mixing matrix A can be obtained. Then 

3,2,1,  ssICAX . 

2. Model each independent component with suitable methods (dam statistical 

modelling such as HHT and HTS or geometrical modelling such as curve fitting). 

3. Get the spatial response values of ICs to each point from the mixing matrix A , 

and model the spatial response values using space fitting methods. In this paper, since 



the points are on one line of wire alignment, the spatial response models of the ICs are 

curve functions (x)Rs , where 3,2,1s  and x  is the positions of the points. 

4. Space fit the constant displacements using a surface function (in two dimension 

case) or a curvilinear function (in one dimension case) (x)consD . 

5. Multiply the temporal models of ICs and the spatial response functions (x)Rs and  

add the spatial constant displacement function (x)consD to get the spatial-temporal 

displacement model of the dam  (x)(x)R(x) constss DICD  , where 3,2,1s  and x  

is the positions of the points. 

As indicate above in step 2), the three displacement component need to be modeled 

using statistical modelling or geometrical modelling methods. According to the analysis 

before, IC1 is related to air temperature and IC2 is related to water level. So we 

establish the models of IC1 and IC2 using the temperature and water level components 

in the dam HHT model respectively. The function model of IC1 is Equ. 2. 

 
i

i

iaa TIC 



4

1

01
 (2) 

where iT  means the average temperature of 0-1, 2-7, 8-30 and 31-60 days before 

because of the lag effect between the temperature of dam and the environment. The 

function model of IC2 is Equ. 3. 

 



4

1

02

i

i

ibb HIC   (3) 

where H  denote the difference of water level between upstream and downstream. 

Since the physical meaning of IC3 is not clear, we a curve fitting method with equation 

(4) to model IC3. 

 
)sin(

)sin()sin()sin(
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3332221113

ctba

ctbactbactba



IC
 (4) 

SPATIO-TEMPORAL MODEL OF WUQIANGXI DAM AND ITS STATISTICAL ANALYSIS 

Three common displacement components have been extracted from eleven 

monitoring points in a tension wire alignment of Wuqiangxi Dam in the third section. 

Based on the modelling method in section 4, the three ICs models are established. Fig. 8 

compares extracted and computed the three displacements components. The results 

indicate that the common displacement component from ICA can be modeled using 

Equ. (2), (3) and (4) very accurately and also confirm that ICA can separate the 

displacement components caused by different external loads.  

http://dict.baidu.com/s?wd=curvilinear%20function
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Fig. 8.  The fitting results of external load of air temperature (a), water level (b) and other factors(c) after 

modelling the ICs. 

Spatial response values of each displacement component are obtained from the 

mixing matrix, with which the three spatial response function models are established 

using curvilinear fitting method. Equ. (5), (6) and (7) are the spatial response functions 

of IC1, IC2 and IC3 respectively. The fitting results are shown in Fig. 9. 
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The constant displacements in the 11 points are fitted using a curvilinear function as 

Equ. (8) and the fitting results are shown in Fig. 10. 
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Fig. 9.  The spatial response function of ICs 
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Fig. 10.  The fitting results of the constant displacements 

 

At last, the dam displacement spatio-temporal model is established as Equ. (9).  

 
(x)(x)R

(x)R(x)R(x)

constDIC

ICICD





33

2211

 (9) 

where x  is the position in the tension wire alignment line. 

As we known, one of the main purposes of modelling the dam displacement is to 

predict the displacement of dam. In order to verify the effectiveness of spatio-temporal 

model shown as Equ. (9), the predicted displacements of 100 days for all points using 

spatio-temporal model and traditional single point models are compared. The results 

shown in table 1 indicate that both models can predict displacement with a high 

accuracy, but the prediction accuracy of single point model is higher than the one of 

spatio-temporal model. However, from the predicted displacement of point ex2-16 

whose data hasn’t been used to establish the model, spatio-temporal model still can 

predict the displacement with a high accuracy. Obviously, compared to the single point 

model the advantage of the spatio-temporal model can predict the displacement of any 

position of the dam no matter where there is a monitoring point. The results of fitting 

and prediction of the spatio-temporal model are shown in Fig. 11 and Fig. 12. 

Table 1.  The RMS values of predicted displacement error and modelling error of 

each point using different models 

 
Single Point Model Sptio-temporal Model 

Modelling Predictive Modelling Predictive 

Ex2-11 1.2757 1.4958 0.9875 0.7050 

Ex2-12 1.0171 1.2198 1.4903 1.0212 

Ex2-13 0.9127 1.0735 1.5219 1.3267 

Ex2-14 0.9028 1.0077 1.5020 1.3332 

Ex2-15 1.0123 0.9360 1.1613 0.8200 

Ex2-17 0.9829 0.8193 1.0724 0.8796 

Ex2-18 0.7127 0.6668 1.6371 1.6670 

Ex2-19 0.6444 0.6140 1.6368 1.1482 

Ex2-20 0.6459 0.6426 1.4858 1.1826 

Ex2-21 0.6566 0.6305 1.3873 1.0210 

Ex2-22 0.6905 0.5880 1.2432 0.8887 

Ex2-16   1.0887 0.7665 
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Fig. 11.  Fitting results of the 11points and an checking point (ex2-16) using the spatio-temporal 

model 
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Fig. 12.  Predicted results of the 11points and an checking point (ex2-16) using the spatio-temporal 

model 

CONCLUSION 

1. ICA can effectively extract the common displacement components caused by 

different external loads such as water level and temperature. This is beneficial to 

the physical interpretation of dam deformation.  

2. Spatial correlation between the points can be reflected by the spatial response 

values of ICs.  

3. Spatio-temporal modelling procedures can be divided to spatial modelling with 

spatial response values and temporal modelling with displacement ICs 



respectively. So, ICA can be used as an effective spatio-temporal modelling 

tool.  

4. The spatio-temporal model using ICA provides a way to model the dam 

deformation with only one functional expression and analyze the stability of 

dam in its entirety.  

5. Spatio-temporal model can predict the displacement of any position of the dam 

no matter where there is a monitoring point. 
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