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Abstract 

Metal-organic framework (MOF) materials are known to be amenable to expansion 

through elongation of the parent organic linker. For a family of model (3,24)-connected 

MOFs with the rht topology, in which the central part of organic linker comprises a 

hexabenzocoronene unit, the effect of the linker type and length on their structural and gas 

adsorption properties is studied computationally. The obtained results compare favourably 

with known MOF materials of similar structure and topology. We find that the presence of a 

flat nanographene-like central core increases the geometric surface area of the frameworks, 

sustains additional benzene rings, promotes linker elongation and the efficient occupation of 

the void space by guest molecules. This provides a viable linker modification method with 

potential for enhancement of uptake for methane and other gas molecules. 
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I. Introduction 
Crystalline nanoporous networks such as metal-organic frameworks (MOFs) with 

tuneable pore geometry and designed chemical functionality1,2 are attracting a great deal of 

interest as promising materials for a wide range of applications including light harvesting,3,4 

drug delivery,5 biomedical imaging,6 catalysis,7-9 chemical sensing,10 gas separation and 

storage.11-18 MOFs are compounds containing metal nodes (metal ions or clusters) coordinated 

to organic linker molecules that form the extended network structures with unique physical 

and chemical properties. The ability to tailor and control the density, internal pore volume and 

the internal surface area of MOFs19,20 is crucial for utilizing these materials in high capacity 

gas uptake applications. MOFs have shown great promise for mobile CH4 sorption and 

storage,21 which has fuelled a further wave of interest in these materials, with the U.S. 

Department of Energy (DOE) launching a new CH4 storage program22 with the ambitious new 

targets. In reference to the usable capacity stored between 35 and 5 bar at near-ambient 

temperature, the materials-level target for volumetric storage capacity of CH4 after packing 

losses (25%) is 349 cm3/ cm3 and 50 wt% for a gravimetric storage capacity. The drive to 

achieve these goals is powered by the current demand for alternative fuels and ever growing 

concerns over international energy security and climate change.  

Methane storage in MOFs is developing rapidly,23,24 and several MOFs12,25-28 have 

been reported to show good volumetric capacity for CH4 uptake at room temperature. It is 

highly desirable to increase an accessible surface area and introduce stronger interaction sites 

in order to obtain high CH4 uptake. This can be achieved, for example, through chemical 

modification of organic linkers. A number of theoretical solutions have been offered 

previously for the enlargement of the surface area of MOFs and enhancement of gas uptake 

through modification of the linkers, notably by Duren et al.29 for CH4 storage and by 

Mavrandonakis et al.30 for hydrogen storage. Wilmer et al.31 developed an exhaustive 

computational strategy for design and large-scale screening of hypothetical MOFs that allows 

the generation of new structures from a chemical “library of building blocks” based on the 

existing MOF structures. Over 300 MOFs with a predicted CH4 storage capacity have been 

proposed using this structure generation approach. However, as geometry optimization 

procedure was not included, it is likely that some stable MOF structures with a high CH4 

uptake capacity were overlooked.  Martin and Haranczyk have suggested32-34 an alternative 

strategy for computational design of the optimal organic ligand leading to an efficient 

occupation of the internal volume by guest molecules. In this approach, organic ligands are 
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replaced by purely geometrical “building blocks” described by a number of variable 

parameters, which were optimized to predict and iteratively refine the resulting MOF 

structure.  

In this work, a new series of the (3,24)-connected{Cu2(COO)4} paddlewheel based 

MOF networks of rht topology has been designed in an effort to increase the surface area and 

pore volume. It has been found that the use of hexabenzocoronene unit as a central part of the 

linker leads to a significant enhancement uptake of CH4 and other gases for the entire family 

of MOFs. This suggests that hexabenzocoronene is an excellent candidate for replacing the 

phenyl ring, a conventional central element of the linkers used in (3,24)-paddlewheel-

connected MOFs.19 We have undertaken an exhaustive computational analysis to study the 

effect of the dimensions of the proposed hexabenzocoronene-based linkers on the gas storage 

capacity and other properties of this model family of MOFs, focussing especially on the 

surface area, pore volume, framework density and structure-property relationships. Particular 

attention was focused on the thermodynamic conditions at which the maximum gravimetric 

and volumetric uptake of CH4 can occur. A similar computational strategy has been adopted 

previously by Fairen-Jimenez et al.35 in the study of hydrogen adsorption in hypothetical 

MOFs with the rht-topology. 

 

II. Structural properties  
The structural models are based on the (3,24)-connected network with rht topology 

previously used by Yan et al.,36,37 Nouar et al.,38 Yuan et al.,39,40 and Farha et al.19,20 Rht-

topology has been selected to avoid the interpenetration and/or interweaving that greatly 

affects the gas sorption properties. The new structures contain vacant areas at each of the 

Cu(II) sites within the binuclear paddlewheel nodes, which promote binding between the 

metal and the adsorbate gas molecules. We use the asymmetric unit of NOTT-11237 (Figure 

1a) to form the Cu(II) paddlewheel cluster within the rht network topology with Fm-3m group 

symmetry, and replace the central phenyl core with hexabenzocoronene moiety (Figure 1b) to 

promote the linker elongation and efficient occupation of the void space by guest molecules. 

As shown in Figures 1a,b the replacement of the central part in the linker of NOTT-112 with 

hexabenzocoronene leads to an increase of its dimensions by almost 60%. Seven different 

linker fragments, labelled  L1-L7 (Figure 1c), have been used with the hexabenzocoronene 

central element to construct a family of frameworks with rht-network topology (see Figure S1 

in Supporting Information). 
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Figure 1: Views of (a) organic linker of NOTT-112;37 (b) organic linker containing hexabenzocoronene and the 
L2 fragment; (c) the L1-L7 linker fragments.  

 

An additional framework, labelled MOF-L0, has been built from a hexacarboxylate linker 

where three isophthalate units are directly connected to the central hexabenzocoronene part. 

The structures of the designed frameworks have been optimized using molecular mechanics, 

and their dimensions have been compared to un-modified MOFs containing a phenyl ring as 

the central core of the linker (see Supporting Information for details). The structure of a 

member of the model MOF family, MOF-L1, containing hexabenzocoronene and the shortest 

organic linker L1, is shown in Figure 2. 

 

 

Figure 2: View of the structure of model MOF-L1 containing hexabenzocoronene and the shortest organic linker 
L1. 
	
  

        Replacement of the central part of the hexacarboxylate with hexabenzocoronene in the 

(3,24)-connected MOF networks leads to a significant change not only in the dimensions but 

also in other structural properties of the proposed family of model MOFs. A summary of the 
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structural properties of the MOFs family containing hexabenzocoronene central part, which 

include the geometric surface area, pore volume, framework density and unit cell length, is 

given in Table 1. 

  
Table 1: The structural properties of the model MOFs family containing hexabenzocoronene molecule as a 
central linker fragment. 
 

 geometric surface 
area,* (m2/g)  

pore volume, 
(cm3/g) 

framework density, 
(g/cm3) 

unit cell length, 
(Å) 

MOF-L0 2589 1.33 0.61 47.01 
MOF-L1 4172 1.88 0.46 52.93 
MOF-L2 5048 2.40 0.36 59.44 
MOF-L3 5784 3.19 0.28 65.98 
MOF-L4 5784 3.50 0.26 70.06 
MOF-L5 6497 4.52 0.20 76.93 
MOF-L6 7014 6.09 0.15 87.93 
MOF-L7 7514 7.42 0.12 94.68 

*geometric surface area is calculated using Materials Studio 4.4 

The Brunauer-Emmett-Teller (BET) surface area of NOTT-112 is reported to be 3800 m2/g,37 

whereas the geometric surface area of MOF-L2 is 5048 m2/g, approximately 33% increase 

upon modification of the central element of the linker. The model MOF-L3 framework, which 

has been obtained by replacing the central element of the NOTT-11936/PCN-6940 linker with 

hexabenzocoronene, also exhibits an enhanced geometric surface area of 5784 m2/g, which 

compares favourably with the surface area of un-modified NOTT-119 (BET surface area of 

4118 m2/g)36 and PCN-69 (BET surface area of 3989 m2/g).40 Similar increase in the surface 

area has been achieved in MOF-L4 (5784 m2/g), which structure can be compared to that of 

the un-modified NOTT-116 (BET surface area of 4664 m2/g)36 and PCN-68 (BET surface 

area of 5109 m2/g)39 MOFs, and in MOF-L1 (4172 m2/g), which can be compared to the un-

modified  PCN-61 (3500 m2/g)39 MOF. 

An alternative way to compare the proposed model family of MOFs with existing un-

modified MOFs structures is shown in Figures 3a-c. The un-modified structures (right panel 

of Figure 3) are presented against the modified model MOFs with the identical central part 

(highlighted in blue, left panel), which was decorated by additional nine benzene rings. The 

optimised length of the cubic unit cell of MOF-L2 is calculated to be 59.44 Å, which is 

comparable to the unit cells of the MOF structure designed by Fairen-Jimenez et al. using the 

L3 fragment35 (58.32 Å), NOTT-11936 (56.30 Å) and PCN-6940 (59.15 Å simulation; 56.61 Å 
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experiment). A discrepancy between the model and experimental values of the length of unit 

cell might be due to the fact that organic linkers in the computationally designed MOFs 

remain predominantly straight, while the linkers of PCN-6940 and NOTT-11936 bend to a 

certain extent.40 The geometric surface areas of the model MOFs are also similar: 5049 m2/g 

in MOF-L2 and 5194 m2/g in the model MOF designed by Fairen-Jimenez et al. using the L3 

fragment,35 however the BET surface area in the synthesized MOFs is somewhat smaller, e.g. 

4118 m2/g in NOTT-119,36 and 3989 m2/g in PCN-69.40  

 

 
 
Figure 3: Comparison of linker geometries of three members of the proposed model MOFs family, based on 
hexabenzocoronene molecule, with existing experimental MOFs: a) model MOF-L2 and NOTT-119;36 b) model 
MOF-L1 and NOTT-116;36 c) model MOF-L0 and NOTT-112.37  
 

The model MOF-L1 framework shown in Figure 3 has a basic structure of the existing un-

modified frameworks NOTT-11636 and PCN-6839 and the model MOF designed by Fairen-

Jimenez et al. using NOTT-112 and the L4 fragment.35 The optimised length of the unit cell 

of MOF-L1 is predicted to be 52.93 Å, in good agreement with the available experimental 

(52.74 Å in PCN-68)39 and computational data (53.73 Å in the model MOF35 based on 
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NOTT-112 and L4 fragment). Such good agreement between the computational and 

experimental data is observed because the organic linkers in these MOFs are entirely straight. 

However, the predicted geometric surface area in MOF-L1 (4172 m2/g) is smaller than the 

BET surface area in NOTT-116 (4664 m2/g),36 BET surface area in PCN-68 (5109 m2/g)39 

and the geometric surface area in the model MOF designed by Fairen-Jimenez et al. using 

NOTT-112 and the L4 fragment (5033 m2/g).35 Finally, the smallest MOF-L0 framework can 

be directly compared to NOTT-112. The unit cell length of 47.01 Å in MOF-L0 is exactly the 

same as the one experimentally obtained for NOTT-112,37 although the geometric surface 

area of MOF-L0 (2589 m2/g) is lower than the BET surface area of NOTT-112 (3800 m2/g).37 

The comparison method used in Figure 3 shows MOF structures of very similar dimensions, 

but the estimation of their accessible surface area depends very strongly on the method and 

type of a probe used. 

The largest MOF of the proposed family, MOF-L7, exhibits a surface area of 7514 

m2/g, which exceeds the largest BET surface area reported in experiment to date in this series, 

that of NU-109 (7000 m2/g).19 The MOF-L7 framework density of 0.12 g/cm3 is also at the 

limit close to the lowest calculated density for porous crystals reported for the MOF-399 

compound (0.126 g/cm3).41 The remaining members of the proposed family exhibit structural 

properties comparable with typical values achieved in the synthesis of ultrahigh porosity 

MOFs.42 A longer organic linker typically provides larger void space and a greater number of 

adsorption sites within a framework.  However, linkers with a very large number of phenyl 

repeat units make a MOF liable to structure interpenetration, poor solubility, low synthetic 

yields, and cumbersome purification protocols. The use of MOFs with the rht topology, based 

on a singular net for the combination of 3- and 24-connected nodes, removes any concern for 

catenation (interpenetration or interweaving of multiple frameworks) and makes them an ideal 

target in design of ultrahigh porosity. The desolvation and associated activation using 

supercritical CO2 and solvent exchange and processing19,43 is a particularly promising method 

that allows generation of MOFs with ultrahigh surface areas. 

  

III. Gas uptake performance 
 The composition, structure and density of the organic linker, not only its length, also 

play an important role in design of high surface area and high gas uptake MOFs. Farha et al.44 

showed that replacing the phenyl rings of organic linkers with triple-bond spacers is another 

effective method of improving gravimetric surface areas and, hence, porosity of MOFs. A 
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comparison of the structural properties of the L3 and L4 linker fragments, which contain two 

phenyl spacers and a phenyl spacer and a triple bond, respectively, supports this observation. 

Indeed, both MOF-L3 and MOF-L4 have the same geometric surface area of 5784 m2/g 

(Table 1) and a very close gas uptake performance at a range of temperatures (see Figure 5 

below). However, phenyl rings are found to be quite strong adsorption sites. The “resolution 

of the identity” integral approximation applied to second-order many-body perturbation 

theory (RI-MP2), as implemented in the Q-Chem quantum chemistry package,45 has been 

employed to analyse the strength of the binding between a phenyl ring and a methane 

molecule. The RI-MP2 method offers improved computational performance compared to 

traditional exact second-order perturbation theory (MP2) calculations. A phenyl ring of the 

linker structure is represented as a benzene molecule; and the geometry optimizations of the 

benzene – methane dimer and corresponding monomers have been obtained at the RI-

MP2/cc-pvqz level of theory. The binding energies were corrected using basis set 

superposition error (BSSE).46 The most stable interaction geometry is found to be the ANTI 

C6H6 – CH4 dimer, which has the binding energy of -7.30 kJ/mol (with BSSE correction), and 

it is shown in Figure 4. The obtained values for the binding energy of the ANTI C6H6 – CH4 

dimer is in a good agreement with the RI-MP2/QZVPP value of -7.01 kJ/mol.47 Although the 

calculated binding energy gained from forming ANTI C6H6 – CH4 dimer is weaker than a 

typical weak hydrogen bond like interaction it is sufficient to surpass the kT energy barrier (at 

room temperature). 

BE=-7.30 kJ/mol 
r0=3.65 Å 

 
Figure 4: The most stable interaction geometry, ANTI C6H6 – CH4, as predicted by the RI-MP2/cc-pvqz: the 
BSSE corrected binding energy is BE=-7.30 kJ/mol and the equilibrium bond distance, defined as the distance 
between the centre of mass of each molecule, is r0=3.65 Å. 

Grand Canonical Monte Carlo (GCMC) simulations have been used to predict CH4 

uptake in the model MOF structures at T = 273 K and T = 298 K and for pressures up to 70 

bar (details of the simulation approach can be found in Supporting Information). The MOF 
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frameworks and the guest gas molecules were considered to be rigid. The Lennard-Jones (LJ) 

potential was used to describe the Van der Waals interactions with a cut-off distance of 

12.8 Å. The values of the LJ parameters for atoms present in MOFs are summarised in Table 

S2 of Supporting Information. Most of the LJ parameters were taken from the DREIDING 

force field, which uses general force constants and geometric parameters based on simple 

hybridisation considerations, so that the bond distances are derived from atomic radii, and 

there is one force constant each for bonds, angles, and inversions and six values for torsional 

barriers. The LJ parameters for copper atoms were taken from the Universal Force Field. Both 

the total and excess gravimetric and volumetric sorption isotherms of the model MOFs for 

CH4 uptake were calculated, and the total uptake data are presented in Figure 5 (the excess 

adsorption isotherms for CH4 in model MOFs with the L0-L7 organic linkers at T = 273, 298 

K are shown in Figure S5 of Supporting Information). The summary of sorption data at 35 

and 70 bar is given in Table 2. At 273K and 70 bar, the model MOF structures with the L3-L7 

linker fragments show a significant total gravimetric uptake exceeding 50 wt% (wt% is equal 

to amount of adsorbed CH4 relative to mass of framework). The model MOF-L7 with the 

longest linker exhibits the highest absolute gravimetric uptake of 78 wt%. Although MOF-L7 

has extremely large pore openings, the dimensions of MOF-L3 are comparable to those of 

NOTT-11936/PCN-6940, which have been synthesized successfully (see details in Supporting 

Information). As the computational isotherms correspond to a perfect structure with no 

impurities or pore collapse, the uptake values for CH4 shown in Figure 5 can only be 

considered as the upper limit.  Various structural defects or collapsed regions that may occur 

naturally in experimental samples will lower these theoretical estimates. On a volumetric 

basis at high pressures the structures exhibit the opposite trend so that the lowest volumetric 

uptake of CH4 (138.24 cm3/cm3 at T = 273 K and 70 bar) corresponds to the structure with the 

longest linker, MOF-L7. 
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Figure 5: Calculated total adsorption isotherms for CH4 in model MOFs with the L0-L7 organic linkers: 

gravimetric (top) and volumetric (bottom) results at T=273 K (left) and T=298 K (right).  
 

On the other hand, the framework with no linker fragment, L0, exhibits an impressive 

total volumetric uptake of CH4 of 273 cm3/cm3 at 273 K and 70 bar, although the total 

gravimetric uptake of this MOF (32 wt%) is the lowest in this series under the same 

conditions. At 298 K, the overall trend remains the same confirming that compared to the 

MOFs with longer linkers, the model MOFs with shorter linkers achieve higher volumetric 

but lower gravimetric sorption at high pressures. Due to the nature of the physical adsorption 

of gases in MOFs, the gravimetric uptake depends directly on the surface area and pore 

volume. Thus, porous materials with high pore volumes show high gravimetric gas uptake at 

saturation; the larger the gas cylinder the more gas can be stored at saturation. However, 

structures with high surface areas often possess low framework densities, and thus, in 

volumetric terms (cm3 of gas per cm3 of host), such highly porous materials often show lower 

volumetric gas capacities,48 as observed in the current study. Therefore, a balance of surface 

area, pore volume and framework density are important factors in designing materials for 

optimum volumetric or gravimetric CH4 adsorption.49 

MOFs with the linkers L1 and L2 underperform systematically in both volumetric and 

gravimetric metrics. An increase in temperature at constant pressure reduces the overall CH4 
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uptake performance so that only three structures exceed the total gravimetric uptake of 50 

wt%, namely MOF-L7 with 63.5 wt%, MOF-L6 with 59 wt% and MOF-L5 with 50 wt% 

total gravimetric uptakes (see Table 2 for further details). The volumetric uptake also 

decreases with increase of temperature in all considered model MOF structures. It can be 

generally observed at 298 K and 70 bar that the model MOFs L2-L7 show higher gravimetric 

uptake than NU-111 (36 wt%),49 PCN-68 (35 wt%)39 and NOTT-119 (30 wt%)36 reported in 

the literature. The observed strong temperature dependence on CH4 uptake may potentially 

provide an efficient tool for gas uptake and subsequent release. 
 
Table 2: Summary of CH4 sorption characteristics in MOF-L0 - MOF-L7 calculated at T = 273 K and T = 298 K 
and the pressures of 35 bar and 70 bar; v/v denotes cm3/cm3. 
 

 

70 bar 35 bar working 
capacity at 

298 K* T=273 K T=298 K T=273 K T=298 K 

total uptake excess uptake total uptake excess uptake total uptake excess uptake total uptake excess uptake wt% v/v 

wt% v/v wt% v/v wt% v/v wt% v/v wt% v/v wt% v/v wt% v/v wt% v/v 

MOF-
L0 32.0 273 24.2 206 28.5 243 21.7 185 28.0 239 24.4 208 23.8 203 20.6 176 20.4 174 

MOF-
L1 39.4 254 28.3 182 33.7 216 24.1 155 31.5 203 26.4 170 25.1 162 20.6 132 28.1 181 

MOF-
L2 44.7 241 30.6 154 39.5 199 27.3 137 34.7 175 28.2 142 26.6 134 20.8 105 34.1 172 

MOF-
L3 53.7 208 34.9 137 43.2 167 26.9 105 34.3 133 25.7 101 26.2 102 18.6 73 38.6 151 

MOF-
L4 57.2 204 36.6 133 46.0 164 28.1 102 36.3 129 26.9 98 27.9 99 19.5 71 40.9 149 

MOF-
L5 62.7 177 36.1 101 50.0 141 26.9 75 36.8 104 24.6 69 28.7 81 17.8 50 45.2 126 

MOF-
L6 71.8 153 36.0 75 57.9 124 26.8 56 40.6 87 24.2 51 32.2 69 17.5 37 52.4 110 

MOF-
L7 

78.0 138 34.3 58 63.5 113 25.6 43 43.1 76 23.1 39 34.9 62 17.0 29 57.6 97 

*the working capacity is defined as the difference in total uptake between 70 bar and 5 bar. 

 

Table 2 and Figure 5 confirm that for a constant temperature CH4 uptake is lower at 35 bar 

than at 70 bar, as expected. At 35 bar and 273 K the model MOF-L7 framework shows the 

highest gravimetric uptake of 43.1 wt%, whereas the highest volumetric uptake of 239 

cm3/cm3 is shown by MOF-L0. 

Table 3 presents a direct comparison of the gravimetric and volumetric excess CH4 

uptake performance at 298K and 35 bar in the model MOF-L1 and MOF-L3 frameworks 
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modified with the hexabenzocoronene central unit and the corresponding un-modified MOFs 

reported in the literature, PCN-6139 and PCN-6839. The modified model MOF-L1 shows an 

excess uptake of methane of 132.4 cm3/cm3 and 20.6 wt%, which is significantly higher that 

the excess uptake values of 99 cm3/cm3 and 18.6 wt% in the un-modified PCN-68 MOF39 

with the same dimensions as MOF-L1 (Figures 3b and S2 of Supporting Information). 

However, a larger MOF-L3 framework exhibits an excess methane uptake of 72.8 cm3/cm3 

and 18.6 wt%, which is only comparable to the methane uptake performance in smaller PCN-

68 framework. The predicted values for the total and excess gravimetric and volumetric CH4 

uptake performance at 298K of the larger model MOF-L5- MOF-L7 frameworks are also 

comparable to those reported in the ultrahigh surface area NU-100/NU-109 MOFs.50 

 
Table 3: Comparison of the gravimetric and volumetric excess CH4 uptake performance at 298K and 35 bar in 
the model MOF-L1 and MOF-L3 frameworks modified with the hexabenzocoronene central unit and the 
corresponding un-modified MOFs reported in the literature, PCN-6139 and PCN-6839. 
 
 MOF-L1 MOF-L3 PCN-6139 PCN-6839 

gravimetric excess 
uptake, wt% 

20.6 18.6 18.6 18.6 

volumetric excess 
uptake, cm3/cm3 

132.4 72.8 145.0 99.0 

 

When considering the performance of a material for practical use in automobile 

application, the working capacity, which defines how far a car can travel, is more relevant 

than the adsorption capacity. The working capacity, defined as the deliverable amount of 

methane from two different pressures (70 bar to 5 bar), is shown in Table 2. The gravimetric 

working capacity increases with the size of the linker in this series of frameworks. This is 

consistent with the fact that the MOFs with higher surface areas and pore volumes can hold 

more CH4 at high pressures. MOF-L1 with an optimized pore size and surface area shows the 

highest volumetric deliverable capacity of 180.6 cm3/cm3 at 298 K. 

GCMC simulations have also been performed to predict CO2 and H2 sorption in the 

largest framework of the considered model MOF family, MOF-L7. 
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Figure 6: Adsorption isotherms in the model MOF with the L7 organic linker calculated for CO2 (left) at T = 
298 K and H2 (right) at T = 77 K. 
 

Simulation of CO2 sorption (Figure 6) reveals a high CO2 storage capacity for MOF-L7 at 298 

K, 80 bar of 595 wt%. Due to its very large pore size MOF-L7 is not suitable for the CO2 

sorption at low pressures, but at high pressures a stepwise behaviour in the adsorption 

isotherm is observed, and a significant amount of CO2 is adsorbed in the structure. Therefore, 

pressures suitable for CO2 storage in these structures must be higher than 70 bar. The highest 

experimental values for total CO2 uptake achieved so far have been reported for NU-100 (232 

wt%)20 at 40 bar and 298 K and MOF-210 (248 wt%)49-51 at 50 bar and 298 K. The total 

uptake of 30.4 wt% for H2 gas in MOF-L7 has been obtained at 60 bar and 77 K, and is a 

twice as high as the than the known experimental values for the best performing MOFs with 

NU-100 and MOF-210 showing total H2 uptakes of 16.4 wt%20 and 16.7 wt%,49,51 

respectively. 

 

V. Conclusions 
A family of model MOFs based on the (3,24)-connected MOF networks with the rht 

topology has been proposed in which the central part of the organic linker has been replaced 

with hexabenzocoronene molecule. An exhaustive computational analysis allows not only 

prediction of the physical and chemical properties of the proposed MOFs family, but also a 

direct comparison of the model structures with existing MOFs of similar structure. It has been 

shown that a replacement of the central linker fragment with hexabenzocoronene molecule 

increases the size and, in some cases, gas uptake capability of the MOFs family with rht-

network topology. The presence of a small flat nanographene-like central part increases the 

geometric surface area not only through the provision of additional benzene rings, but also by 

providing some extra rigidity to the linker structure.  
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GCMC simulations of CH4 uptake have been performed on the optimised MOF 

structures at pressures up to 70 bar and at two temperature values, T = 273 K and 298 K. This 

study confirms that a number of the designed MOFs formally reach the DOE targets22 for CH4 

storage, but none of the proposed MOFs achieves both gravimetric and volumetric uptake 

targets. In addition to CH4 storage capability, the GCMC simulations of CO2 and H2 have 

been performed for the largest family member, MOF-L7, which exhibits outstanding sorption 

properties at high pressures. Overall, it has been demonstrated that a replacement of the 

central fragment with hexabenzocoronene molecule is a viable linker modification method, 

which might have the potential in enhancement of gas uptake for CH4 and other gaseous 

molecules. derived from hexabenzocoronene has not been reported thus far, although 

precursors to such materials are known, and significantly there is a very recent report of 

porous organic materials derived from triiodo-hexabenzocoronene.52 This suggests that MOFs 

derived from and incorporating the hexabenzocoronene core are realistic synthetic targets. 

 

Acknowledgements 
We thank ERC and EPSRC for financial support. EB acknowledges an ERC Consolidator 

Grant; MS receipt of an ERC Advanced Grant and EPSRC Programme Grant. We 

acknowledge the High Performance Computing (HPC) Facility at the University of 

Nottingham for providing computational time. 

Supporting Information Available 

Additional structural information on the model family of the (3,24)-paddlewheel-connected 

MOF networks with rht topology containing hexabenzocoronene molecule and further 

computational details are included in Supporting Information. This information is available 

free of charge via the Internet at http: //pubs.acs.org. 



	
  

	
   15	
  

References 

1. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular 
Synthesis and the Design of New Materials. Nature 2003, 423, 705-714. 

2. O’Keeffe, M.; Yaghi, O. M. Deconstructing the Crystal Structures of Metal-Organic 
Frameworks and Related Materials into Their Underlying Nets. Chem. Rev. 2011, 112, 675-
702. 

3. Son, H. J. et al. Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal-
Organic Frameworks. J. Am. Chem. Soc. 2013, 135, 862-869. 

4. Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen S. T.; Hupp, J. T. Light-
Harvesting Metal-Organic Frameworks (MOFs): Efficient Strut-to-Strut Energy Transfer in 
Bodipy and Porphyrin-Based MOFs. J. Am. Chem. Soc. 2011, 133, 15858-15861. 

5. Sun, C. Y.; Qin, C.; Wang, X. L.; Su, Z. M. Metal-Organic Frameworks as Potential Drug 
Delivery Systems. Expert Opin. Drug. Del. 2013, 10, 89-101. 

6. Della Rocca, J.; Liu, D.; Lin, W. Nanoscale Metal-Organic Frameworks for Biomedical 
Imaging and Drug Delivery. Acc. Chem. Res. 2011, 44, 957-968. 

7. Farha, O. K.; Shultz, A. M.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. Active-Site-
Accessible, Porphyrinic Metal-Organic Framework Materials. J. Am. Chem. Soc. 2011, 133, 
5652-5655. 

8. Shultz, A. M.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. A Catalytically Active, Permanently 
Microporous MOF with Metalloporphyrin Struts. J. Am. Chem. Soc. 2009, 131, 4204-4205. 

9. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-Organic 
Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450-1459. 

10. Allendorf, M. D.; Bauer, C. A.; Bhakta R. K.; Houk, R. J. T. Luminescent Metal-Organic 
Frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352. 

11. Yang, S. et al. Irreversible Network Transformation in a Dynamic Porous Host Catalyzed by 
Sulfur Dioxide. J. Am. Chem. Soc. 2013, 135, 4954-4957. 

12. Yan, Y.; Suyetin, M.; Bichoutskaia, E.; Blake, A. J.; Allan, D. R.; Barnett, S. A.; Schröder, M. 
Modulating the Packing of [Cu-24(isophthalate)(24)] Cuboctahedra in a Triazole-Containing 
Metal-Organic Polyhedral Framework. Chem. Sci. 2013, 4, 1731-1736. 

13. Yang, W. B. et al. Selective CO2 Uptake and Inverse CO2/C2H2 Selectivity in a Dynamic 
Bifunctional Metal-Organic Framework. Chem. Sci. 2012, 3, 2993-2999. 

14. Yang, S. H. et al. A Partially Interpenetrated Metal-Organic Framework for Selective 
Hysteretic Sorption of Carbon Dioxide. Nat. Mater. 2012, 11, 710-716. 

15. Yan, Y.; Yang, S. H.; Blake, A. J.; Lewis, W.; Poirier, E.; Barnett, S. A.; Champness, N. R.; 
Schröder, M. A Mesoporous Metal-Organic Framework Constructed from a Nanosized C-3-
Symmetric Linker and [Cu-24(isophthalate)(24)] Cuboctahedra. Chem. Commun. 2011, 47, 
9995-9997. 

16. Yang, W. et al. Exceptional Thermal Stability in a Supramolecular Organic Framework: 
Porosity and Gas Storage. J. Am. Chem. Soc. 2010, 132, 14457-14469. 

17. Yan, Y. et al. Metal-Organic Polyhedral Frameworks: High H-2 Adsorption Capacities and 
Neutron Powder Diffraction Studies. J. Am. Chem. Soc. 2010, 132, 4092-4094. 

18. Yang, S. H.; Lin, X.; Blake, A. J.; Walker, G. S.; Hubberstey, P.; Champness, N. R.; Schröder, 
M. Cation-Induced Kinetic Trapping and Enhanced Hydrogen Adsorption in a Modulated 
Anionic Metal-Organic Framework. Nat. Chem. 2009, 1, 487-493. 

19. Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, 
R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T. Metal-Organic Framework Materials with 
Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134, 15016-15021. 

20. Farha, O. K.; Yazaydin, A. O.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. 
G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De Novo Synthesis of a Metal-Organic 
Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities. Nat. 
Chem. 2010, 2, 944-948. 



	
  

	
   16	
  

21. Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J. T.; Farha, O. K.; Yildirim, T. Methane 
Storage in Metal-Organic Frameworks: Current Records, Surprise Findings, and Challenges. 
J. Am. Chem. Soc. 2013, 135, 11887-11894. 

22. ARPA-E. https://arpa-e-foa.energy.gov/ (accessed June 2012). 
23. Makal, T. A.; Li, J.-R.; Lu, W.; Zhou, H.-C. Methane Storage in Advanced Porous Materials. 

Chem. Soc. Rev. 2012, 41, 7761-7779. 
24. Konstas, K.; Osl, T.; Yang, Y.; Batten, M.; Burke, N.; Hill, A. J.; Hill, M. R. Methane Storage 

in Metal Organic Frameworks. J. Mater. Chem. 2012, 22, 16698-16708. 
25. Ma, S.; Sun, D.; Simmons, J. M.; Collier, C. D.; Yuan, D.; Zhou, H.-C. Metal-Organic 

Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High 
Methane Uptake. J. Am. Chem. Soc. 2007, 130, 1012-1016. 

26. Wu, H.; Zhou, W.; Yildirim, T. High-Capacity Methane Storage in Metal-Organic 
Frameworks M-2(dhtp): The Important Role of Open Metal Sites. J. Am. Chem. Soc. 2009, 
131, 4995-5000. 

27. Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. Dramatic Tuning of Carbon Dioxide Uptake 
via Metal Substitution in a Coordination Polymer with Cylindrical Pores. J. Am. Chem. Soc. 
2008, 130, 10870-10871. 

28. Guo, Z.; Wu, H.; Srinivas, G.; Zhou, Y.; Xiang, S.; Chen, Z.; Yang, Y.; Zhou, W.; O'Keeffe, 
M.; Chen, B. A Metal-Organic Framework with Optimized Open Metal Sites and Pore Spaces 
for High Methane Storage at Room Temperature. Angew. Chem., Int. Ed. 2011, 50, 3178-
3181. 

29. Düren, T.; Sarkisov, L.; Yaghi, O. M.; Snurr, R. Q. Design of New Materials for Methane 
Storage. Langmuir 2004, 20, 2683-2689. 

30. Mavrandonakis, A.; Klontzas, E.; Tylianakis, E.; Froudakis, G. E. Enhancement of Hydrogen 
Adsorption in Metal-Organic Frameworks by the Incorporation of the Sulfonate Group and Li 
Cations. A Multiscale Computational Study. J. Am. Chem. Soc. 2009, 131, 13410-13414. 

31. Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. 
Large-Scale Screening of Hypothetical Metal-Organic Frameworks. Nat. Chem. 2012, 4, 83-
89. 

32. Martin, R. L.; Haranczyk, M. Insights into Multi-Objective Design of Metal-Organic 
Frameworks. Cryst. Growth Des. 2013, 13, 4208-4212. 

33. Martin, R. L.; Haranczyk, M. Optimization-Based Design of Metal-Organic Framework 
Materials. J. Chem. Theory Comput. 2013, 9, 2816-2825. 

34. Martin, R. L.; Haranczyk, M. Exploring Frontiers of High Surface Area Metal-Organic 
Frameworks. Chem. Sci. 2013, 4, 1781-1785. 

35. Fairen-Jimenez, D.; Colon, Y. J.; Farha, O. K.; Bae, Y. S.; Hupp, J. T.; Snurr, R. Q. 
Understanding Excess Uptake Maxima for Hydrogen Adsorption Isotherms in Frameworks 
with rht Topology. Chem. Commun. 2012, 48, 10496-10498. 

36. Yan, Y.; Yang, S.; Blake, A.J.; Schröder, M. Studies on Metal-Organic Frameworks of Cu(II) 
with Isophthalate Linkers for Hydrogen Storage. Acc. Chem. Res. 2014, 47, 296-307. 

37. Yan, Y.; Lin, X.; Yang, S.; Blake, A. J.; Dailly, A.; Champness, N. R.; Hubberstey, P.; 
Schröder, M. Exceptionally High H2 Storage by a Metal-Organic Polyhedral Framework. 
Chem. Commun. 2009, 1025-1027. 

38. Nouar, F.; Eubank, J. F.; Bousquet, T.; Wojtas, L.; Zaworotko, M. J.; Eddaoudi, M. 
Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous 
Metal-Organic Frameworks. J. Am. Chem. Soc. 2008, 130, 1833-1835. 

39. Yuan, D.; Zhao, D.; Sun, D. Zhou, H.-C. An Isoreticular Series of Metal-Organic Frameworks 
with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity. 
Angew. Chem., Int. Ed. 2010, 49, 5357-5361. 

40. Yuan, D. Q.; Zhao, D.; Zhou, H. C. Pressure-Responsive Curvature Change of a "Rigid" 
Geodesic Ligand in a (3,24)-Connected Mesoporous Metal-Organic Framework. Inorg. Chem. 
2011, 50, 10528-10530. 

41.        Furukawa, H.; Go, Y. B.; Ko, N.; Park, Y. K.; Uribe-Romo, F. J.; Kim, J.; O’Keeffe, M.; 
Yaghi, O. M. Isoreticular Expansion of Metal-organic Frameworks with Triangular and 



	
  

	
   17	
  

Square Building Units and the Lowest Calculated Density for Porous Crystals. Inorg. Chem. 
2011, 50, 9147–9152. 

42.        Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications 
of Metal-Organic Frameworks. Science 2013, 341, 1230444. 

43. Bayliss, P. A.; Ibarra, I. A.; Pérez, E.; Yang, S.; Tang, C. C.; Poliakoff, M.; Schröder, M. 
Greener Synthesis of Metal-organic Frameworks by Continuous Flow. Green Chemistry 2014, 
in press 

44 Farha, O. K.; Wilmer, C. E.; Eryazici, I.; Hauser, B. G.; Parilla, P. A.; O'Neill, K.; Sarjeant, A. 
A.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Designing Higher Surface Area Metal−Organic 
Frameworks: Are Triple Bonds Better Than Phenyls? J. Am. Chem. Soc. 2012, 134, 9860-
9863. 

45.  Shao, Y. et al. Advances in Methods and Algorithms in a Modern Quantum Chemistry 
Program Package. Phys. Chem. Chem. Phys. 2006, 8, 3172-3191. 

46. Van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G .C. M.; van Lenthe, J.H. State of 
the Art in Counterpoise Theory. Chem. Rev. 1994, 94, 1873–1885. 

47. Mendoza-Cortes, J. L.; Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A. Adsorption 
Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and 
Experiment. J. Phys. Chem. A 2010, 114, 10824-10833. 

48. Lin, X.; Champness, N. R.; Schröder, M. Hydrogen, Methane and Carbon Dioxide Adsorption 
in Metal-organic Framework Materials. Topics Curr. Chem. 2010, 293, 35-76. 

49. Peng, Y.; Srinivas, G.; Wilmer, C. E.; Eryazici, I.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T. 
Farha, O. K. Simultaneously High Gravimetric and Volumetric Methane Uptake 
Characteristics of the Metal-Organic Framework NU-111. Chem. Commun. 2013, 49, 2992-
2994. 

50. Ding, L. and Yazaydin, A. O. Hydrogen and Methane Storage in Ultrahigh Surface Area 
Metal–organic Frameworks. Micropor. Mesopor. Mat. 2013, 182, 185-190. 

51. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, 
R. Q.; O’Keeffe, M.; Kim J.; Yaghi, O. M. Ultrahigh Porosity in Metal-organic Frameworks. 
Science 2010, 329, 424-428. 

52. Thompson, C. M.;  Li, F.; Smaldone, R. A. Synthesis and Sorption Properties of Hexa-(peri)- 
hexabenzocoronene-based Porous Organic Polymers. ChemCommun. 2014, 50, 6171-6173. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  

	
   18	
  

Graphic with Article submission 
 

 


