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SUPPLEMENTAL MATERIAL

In the following we provide additional details regard-
ing several aspects of the experiment and associated the-
oretical investigation. We begin with a discussion of the
techniques used to produce the resonators and the em-
bedded CPTs, and of how important CPT parameters
such as charging and Josephson energies are determined.
We then discuss the two biasing schemes used to pro-
duce the experimental results in the manuscript. One
biasing scheme was used for low-noise current measure-
ments, while the other was used to produce highly stable
emission for spectral measurements. Next, we turn to
the techniques used for measuring cavity emission, and
for characterization and modeling of the system amplifier
noise. Finally, we give a more in-depth analysis of our
theoretical model of the system.

Sample Fabrication and Characterization

The cavities used for fabricating our cCPTs were based
on coplanar waveguide with inductively terminated dc
bias lines attached to the main cavity line a distance
λ/4 from the ends of the cavity, as described in detail
elsewhere.1 The Nb film of the cavity was 100 nm thick
and was etched with sloping side walls to allow for good
step coverage during deposition of the CPT. Oxide was
removed under the Au/Ti contact pads by ion milling
before deposition of the metal. A micrograph of a typical
cavity is shown in Fig. S1a.

The central cavity conductor was 10 µm wide with
5.5 µm gaps between the central conductor and ground.
Capacitive coupling to the cavity was strongly asymmet-
ric, with a small (1.7 fF) input capacitor and a large
(18.5 fF) output capacitor (right inset, Fig. S1a). The
inductors on the dc bias lines (left inset, Fig. S1a) were
large enough (5.8 nH) that few photons escape from the
cavity through the bias circuitry. Overall, we estimate
that roughly 95% of the cavity photons are collected
by the microwave circuitry for amplification and subse-
quent analysis. The measured cavity Q of 3500 is in good
agreement with the simulated Q (including the dc bias
lines) of 3600. The measured cavity resonant frequency
of ω0 = 5.256 GHz was in similarly good agreement with
the design resonant frequency of 5.4 GHz.

The CPT itself was fabricated in a separate step using
standard electron beam lithography and shadow evapo-
ration techniques,2 and aligned with the cavity so as to
lie in the gap between the central conductor and ground
planes as shown schematically in Fig. S1b. The leads of
the CPT were thick enough (70 nm) to drive the under-
lying Au/Ti contact pads in Fig. S1c superconducting by
means of the proximity effect. The CPT island, on the
other hand, was very thin (7 nm), and deposited using a
cooled evaporation stage to ensure electrical continuity.
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FIG. S1. Sample design. a, Optical micrograph of a dc-
biased cavity showing the location of the CPT and typical
designs for an output capacitor and dc bias line inductor. b,
Schematic illustration of the location of the CPT relative to
the cavity. c, Electron micrograph of the coupling between
the CPT and the contact pads. d, Electron micrograph of a
typical CPT.

This technique increases the superconducting gap of the
CPT island, preventing quasiparticle trapping and en-
suring 2e-periodicity of the CPT I-V characteristics and
photon emission patterns.3

Three separate cCPT samples were fabricated in the
course of this experiment. Of these, microwave mea-
surements of cavity output were performed on two. All
three samples showed similar behavior in their I-V char-
acteristics, with all major features described in the main
text clearly visible. Both samples for which microwave
measurements were performed showed microwave photon
emission at the first two cotunneling features. The de-
tailed dc and microwave measurements presented in the
main text were all obtained from a single sample.

The junction and gate capacitances for the sample were
determined from the dc transport data. The 2e peri-
odicity of the supercurrent determines the gate capaci-
tance Cg = 4.6 aF. The junction capacitances are de-
termined by fitting to the sequential tunneling plus pho-
ton emission features described in the main text, giving
a source capacitance CS = 1.08 fF and a drain capac-
itance CD = 1.14 fF. The resulting total capacitance
CΣ = CS + CD + Cg = 2.22 fF gives a charging en-
ergy Ec = e2/2CΣ = 36 µeV = 0.42 K. The Joseph-
son energy EJ was determined from the total normal-
state CPT tunneling resistance Rn = 21.5 kΩ through
the Ambegaokar-Baratoff relation EJ = ∆

RQ

Rn
, giving

EJ ≈ 64 µeV = 0.74 K. Here ∆ = 212 µeV is the
effective superconducting gap when the different gap
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FIG. S2. DC and microwave circuitry. a, Circuit for low-noise current measurements using a floated current sensitive
amplifier. Detection of microwave signals is possible with this setup but emission is not stable. b, Circuit for stable microwave
emission measurements. The use of a cold voltage divider and a large capacitor provide excellent bias stability but limit
resolution in measurements of current.

sizes of the leads and island are taken into account, and
RQ = h/4e2 ≈ 6.45 kΩ is the resistance quantum.3

All electrical measurements were performed in a dilu-
tion refrigerator at its base temperature of 30 mK. The
dc bias lines were filtered with room temperature RC
and π-type filters, as well as cryogenic copper powder
microwave filters. The sample was mounted in a sealed
gold-plated Cu box designed to minimize propagation of
unwanted microwave modes. The box was in turn located
inside a cryogenic Amumetal magnetic shield to minimize
the residual magnetic field at the sample location.

dc Biasing Schemes

We used two separate dc biasing schemes during the
experiment, as shown in Fig. S2. One scheme is opti-
mized for sensitive measurements of current and was used
for the I-V measurements shown in the main text. The
other is optimized for low voltage noise on the bias line
and is used for emission measurements.

In Fig. S2(a) we show our standard circuitry for low-
noise current measurements. Cold 1 kΩ resistors on the
dc bias lines are used to help protect the cCPT from
electrostatic discharge. On the ac input side of the cavity,

multiple cold attenuators (total 50 dB, not shown) are
used to prevent noise from entering the cavity. On the
output side, three circulators are interposed between the
cavity and the cryogenic HEMT amplifier to prevent the
noise wave at the amplifier input from entering the cavity.
After the HEMT amplifier, additional room temperature
amplification is performed on the signal before further
measurement.

Since the cCPT is grounded internally in the dilution
refrigerator, the current sensitive amplifier is floated and
the dc bias voltage Vdc is applied indirectly to the cCPT
through the amplifier. This provides current resolution
on the order of a few fA, allowing the highly detailed I-V
measurements shown in the main text. Voltage resolu-
tion was limited to roughly ±1 µV by the noise of the
voltage amplifier. An additional example of an I-V char-
acteristic taken using this method is shown in Fig. S3;
this measurement, taken from positive bias toward nega-
tive bias, was made with greater voltage resolution than
the I-V characteristics shown in Fig. 2(b) in the main
text. It shows hysteresis and discontinuities in the volt-
age VCPT across the CPT similar those in Fig. 2(b), but
with greater detail.

Emission stability is limited when using the measure-
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FIG. S3. Detailed I-V characteristic for the cCPT at a gate
voltage far removed from charge degeneracy, sweeping from
positive to negative bias, as indicated.

ment circuitry in Fig. S2a for two reasons. First, noise
associated with the room temperature bias circuitry can
cause significant fluctuations in the drive voltage, leading
to fluctuations in the drive frequency ωJ . These can be
only partially eliminated by use of low-pass filtering at
room temperature.

Further improvement can be made as in Fig. S2b by
adding a cryogenic 100 Ω resistor in parallel with the
1kΩ protective resistor and sample. In combination with
a room temperature biasing resistor Rb ≈ 100 kΩ the
100Ω resistor forms a cold voltage divider that drastically
reduces the amplitude of low-frequency noise reaching the
sample.

More fundamentally, however, we must also consider
the thermal noise associated with the cold 1 kΩ protec-
tive resistors; this noise is not negligible despite the resis-
tor’s low temperature. For instance, assume that thermal
noise in a bandwidth B ≈ 1 MHz from the R = 1 kΩ re-
sistors can reach the sample. The associated rms noise
voltage Vn =

√
4kBT (2R)B = 60 nV at T = 30 mK,

when applied to the cCPT, results in a drive frequency
jitter δωJ = 2π × 2eVn/h ≈ 30 MHz that is far larger
than the cavity bandwidth κ = 2π × 1.5 MHz.

This noise can be significantly reduced, however, by
placing a large cryogenic capacitor C ≈ 40 µF be-
tween the 1 kΩ resistor and the cCPT. The result-
ing noise reaching the cCPT can be estimated as Vn =√

2kBT/C ≈ 0.14 nV. The drive frequency jitter is then
drastically reduced to δωJ ≈ 2π × 35 kHz, on the order
of the sharpest spectral features we measure. This vastly
improved bias stability has made possible the highly de-
tailed emission measurements presented in the main text.

Determination of VCPT from nph

The CPT voltage VCPT was monitored during the very
slow sweeps with closely spaced values of Vdc used to pro-

duce the spectra in Figs. 2, 3 and 4 in the main text.
However, the ±1 µV peak-to-peak voltage noise added
by our amplifier made the VCPT data far too noisy to
be useful in plotting false-color images, and of limited
use in plotting nph. Also, our reduced current sensitiv-
ity during the high-stability measurements made direct
measurement of ICPT impossible.

To circumvent these difficulties for the biasing scheme
shown in Fig. S2(b), we chose to estimate VCPT and ICPT

from the microwave data, which is far cleaner. We make
the physically reasonable assumption that all the energy
injected into the CPT appears as photons in the res-
onator, so that

ICPTVCPT = κ~ω0nph

where κ is the decay rate of the cavity, ω0 is the res-
onant frequency, and nph is the number of photons.
This assumption is supported experimentally by the good
agreement between the measured total power ICPTVCPT

dissipated in the CPT (determined using high current
sensitivity biasing) and the measured microwave output
power. We further assume that the applied voltage Vdc

is related to VCPT and ICPT by Kirchoff’s law

Vdc = VCPT + ICPTRs

where Rs ≈ 1.1kΩ is the effective source resistance of the
bias voltage. Solving these equations for VCPT and ICPT

gives

VCPT =
Vdc +

√
V 2

dc − 4κ~ω0nphRs
2

,

and

ICPT =
κ~ω0nph

VCPT
.

Since typically 4κ~ω0nphRs � V 2
dc, the corrections to

VCPT tend to be on the order of a few percent of Vdc.

In order to calibrate Vdc, we make use of the fact that
during a ramp of the bias voltage, Vdc is given by

Vdc = V0 + δV N

for the Nth point in the ramp. Here δV is a well-known
small voltage increment and V0 is a voltage offset that
is known to be V0 ≈ 9 ± 2 µV for the first peak and
V0 ≈ 20± 2 µV for the second.

To set the value of V0 for plotting purposes, we choose
V0 so that VCPT = ~ω0/2e = 10.9 µV at maximum emis-
sion for the first peak and VCPT = (2~ω0)/2e = 21.8 µV
for the second peak. Setting V0 to different values within
its range of uncertainty only results in a lateral shift in
plots of ICPT or nph versus VCPT without any significant
change in shape.
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Microwave Measurements

After exiting the cavity, microwave photons pass
through three circulators and then enter the amplifier
chain, which consists of a cryogenic HEMT amplifier with
noise temperature Tn = 8K and gain G1 = 38dB followed
by a bandpass filter and then a room temperature FET
amplifier with gain G2 = 45 dB.

We can use the shot noise of the CPT itself, when
driven on its quasiparticle branch, to fully calibrate the
amplifier chain. This is essentially the same technique
long used to calibrate system gain and noise for the re-
lated RF-SET.4 A straightforward calculation shows that
the shot noise power PSN delivered by the cCPT to the
HEMT amplifier is given by

PSN =
eI

4C
Qe
Qc

(S1)

where I is the driving current and C is the total cav-
ity capacitance. The cavity Q is written here as Qc,
while Qe is the cavity Q when additionally loaded by
the CPT high bias tunneling resistance Rn, given by
Q−1
e = Q−1

c + Q−1
CPT where QCPT = ω0RnC. As can be

seen in Fig. S4a, the measured shot noise power clearly
scales linearly with the applied driving current. From
(S1), the slope of the measured power PSN versus I in
Fig. S4a is given by eGQe/4CQc where G is the gain
of the amplifier chain. The y intercept P0 of the lin-
ear fits for positive and negative I give the system noise
temperature via the relation Tn = P0/kBGBW where
BW = 20 MHz is the bandwidth of the measurement.
The data in Fig. S4a give a system gain of 68 dB at the
output of the FET amplifier and a system noise temper-
ature Tn = 31 K.

To determine the number of cavity photons nph from
the emission spectra S(ω), we simply integrated each
spectrum and subtracted the measured amplifier noise
from the result to obtain a measurement of the total mi-
crowave power PCPT emitted by the CPT for a given set
of bias conditions. The cavity occupation is then deter-
mined from PCPT by the relation nph = PCPT/κ~ω0.

Derivation of the CCPT Hamiltonian

In this section, we derive the cCPT Hamiltonian (1),
starting with a simplified 1D model of the cCPT system
shown in Fig. S5. While such a model does not yield
the actual mode spectrum, it does serve as a useful ‘scaf-
fold’ for deriving the approximate discrete mode equa-
tions and associated lumped element model, where the
element parameters (i.e., capacitances, inductances etc.)
can be selected so that the resonant mode frequencies
and coupling strengths accurately match the experimen-
tally determined ones. Referring to the circuit in Fig. S5,
Kirchhoff’s laws yield the following equations in terms of
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FIG. S4. Amplifier chain noise characterization. Noise
power emitted by the cCPT in its bandwidth κ (red circles)
versus driving current I. The slope of the blue fitted lines
gives the total system gain, while their intercept gives the
system noise temperature.

the CPT phases γ±(t) = (ϕ1(t) ± ϕ2(t))/2 (with ϕ1, ϕ2

the gauge invariant phases across the Josephson junc-
tions), the cavity phase field φc(x, t), and transmission
line phase field φT (x, t):

2CJ
Φ0

2π

d2γ+

dt2
+ 2Ic sin γ+ cos γ− − Cg

dVg
dt

=
Φ0

πLc

(
∂φc
∂x

∣∣∣∣
x=0+

− ∂φc
∂x

∣∣∣∣
x=0−

)
, (S2)

2CJ
Φ0

2π

d2γ−
dt2

+ 2Ic cos γ+ sin γ− + Cg
dVg
dt

= 0, (S3)

∂2φc
∂t2

= (LcCc)−1 ∂
2φc
∂x2

, − L/2 < x < 0; 0 < x < L/2, (S4)

∂2φT
∂t2

= (LTCT )−1 ∂
2φT
∂x2

, x < −L/2; L/2 < x, (S5)
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and junction conditions

2
dγ+

dt
=
∂φc
∂t

∣∣∣∣
x=0

, (S6)

φc(L/4, t)−
Lb
Lc

(
∂φc
∂x

∣∣∣∣
x=L+/4

− ∂φc
∂x

∣∣∣∣
x=L−/4

)
=

2π

Φ0
Vdct, (S7)

− 1

Lc
∂φc
∂x

∣∣∣∣
x=L−/2

= C

(
∂2φc
∂t2

− ∂2φT
∂t2

)∣∣∣∣
x=L/2

,

− 1

LT
∂φT
∂x

∣∣∣∣
x=L+/2

= C

(
∂2φc
∂t2

− ∂2φT
∂t2

)∣∣∣∣
x=L/2

, (S8)

− 1

Lc
∂φc
∂x

∣∣∣∣
x=−L+/2

= C

(
∂2φT
∂t2

− ∂2φc
∂t2

)∣∣∣∣
x=−L/2

,

− 1

LT
∂φT
∂x

∣∣∣∣
x=−L−/2

= C

(
∂2φT
∂t2

− ∂2φc
∂t2

)∣∣∣∣
x=−L/2

, (S9)

where the phase fields and their time derivatives are con-
tinuous across the junctions, and we assume CJ � Cg.

We shall work in terms of the shifted cavity field: φ̃c =
φc − 2π

Φ0
Vdct, so that Eq. (S7) becomes

φc(L/4, t)−
Lb
Lc

(
∂φc
∂x

∣∣∣∣
x=L+/4

− ∂φc
∂x

∣∣∣∣
x=L−/4

)
= 0

(S10)
and Eq. (S6) becomes

γ+(t) = (φc(0, t) + ωJ t)/2, (S11)

where the driving frequency is ωJ = 2πVdc/Φ0 = 2eVdc/~
and we have dropped the tilde on φc for notational con-
venience. Note that we make no distinction between Vdc

and VCPT in our model as we consider a simplified sys-
tem in which the additional impedance on the bias line,
Zb, is neglected. We can now use Eq. (S11) to eliminate
γ+ from the dynamical equations; Eqs. (S3) and (S2)
become respectively

2CJ
Φ0

2π

d2γ−
dt2

+ 2Ic cos [(φc(0, t) + ωJ t)/2] sin γ− + Cg
dVg
dt

= 0 (S12)

and

φ′c(0, t)−
CJ
4Cc

φ′′c (0, t) =
πLcIc

Φ0
sin [(φc(0, t) + ωJ t)/2] cos γ− −

πLc
2Φ0

CgV̇g, (S13)

where we have used the cavity wave equation to replace
φ̈c with φ′′c , and have also used φ′c(0

+, t) = −φ′c(0−, t) a
consequence of the fact that only the symmetric about
the origin component of the phase field φc(x, t) (i.e., volt-
age antinode/current node) couples to the CPT, assum-
ing idealized perfect symmetry of the device, with the
‘+’ superscript on the 0 in φ′c(0, t) dropped for nota-
tional convenience. With this symmetry consideration,
the original length L cavity with the CPT situated at the
midpoint is effectively replaced with a length L/2 cavity

and where the interaction with the CPT is expressed by
Eq. (S13), which can be interpreted as a (rather nontriv-
ial) boundary condition on the cavity field φc(x, t) at the
x = 0 end.

From now on, we set the cavity-transmission line cou-
pling capacitance C = 0, deriving the closed cCPT sys-
tem dynamics only, described by the φc(x, t) cavity wave
equation (S4) for 0 < x < L/2, the coupled γ−(t) equa-
tion (S12), the junction condition (S10) at x = L/4, the
boundary condition (S13) at x = 0, and the boundary
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FIG. S5. Simplified model of the cavity-CPT system, where
the cavity center conductor has length L, and the Joseph-
son junctions are assumed to have equal capacitances CJ and
critical currents Ic. The cavity inductance and capacitance
per unit length are denoted Lc, Cc, respectively, while LT ,
CT are the respective transmission line inductance and ca-
pacitance per unit length. The cavity and transmission line
couple weakly via capacitance C. The dc bias lines involve
inductances Lb.

condition

∂φc
∂x

∣∣∣∣
x=L/2

= 0 (S14)

at x = L/2. We solve these equations using the approx-
imate eigenfunction expansion method, with Eq. (S13)
replaced by the following simpler boundary condition at
x = 0:

φ′c(0, t)−
CJ
4Cc

φ′′c (0, t) ≈ φ′c(x, t)|x=−CJ/(4Cc) = 0, (S15)

expressed approximately as a Neumann boundary con-
dition evaluated at the slightly shifted endpoint x =
−CJ/(4Cc), with CJ/(CcL)� 1.

We can now apply the method of separation of vari-
ables to the cavity wave equation (S4) for 0 < x < L/2:
the homogeneous boundary conditions (S14), (S15) and
junction condition (S10) define a Sturm-Liouville prob-
lem. Taking advantage of the smallness of the capac-
itance ratio CJ/(CcL), as well as the smallness of the
inductance ratio, LcL/Lb � 1, the orthogonal eigenfunc-
tions are approximately

φn(x) =

{
cos [kn (x+ CJ/(4Cc))] if 0 < x < L/4;
cos[kn(L/4+CJ/(4Cc))]

cos(knL/4) cos [kn (x− L/2)] if L/4 < x < L/2,
(S16)

the approximate associated wavenumber eigenvalues are

kn =
2πn

L
− 4πn

L

(
CJ

4CcL

)
+

{
0 if n odd;
1
πn
Lc

Lb
if n even,

(S17)

and the orthogonality condition on the eigenfunctions is
approximately

∫ L/2

−CJ/(4Cc)

dx φn(x)φm(x) = 0, m 6= n. (S18)

From Eqs. (S16) and (S17), we see that the odd eigen-
functions have a voltage node at approximately x = L/4,
while from Eq. (S10), the ratio of the ac current entering
the cavity through the bias line to the average ac current
flowing along the cavity center conductor at x = L/4 is
of order (LcL/Lb)(CJ/CcL), i.e., second order in small-
ness. On the other hand, the even eigenfunctions have a
voltage antinode at approximately x = L/4 and the ratio
of the entering ac bias current to the average ac cavity
current flow is of order (LcL/Lb)(CcL/CJ) ∼ 1. Thus,
wave solutions involving odd eigenfunctions are expected

to have low loss, while even eigenfunction wave solutions
are expected to be lossy due to the presence of the bias
line.

We now assume that solutions φc(x, t) to the wave
equation (S4) for 0 < x < L/2 with the full boundary
conditions (S13) and (S14) at x = 0 and x = L/2, respec-
tively, can be expressed as a series expansion in terms of
the eigenfunctions φn(x):

φc(x, t) =
∑
n

qn(t)φn(x). (S19)

We shall assume that this series expansion can be re-
stricted to only the odd integer eigenfunctions, with the
even integer components simply accounted for through
their possible effect of additional damping on the former.
From Eq. (S19) and the orthogonality condition (S18),
the to be determined time-dependent coefficients qn(t)
(for odd n) are given as

qn(t) =
4

L

∫ L/2

−CJ/(4Cc)

dx φc(x, t)φn(x), (S20)
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where the prefactor is the approximate normalization constant [neglecting CJ/Cc corrections]. Differentiating (S20)
twice with respect to time and applying the cavity wave equation (S4), we have:

q̈n(t) =
4

LcCcL

∫ L/2

−CJ/(4Cc)

dx φ′′c (x, t)φn(x). (S21)

Integrating (S21) by parts twice and applying the eigenvalue equation φ′′n(x) = −k2
nφn(x) and also Eq. (S20), we

obtain

q̈n(t) = − k2
n

LcCc
qn(t) +

4

LcCcL
φ′c(x, t)φn(x)

∣∣∣∣L/2
−CJ/(4Cc)

. (S22)

Using the boundary conditions (S13) and (S14), Eq. (S22) becomes

q̈n(t) = −ω2
nqn(t)− 4πIc

Φ0CcL
sin

[
1

2

(∑
n′

qn′(t) + ωJ t

)]
cos γ− +

2πCgV̇g
Φ0CcL

, (S23)

where the free cavity mode oscillator frequencies are

ω2
n =

k2
n

LcCc
, (S24)

with kn = 2πn/L, n odd. In terms of the cavity mode phase coordinates qn(t), the γ− equation (S12) becomes

2CJ
Φ0

2π

d2γ−
dt2

+ 2Ic cos

[
1

2

(∑
n

qn(t) + ωJ t

)]
sin γ− + Cg

dVg
dt

= 0. (S25)

Equations (S23) and (S25) give the approximate discrete
mode description of the closed cCPT system dynamics.
In modeling the experiment, the various circuit param-
eters appearing in (S23) and (S25) can be selected so
as to provide the best fit to the data. In this way,
the effective discrete mode equations are assumed to be
more versatile than the original starting equations at the
beginning of this section, which are tied to a particu-
lar model of the cavity geometry. Figure S6 shows a

lumped element circuit model that yields the above dis-
crete mode equations (neglecting small capacitance ratio
terms), where the lumped capacitance and inductance
elements are Cn = CcL/2, Ln = 1/(ω2

nCn), respectively,
and dissipative effective resistance elements Rn have also
been included for completeness.

The closed system equations of motion (S23) and (S25)
follow from the Hamiltonian

H =

(
2π

Φ0

)2∑
n

1

2Cn

(
pn +

Φ0

4π
CgVg

)2

+

(
Φ0

2π

)2∑
n

q2
n

2Ln

+4Ec(N − ng/2)2 − 2EJ cos

[
1

2

(∑
n

qn + ωJ t

)]
cos γ−, (S26)

where the mode sums are restricted to odd n, N = p−/~ is minus the number of excess Cooper pairs on the island,
ng = CgVg/e is the polarization charge induced by the applied gate voltage bias Vg, Ec = e2/(2CJ) is the approximate
CPT charging energy (neglecting Cg), and EJ = IcΦ0/(2π) is the Josephson energy of a single JJ.

The quantum Hamiltonian corresponding to Eq. (S26) can be written as

H =
∑
n

~ωna†nan + 4Ec

+∞∑
N=−∞

(N − ng/2)
2 |N〉〈N |

−EJ
+∞∑

N=−∞
(|N + 1〉〈N |+ |N − 1〉〈N |) cos

[∑
n

ϕ(n)
zp (an + a†n) +

1

2
ωJ t

]
, (S27)

where we have neglected the gate voltage dependent term
in the cavity mode coordinate part of the Hamiltonian

and where ϕ
(n)
zp is the zero-point uncertainty of the cavity
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FIG. S6. Lumped element circuit model of the CPT-cavity
system.

mode phase coordinate qn:

ϕ(n)
zp =

√
π
√
Ln/Cn

4RQ
=

√
Zn

4RQ
, (S28)

with Zn the cavity mode impedance. Restricting to the
lowest, n = 1 cavity mode and truncating to a two-
dimensional subspace involving linear combinations of
only zero (|0〉) and one (|1〉) excess Cooper pairs on the
island then yields the cCPT Hamiltonian (1) given in the
main text.

Application of P (E) theory

The low-temperature cotunneling current in a CPT
coupled to an environment with impedance Z(ω) as pre-
dicted by P (E) theory is given by5,6 Icot = 2eΓcot where

Γcot =
π

2~
[E

(1)
J ]2P (E) (S29)

is the Cooper pair cotunneling rate and E
(1)
J ≈ 0.4EJ .

Here P (E) is given by

P (E) =
1

2π~

∫ ∞
−∞

dt eJ(t)+iEt/~ (S30)

where J(t) is the phase-phase correlation function given
at zero temperature by7

J(t) = 2

∫ ∞
0

dω

ω

ReZt(ω)

RQ
(e−iωt − 1). (S31)

Here RQ = h/4e2 is the resistance quantum and Zt(ω) is
the total impedance seen by the tunneling Cooper pairs.
In our case, Zt(ω) is the parallel combination of the CPT
junction capacitance CJ and the parallel effective LCR
resonance of the cavity (see Fig. S6). Since CJ � C, the
junction capacitance has negligible influence on Zt(ω),
which is then approximately equal to the impedance Z(ω)
of the resonator itself. We therefore have

Zt(ω) ≈ Z(ω) =
1

C

ω

i(ω2 − ω2
0) + ωω0/Q

. (S32)

Using ω0 = (LC)−1/2, Z0 = π
√
L/C and ϕ2

zp = Z0/4RQ,
we can write (assuming a sharp resonance)

ReZ(ω)

RQ
=

4ϕ2
zpω

2
0

πQ

1

4(ω − ω0)2 + ω2
0/Q

2
. (S33)

Substituting (S33) into (S31) and integrating gives the
result

J(t) = −4ϕ2
zp + 4ϕ2

zpe
−ω0|t|/2Qe−iω0t (S34)

which, since ϕ2
zp � 1, implies |J(t)| � 1. In evaluat-

ing the Fourier transform of J(t) to find P (E), we can
perform a Taylor series expansion of eJ(t). Doing so,
and retaining only terms to second order in ϕ2

zp, we can
obtain expressions for P (E) in the vicinity of E = ~ω0

and ~(2ω0). Making the substitutions κ = ω0/Q and
ω = E/~, we find

Γcot(ω ∼ ω0) ≈
(
E∗Jϕzp

~

)2
κ

(ω − ω0)2 + (κ/2)2
(S35)

where E∗J = E
(1)
J e−2ϕ2

zp ≈ 0.4EJ , and

Γcot(ω ∼ 2ω0) ≈

(
E∗Jϕ

2
zp

~

)2
4κ

(ω − 2ω0)2 + (κ)2
. (S36)

These expressions, which are equivalent to previous
results8, give rise to maximum cotunneling rates

Γ
(1)
cot =

(
4E∗2J
~2κ

)
ϕ2

zp (S37)

and

Γ
(2)
cot = ϕ2

zpΓ
(1)
cot. (S38)

For our parameters, Γ
(1)
cot ≈ 1 × 1012 s−1 and Γ

(2)
cot ≈

2 × 109 s−1, both far greater than κ. The correspond-

ing predicted currents are I
(1)
cot = 2eΓ

(1)
cot ≈ 0.4 µA for

ωJ = ω0 and I
(2)
cot = 2eΓ

(2)
cot ≈ 0.8 nA ωJ = 2ω0. Both are

significantly larger than the measured values, the first
almost unphysically so.

To find the predicted number nph of cavity photons for
ωJ = ω0, we substitute κ = ω0/Q in (S37) and find

nph =
Γ

(1)
cot

κ
= 4

(
E∗2J
~ω0

)2

Q2ϕ2
zp ∼ 4Q2ϕ2

zp ∼ 105 (S39)

as in the main text, because in our case (E∗J/~ω0)2 is of
order unity. Note that the theory also predicts nph at
ωJ = 2ω0 will be smaller by a factor of 2ϕ2

zp ≈ 3× 10−3

than at ωJ = ω0, whereas in the experiment it is two
times larger.

Finally, the theory predicts8,9 an emisssion linewidth
at ωJ = ω0 and 2ω0 of about the bare cavity linewidth
κ/2π ≈ 1.5MHz, as compared to the far smaller measured
linewidths of 70 kHz and 350 kHz.



9

Quantum dynamics of the model system

In this Section we investigate the dynamics of the
single-mode system within the charge state basis |0〉 and
|1〉. Generically the dynamics of the system is described
by a master equation of the form,

ρ̇ = − i
~

[H, ρ] + LNρ+ Lnρ, (S40)

where H is given by (1), the terms LNρ and Lnρ describe
the effect of the environment on the island charge and
cavity mode respectively.

We will not derive the dissipative parts of the master
equation here, but instead take a phenomenological ap-

proach. We assume the simplest possible form for LNρ,
allowing transitions between charge states (for ε > 0),

LNρ = Γ

(
σ−ρσ+ −

1

2
{σ+σ−, ρ}

)
, (S41)

where Γ is the charge relaxation rate and σ+ = (σ−)† =
|1〉〈0|, an approach which we expect to provide a reason-
able description of the dissipative dynamics in the regime
where ng � 1. For the cavity mode we assume dissipa-
tion due to an oscillator bath at zero temperature and
hence we have,

Lnρ =
ω0

Q

(
aρa† − 1

2

{
a†a, ρ

})
, (S42)

where Q is the quality factor.

Semi-classical description

Given the master equation, Eq. (S40), we can write down equations of motion for the expectation values of the
operators, a, σ+ and σz,

〈ȧ〉 = −
(
iω0 +

1

2Q

)
〈a〉 − iEJϕzp

~
〈sin[ϕzp(a+ a†) +

1

2
ωJ t](σ+ + σ−)〉 (S43)

〈σ̇+〉 =

(
i
2ε

~
− Γ

)
〈σ+〉+ i

EJ
~
〈cos[ϕzp(a+ a†) +

1

2
ωJ t]σz〉 (S44)

〈σ̇z〉 = i
2EJ
~
〈cos[ϕzp(a+ a†) +

1

2
ωJ t](σ+ − σ−)〉 − Γ(〈σz〉+ 1). (S45)

We proceed by making a semi-classical approximation 10, treating expectation values of products of operators as
products of expectation values. Adopting the notation α = 〈a〉, σ = 〈σ+〉, z = 〈σz〉, we obtain the following
self-contained equations of motion for the system,

α̇ = −
(
iω0 +

1

2Q

)
α− iEJϕzp

~
sin[ϕzp(α+ α∗) +

1

2
ωJ t](σ + σ∗) (S46)

σ̇ =

(
i
2ε

~
− Γ

)
σ + i

EJ
~

cos[ϕzp(α+ α∗) +
1

2
ωJ t]z (S47)

ż = i
2EJ
~

cos[ϕzp(α+ α∗) +
1

2
ωJ t](σ − σ∗)− Γ(z + 1). (S48)

Origin of the resonances

The sequential tunneling resonances shown schemat-
ically in Fig. 1e (left panel) involve a two step cycle of
processes which transfer Cooper pairs across one junction
at a time. In the first step, a Cooper pair tunnels across
one of the junctions taking the island from the lower to
the higher energy charge state whilst at the same time
a photon is emitted into the cavity. This process occurs
when the voltage lost by the Cooper pair tunneling across
the junction balances the change in charging energy and

the cost of photon production, 1
2~ωJ = 2|ε|+ ~ω0, which

defines the diagonal resonance lines. After this first step,
the island is in the higher energy charge state so the sys-
tem can return to the lower charge state in the second
step via the tunneling of a Cooper pair across the other
junction (with the extra energy being dissipated not in
the cavity mode, but in other environmental degrees of
freedom, i.e. through the LNρ terms in the master equa-
tion).

The simplest way of understanding the locations of the
cotunneling resonances shown in Fig. 1e (right panel) is
in terms of matching between the voltage energy lost by
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a Cooper pair traversing both CPT junctions and the
energy required to create k photons, 2eVCPT = ~ωJ =
k~ω0. As one would expect, the cotunneling resonances
appear in the semi-classical equations. Their locations
can be determined (though not what the corresponding
steady states are) by assuming that the occupation of
the cavity is small (i.e. α � 1) so that the effect of the
cavity on the dynamics of the CPT island charge can be
neglected. Dropping the dependence on α in Eqs. (S47)
and (S48), we are left with a pair of equations which
describes a two-level system subject to both a harmonic
drive and damping,

σ̇ =

(
i
2ε

~
− Γ

)
σ + i

EJ
~

cos(ωdt)z (S49)

ż = i
2EJ
~

cos(ωdt)(σ − σ∗)− Γ(z + 1), (S50)

where for convenience we have introduced the single-
junction driving frequency ωd = 1

2ωJ . The long time
behavior of the CPT island charge will be a periodic func-
tion of ωd. For reasons of symmetry 11, σ(t) contains only
odd harmonics and hence can be expressed as the Fourier
series

σ(t) =

′∑
n

cneinωdt, (S51)

with the prime indicating that the sum runs over odd
integers.

Defining α̃ = αeiω0t, and substituting the Fourier series
(S51) for σ(t), into the Eq. (S46) we find

˙̃α = − α̃

2Q
− iEJϕzp

~
eiω0t

′∑
n

(
cneinωdt + c∗ne−inωdt

)
× sin

[
ϕzp

(
α̃e−iω0t + α̃∗eiω0t

)
+ ωdt

]
. (S52)

Resonances occur whenever the damping term is matched
by another term which has no explicit time dependence.
Expanding out the sinusoidal term, we see that there are
exponentials with all integer powers of ω0, but only even
powers of ωd, hence the most general resonance condi-
tion is kω0 = 2pωd = pωJ , corresponding to k photons
being produced by the cotunneling of p Cooper pairs. In
addition there is a time independent contribution which
is present for any combination of ωd and ω0 (it is gen-
erated by terms in the expansion of the sine that are
proportional to e−iω0t). However, this term is dispersive
leading to a frequency shift in the cavity mode and it
does not affect the energy.

At the one photon resonance where ωJ = 2ωd = ω0,
oscillations of σ(t) at frequency ωd act to upconvert the
single-junction drive oscillations (also at ωd) to produce
oscillations at frequency ωJ = 2ωd which are resonant
with the cavity mode. Expanding Eq. (S52) to linear
order in α̃ and retaining only terms without explicit time

dependence we find,

˙̃α = − α̃

2Q
+
EJϕzp

2~
β0 − i

EJϕ
2
zp

2~
(β1α̃+ β2α̃

∗)(S53)

where the β coefficients depend on the Fourier compo-
nents,

β0 = c−1 + c∗1 − c−3 − c∗3 (S54)

β1 = c−1 + c1 + c∗−1 + c∗1 (S55)

β2 = c−3 + c∗3 + c−5 + c∗5. (S56)

The β0 and β2 terms in Eq. (S53) arise because of the
resonance condition ωd = ω0/2 and lead to changes in
the energy of the mode, with the β0 term acting like a
linear drive. The β1 term is independent of the specific
choice of ωd and generates only a frequency shift (since
β1 is real).

A similar picture emerges at the two photon resonance
where ωJ = 2ωd = 2ω0 where an expansion leads to

˙̃α = − α̃

2Q
− i

EJϕ
2
zp

2~
(β1α̃+ β3α̃

∗) , (S57)

where here β3 = c−3 + c∗3 + c−1 + c∗1. The β1 term
again leads to a frequency shift while the β2 term, which
arises because of resonance condition (ωd = ω0), gener-
ates changes in the energy of the mode.

The simple resonance condition suggests that, in a
crude sense, the CPT can be thought of as acting like
a single effective Josephson junction at the cotunneling
resonances as there is no explicit energy matching condi-
tion involving the internal state of the island (and hence
the gate voltage), though the behavior of the system does
depend on ng implicitly through the dynamics of σ. How-
ever, at points where the two island charge states are
degenerate (i.e. ng = 1 and hence ε = 0) the driven os-
cillations in σ described by Eqs. (S47) and (S48) become
entirely imaginary leading to a decoupling from the cav-
ity (since it is the combination σ + σ∗ which appears in
Eq. S46 for α), a feature which should not depend on
the details of the dissipative terms. In Eqs. (S53) and
(S57) the β coefficients vanish for a pure imaginary σ
since in that case cn = −c∗−n. Thus both the driving of
the cavity and the frequency shift terms generated by the
interaction with the CPT should shut off at the charge
degeneracy point. This provides an explanation for the
loss of cavity output seen around ng = ±1 in the experi-
ment.

Dynamics at the cotunneling resonances

The level of cavity excitation predicted by the model
can be obtained by integrating Eqs. (S46)-(S48) and cal-
culating the long time average of |α|2 which is equiva-
lent to the average number of cavity photons. Figure S7
shows an example of the behavior as a function of ϕzp
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FIG. S7. Average cavity energy calculated semi-classically,
|α|2, in the long time limit at the one and two photon reso-
nances as a function of ϕzp. We use the parameter values from
the experiment Q = 3500, EJ/~ω0 = 3.2, 4Ec/~ω0 = 6.6,
ng = 0 and choose Γ/ω0 = 0.02.
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FIG. S8. Average cavity occupation, 〈n〉, and Fano factor, F ,
as a function of ϕzp for ωJ = ω0 in the limit of long times.
Here EJ/~ω0 = 2, ε/~ω0 = 2.5, Q = 75 and Γ/ω0 = 0.2.

at the one and two photon resonances. For the one pho-
ton resonance there is a smooth increase in energy as a
function of ϕzp followed by a peak and then a decaying
region. The two photon resonance grows abruptly in two
stages before also decaying in a similar way to the one
photon case. For the experimental value ϕzp = 0.04 we
obtain photon numbers of 122 for ωJ = ω0 and 256 for
ωJ = 2ω0, which are very similar in magnitude to the
results described in the main text.

Numerical integration of the master equation (S40) al-
lows us to examine the quantum fluctuations in the sys-
tem 12, although we have not explored the regime probed
in the experiment as the photon numbers involved are
too high (instead larger values of ϕzp are combined with

much lower values of Q). Such calculations certainly sug-
gest that amplitude-squeezing (F < 1) is a generic prop-
erty of the system. Figure S8 shows an example of the
kind of results which can be obtained in this way for
ωJ = ω0. The average energy behaves in the same gen-
eral way as that obtained from the semi-classical equa-
tions for the experimentally relevant parameters (shown
in Fig. S7). Amplitude-squeezing occurs over the whole
range of ϕzp studied.

Further evidence of the system’s very general tendency
to display amplitude-squeezing comes from analysis of a
model describing an analogous one junction system 13. In
this system Fano factors less than unity are found gener-
ically for a very broad range of parameters at the one
and two photon resonances, including the regime where
Q ≥ 1000 and ϕzp ' 0.04. Finally, we point out that the
lowest Fano factors are usually associated with systems
where there is an interaction between a harmonic mode
and a two-level system, a prominent example being the
trapping states of the micromaser 14 (where almost pure
Fock states can in principle be generated). Indeed, re-
cent work by Marthaler et al. 15 predicted the existence
of trapping states in a model CPT-cavity system for pro-
cesses where changes in island charge state are associated
with photon emission (closely related to the sequential
resonances observed in the experiment).
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