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Abstract 

A continuous flow process for the synthesis of a metal-organic framework using only water 

as the reaction medium and requiring only short residence times is described. This affords a 

new route to scale-up of materials incorporating many of the principles of green chemistry. 

The process is demonstrated by the synthesis MIL-53(Al) via continuous flow reaction 

requiring only 5-6 minutes with a space time yield of 1300 kg m
-3

 d
-1

. We have demonstrated 

the synthesis of 500 g of MIL-53(Al) using this process, which can be scaled-up further by 

simply feeding further solutions of metal salt and ligand through the reactor. The product has 

a higher surface area and a better colour than a commercially produced sample of this MOF. 

In addition, a new and effective method for the extraction of terephthalic acid from within the 

pores of MIL-53(Al) using supercritical ethanol has been developed, representing a new 

methodology for activation and removal of substrates from porous hosts. 

 

___________________________________________________________________________
 

 

Introduction  

Metal-organic frameworks (MOFs) are currently the focus of intense scientific interest due to 

their wide range of potential applications in gas storage
1,2 

and separation,
3 

catalysis,
4,5

 drug 

delivery,
6-8

 and as thermo-active,
9
 conducting

10,11
 and electronic

12,13 
materials. Of particular 

interest to us is the potential of MOFs to store and purify fuel and exhaust gases.
14 

For 

industrial scale applications, MOFs must not only possess the desired functionality and 

properties, but their synthesis and processing must be scalable at low cost to give products in 

high yield and purity. Increasing environmental awareness and commercial constraints mean 

that synthetic processes must be as green as possible, and water is thus an attractive solvent 

for the synthesis of MOFs.
15,16

 

The most common methods for MOF synthesis are solvothermal batch reactions in 

Teflon-lined stainless steel bombs or glass pressure tubes.
17-19

 Long reactions times of several 

days are commonly used with slow heating and cooling rates using solvents such as N,N’-

dimethylformamide (DMF), which is a toxic mutagen and environmentally hazardous.
20,21 

Slow hydrothermal syntheses are typically carried out at temperatures up to 220 °C, while 

microwave,
22,23 

sonication and mechanochemical
24,25

 syntheses involve shorter reaction times 

in some cases. However, for microwave and alternative methods of synthesis to be cost 

effective for scale-up, they need to have clear benefits over conventional heating routes.
26,27

 

Continuous flow synthesis of MOFs has been demonstrated previously in elegant studies 
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using interfacial synthesis to produce hollow MOF capsules on a small scale,
28

 and utilising 

rapid solvent mixing.
29,30 

Significantly, however, these methods still make use of organic 

solvents such as 1-octanol,
28 

DMF
29

 and EtOH.
30 

One of our objectives is to completely 

eliminate the use of toxic/organic solvents by using high temperature water (HTW). In 

previous reports water has been successfully use as the reaction solvent for the synthesis of 

MOF materials.
15,16,31

 Herein we confirm that HTW can be used to reduce the reaction times 

from days to minutes in order to prepare porous materials rapidly and cleanly with excellent 

potential for scale-up, particularly under continuous flow. We demonstrate this methodology 

by using HTW to produce MIL-53(Al), a benchmark MOF that combines thermal stability 

with porosity
32

 and adsorption selectivity.
33

 We combine this with a new strategy for removal 

of guest molecule in MIL-53(Al) using supercritical EtOH. 

 

Results and discussion 

We have previously reported the use of HTW for the batch synthesis of MOFs, but the 

reaction generally required 48 hr for completion.
15

 We have now developed this further such 

that the batch reaction of Al(NO3)3 with terephthalic acid (H2L
1
) in HTW at 250 °C yielded 

porous MIL-53(Al) in 10 min. A molar ratio for Al(NO3)3: H2L
1
 of 2:3 was used with 

concentrations of 0.04 mol dm
-3

 and 0.06 mol dm
-3

, respectively. The identity and 

composition of the MIL-53(Al) produced by this method was confirmed by powder X-ray 

diffraction (PXRD) and characterised further by thermal gravimetric analysis (TGA) and gas 

adsorption isotherms. Given that this represents a reduction in reaction time from 3 days to 10 

min.,
 34

 we reasoned that this new approach could be developed further towards scale-up via 

continuous processing. However, H2L
1
 is insoluble in cold water and is thus difficult to use in 

a continuous flow process using water. Thus, a trial batch reaction was carried out using 

disodium terephthalate (Na2L
1
), which is water-soluble. This yielded MIL-53(Al) identical to 

the experiments using H2L
1
 (Scheme 1). Reactions in batch were then carried out to establish 

whether the reaction temperature could be reduced whilst still using reaction times of 10 

minutes. Batch reactions at 200 °C afforded product that is less crystalline as confirmed by 

PXRD which shows significant peak broadening, while reactions at 150 °C afforded almost 

no MOF product and much of the H2L
1
 could be isolated as unreacted starting material. 

A schematic of our apparatus developed for the continuous reaction is shown in 

(Figure 1). Aqueous solutions of Al(NO3)3 and Na2L
1
 are pumped by means of HPLC pumps 

(Gilson 306, 10 ml pump heads), and these solutions are mixed with another stream of water 

preheated to 300 °C before entering the tubular reactor (ID 0.370”, volume 20.8 ml). The 
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temperature of the reactor is kept constant using resistance heaters and a temperature 

controller (Eurotherm 2216L), and downstream, the mixture is cooled by a heat exchanger. 

The solid product is recovered by a Tee filter (0.5 μm) and after filtration the liquid by-

product stream enters a Back Pressure Regulator (BPR). The use of filtration enables the 

product to be recovered dry, and minimises the chance of BPR malfunctions. Two sets of 

filters and BPRs are installed in parallel to facilitate continuous operation of the system. 

Reaction of Al(NO3)3 with Na2L
1
 in the continuous reactor in a 1:1 ratio at 

0.05 mol dm
-3

 concentration gave high quality MIL-53(Al), and running the reaction for 20 

minutes gave 0.5 g of product as a white powder (yield: 86% crude, 59% after removal of  

terephthalic acid from pores, based on Al utilisation and product [AlOH(L
1
)]n). Both the as-

synthesised batch and continuous flow products are microcrystaline and match known MIL-

53(Al) phases. MIL-53(Al) is known to exhibit a breathing effect and phase transitions 

induced by heating or by uptake and removal of guest species.
34-38

 Furthermore, the as-

synthesised phase, MIL-53(Al)ta, contains uncoordinated H2L
1
 trapped within the pores and 

this requires removal to maximise its porosity. Usually removal of trapped H2L
1
 is achieved 

via calcination involving heating at 330 °C for 3 days
34

 or washing with DMF.
35,36 

In order to 

remove this uncoordinated ligand we developed a new procedure involving extraction of the 

product with supercritical ethanol (scEtOH) at 250 °C and 100 bar for 2 hr. This method 

effectively removes the uncoordinated H2L
1
 from within the pores without decomposing the 

material. The extraction rig (Figure 2) used liquid ethanol at a flow rate of 0.5 ml min
-1

, a 

back pressure of 100 bar with the first batch reactor held at 250 °C for 2 h. Removal of in-

pore H2L
1
 could be readily monitored by by PXRD (Figure S3), TGA (Figure S14) and ATR-

FTIR (Figure S16). 

The removal of H2L
1
 causes a phase change to a more open structure, MIL-53(Al)op, 

and this converts to the hydrated form, MIL-53(Al)hy, upon adsorption of water. The major 

phase using HTW in batch reaction is MIL-53(Al)ta. In continuous flow, the same phase is 

isolated but MIL-53(Al)hy is also present in the product (Figure 3a). PXRD analysis of 

products obtained from batch and by continuous flow reactions shows no peaks for 

γ-AlO(OH), H2L
1
 or other MOF phases. High resolution PXRD were recorded for a 

desolvated sample in which H2L
1
 had been removed, and the recorded pattern matches very 

well with the MIL-53(Al)op phase (Figure 3b). Refinement of the PXRD patterns confirms 

the bulk purity of the sample (Figures S7 and S8). TGA demonstrates that the as-synthesised 

batch product MIL-53(Al)ta has thermal stability up to 540 °C and contains 0.8 equivalents 

of free H2L
1
 (Figure 4). This is consistent with the thermal behaviour reported by Loiseau et 
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al.
34

 where 0.7 equivalents of free H2L
1
 was observed in the material. The product formed by 

continuous process shows similar thermal stability and contains 0.41 equivalents of free H2L
1
 

as determined by TGA. 

 MIL-53(Al) prepared at 250 °C using batch and continuous flow processes was 

treated with scEtOH to remove free H2L
1
 from the pores (see ESI for details). This was 

followed by activation of the sample at 125 °C under vacuum overnight, and the N2 

adsorption was recorded for samples. The isotherms are type I as expected for this 

microporous material and the maximum uptakes (at 0.95 P/P0) for the batch and continuous 

flow samples were 289 cm
-3

 g
-1

 and 296 cm
-3

 g
-1

, respectively (Figure 5). BET surface areas 

for the batch and continuous flow samples were 1097 m² g
-1

 and 919 m² g
-1

, respectively, 

consistent with previously reported values for MIL-53(Al) of between 1270 m
2
 g

-1
 and

 

933 m
2
 g

-1
.
32,34,39 

A significant feature of MIL-53 materials is their framework flexibility 

upon gas loading. Importantly, the desolvated MIL-53(Al) sample produced via continuous 

flow in HTW exhibits the same expected framework phase transition upon CO2 adsorption 

(Figure S17). Therefore, this HTW method does not alter the nature of the MOF material 

produced suggesting wider applicability of continuous flow to produce other MOFs. 

However, it is important to select the right reaction conditions to produce a highly porous 

material. The effect of temperature on the surface area and gas uptake of the material 

produced was investigated by performing the reactions between 200 and 300 °C. These 

results, summarised in Table 1, confirm that the optimum temperature for this system is 

250 °C. 

 The real test of any ‘green’ process is whether it can be scaled up to produce 

commercially useful quantities of product. Therefore in collaboration with an industrial 

partner we have tested our synthesis of MIL-53(Al) using a larger scale reactor. With a flow 

rate for Na2L
1
 of 400 ml min

-1
 mixed with a heated flow of Al(NO3)3  at 200 ml min

-1
, more 

than 500 g of MIL-53(Al) were produced as an aqueous slurry in 4 hr. After drying of the 

material, the resulting MOF powder is pure white in appearance (Figure 6) and after removal 

by calcination of H2L
1
 from the pores the material has a surface area of 1010 m

2
 g

-1
 similar to 

that of the lab-scale sample and nearly double the 553 m
2
 g

-1
 of a commercially supplied 

sample of the same MOF (see ESI).
40

 This scale of reaction corresponds to approximately 1 

metric tonne per annum. The waste from this process include salts such as NaNO3 but these 

can be readily removed from the effluent.
41,42

 Another possibility to be explored is the use of 

a terephthalic acid saturator after the preheater to avoid the generation of sodium salts or by 

the substitution of  Al(NO3)3 by Al(OAc)3 as acetate waste would be less hazardous. 
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However at the current scale of MOF manufacturing, disposal of these wastes does not pose a 

significant problem. 

 In order to demonstrate further the scope of the above methods, the MOF material 

HKUST-1 was synthesised in high temperature ethanol as the reaction solvent, first in batch 

and then using the continuous process. HKUST-1 has been synthesised previously in 

continuous flow,
28,29,43

 and using ethanol in batch.
44

 The process reported here combines the 

use of the green solvent ethanol and a continuous process, and PXRD of the isolated 

materials from this process confirms the formation of HKUST-1 (Figure 7). As both the 

trimesic acid ligand (H3L
2
) and Cu(NO3)2 are soluble in ethanol the use of ligand salts was 

not required in this case. No free ligand was recovered with the MOF material and so a 

second purification step was not necessary. The material produced by continuous process had 

a surface area of 1554 m
2
 g

-1
, a maximum N2 uptake of 417 cm

3
 g

-1
 (0.95 P/P0), and a pore 

volume of 0.62 cm
3
 g

-1
 (Figure S15). The space time yield of HKUST-1 in this process was 

730 kg m
-3

 d
-1

. 

 

Conclusions 

 In summary, a rapid and green method for the synthesis of MIL-53(Al) with an 

excellent potential for scale-up has been developed in which HTW is used in continuous 

flow. We have thus far produced MIL-53(Al) in up to 500 g scale via continuous flow, and 

the utilisation of a green solvent combined with abundant, low-cost metal and ligand enhance 

this potential to form multi-kg quantities. A green synthesis for H2L
1
 using HTW is already 

established
45-47

 and so a complete process from the synthesis of the ligand to final MOF 

product can be envisaged using HTW. Although some MOFs including MIL-53(Al) are 

commercially available, their current price is too high for them to be used in most 

applications. MIL-53(Al) is currently sold at £2440-3455 for 500 g.
40

 To reduce this cost, 

more productive processes are required, and the space time yield, defining the mass of 

product produced per unit volume per unit time, is an important parameter for comparing 

processes. Reported values for commercially-available MOFs correspond to space time yields 

of between 20 and >300 kg m
-3

 d
-1

 with MIL-53(Al) at 160 kg m
-3

 d
-1

.
49- 51 

The space time 

yield for our continuous flow process for MIL-53(Al) reported here is significantly higher at 

1300 kg m
-3

 d
-1

. Thus, the rapid synthesis of MOFs in HTW represents a greener method with 

potential for further investigation and possible commercialisation. 
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Experimental 

 All reagents and solvents were used as received from commercial suppliers without 

further purification for both the batch and the continuous reactions. 

 

Synthesis of MIL-53(Al)  

Batch Synthesis: The synthesis of {[AlOH(L
1
)]·0.8 H2L

1
}n, MIL-53(Al) in water was carried 

out in a high-pressure stainless steel batch reactor (10 ml of internal volume). The reactor was 

located in an aluminium heating block surrounded by an electric band heater (1 kW) with a 

cooling jacket for rapid cooling. Details of the device have been previously reported.
48 

Al(NO3)3·9H2O (112.9 mg, 0.301 mmol), H2L
1

 (75.0 mg, 0.451 mmol) and water (5.0 ml) 

were transferred into the reactor, and the reaction mixture rapidly heated by preheating the 

aluminium block 20 °C higher than the desired temperature. The time required to reach the 

target reaction temperature is ca 5 min, and the system was kept at the target reaction 

temperature for 10 min and rapidly quenched using the cooling jacket. The product was 

recovered by filtration, washed with water and acetone, and dried in air. The reaction gave a 

white powder with a yield of 54 mg (91%) and a purified yield after scEtOH extraction of 39 

mg (66%). 

Continuous Process: General conditions involved a flow rate of 1.0 ml min
-1

 to give a total 

flow rate of 3.0 ml min
-1

 of water. The pressure of the system (230 bar), and the temperature 

of the preheater and the reactor (300 °C and 250 °C, respectively) were set to the desired 

values. Once the temperatures were stable, the streams were changed to metal salt and ligand 

solutions and the flows passed through Filter 1 for 20 min. The three way valve was then 

switched to Filter 2 and next batch of product collected for 20 min, while product in Filter 1 

was collected and a new filter inserted. After 20 min, the three way valve was switched back 

to Filter 1, new reaction conditions set and while the product in Filter 2 was collected and the 

filter, further product was collected in Filter 1. This process can be repeated for as long as 

sufficient metal salt and carboxylate ligand can be supplied.  

 

Synthesis of HKUST-1  

 The same procedure was used for the synthesis of HKUST-1 but ethanol instead of 

water was used (see Supplementary Details). For the synthesis of HKUST-1, the pressure of 

the system, temperature of the preheater and the reactor set were to 75 bar, 300 °C and 

200 °C respectively, resulting in a 5.1 min residence time. Feed concentrations of 

0.15 mol dm
-3

 and 0.10 mol dm
-3

 were used for the Cu(NO3)2 and trimesic acid (H3L
2
), and 
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the concentration in the reactor was 0.05 mol dm
-3

 and 0.03 mol dm
-3

, respectively. After 15 

minutes the reaction yielded 0.536 g of HKUST-1 as a blue powder. The powder contained 

31.3% solvent as determined by TGA and so the yield of dry MOF was 63% with the product 

defined as [Cu3(C6H3(CO2)3]n. 
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Figure and Legends 

 

Scheme 1 Reaction scheme for batch reaction and continuous flow processes for the 

synthesis of MIL-53(Al). 

 

 

 

 

 

Figure 1 Schematic of the continuous process rig. The grey section represents the heated 

section of the reactor. 
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Figure 2 Diagram of extraction rig comprising of a pump, two batch reactors in series (1
st
 

heated, 2
nd

 cooled) and a back pressure regulator. Arrows indicate the flow direction; red and 

blue highlight heated and cold areas, respectively. 

 

 

 
Figure 3 (a) PXRD patterns of as-synthesised MIL-53(Al) produced in batch (black) and 

continuous flow (green) at 250 °C, and simulated pattern for MIL-53(Al)ta (blue) and 

MIL-53(Al)hy (red). (b) High resolution PXRD (λ = 0.827107 Å) of desolvated MIL-53(Al) 

produced in batch at 250 °C and treated with scEtOH (black) and simulated pattern for 

MIL-53(Al)op (pink). 
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Figure 4 TGA of as-synthesised MIL-53(Al) material prepared by batch reaction (250 °C) at 

a heating rate of 5 °C min
-1

.The first step of 38.5% between 215 °C and 440°C is the loss of 

in-pore H2L
1
 and the second step of 39.2% between 500 °C to 690 °C is loss of coordinated 

ligand and decomposition of the material. 

 

 
 

Figure 5 Comparison of N2 isotherms at 77K for activated MIL-53(Al) prepared by batch 

(black) and continuous flow (red). 

 

 

Table 1 Summary of surface areas and N2 uptake at 77K for MIL-53(Al) produced by 

continuous flow at temperatures between 225 and 300 °C. 

 

Synthesis 

temperature (°C) 

BET surface 

area (m2 g-1) 

Uptake at p/p0 = 

0.95 (cm3 g-1) 

225 459 223.5 

250 919 296.4 

275 804 258.7 

300 566 204.5 
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Figure 6 Photograph of the barrel containing a suspension of MIL-53(Al) formed by 

continuous flow in our scaled-up reaction (centre), together with a commercial sample 

(bottom left) and dried MIL-53(Al) from the barrel (bottom right). A fifty pence piece is 

shown for scale (bottom centre). 

 

 

 
 

Figure 7 Photograph of  a commercial sample of MIL-53(Al) (left), and our scaled-up 

material prepared by continuous flow (right). 
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Figure 7 Comparison of PXRD for as-synthesised HKUST-1 material produced by 

continuous flow reaction at 200 °C (red), and the simulated pattern of HKUST-1 (black). 
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Table of Contents Graphic  

Continuous flow synthesis of MIL-53(Al) can be achieved via 

continuous flow reaction in only 5-6 minutes with a space time yield of 

1300 kg m
-3

 d
-1

. In addition, a new and effective method for the 

extraction of terephthalic acid from within the pores of MIL-53(Al) 

using supercritical ethanol has been developed, representing a new 

methodology for activation and removal of substrates from within 

porous hosts. 
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Supplementary Information 
 

Experimental Details 

 

A typical profile for P and T vs time for batch reactions is shown in Figure S1. 

 

 
Figure S1 Plot of reactor internal temperature (black) and pressure (blue) against time for a 

typical batch reaction for 10 min at 250 °C to form MIL-53(Al). Red dotted line shows target 

reaction temperature. 

 

Flow reactions: A back pressure regulator (BPR, Tescom, model no. 26-1762-24-043) was 

used in the flow systems (Figure 1). For the reactions carried out at 200 °C, 225 °C, 275 °C 

and 300°C  the same conditions as at 250 °C were used except the reactor heater was set to 

these temperatures. All yields are based on the target phase [Al(OH)(L
1
)]n. The crude yield is 

quoted before removal of free H2L
1
 for the pores; the pure yield refers to the overall yield 

after removal of in-pore H2L
1
. The collection of samples at steady state also allows accurate 

determination of the yield, Y, using the equation: 

tMFC

m
Y

LL

  

where m is mass collected, t is time of collection, CL and FL are the molar concentration and 

flow rate of the ligand solution, respectively. M is the molecular weight for 

[Al(OH)(C6H4(CO2)2)]. 

 

scEtOH Extractions: As-synthesised MIL-53(Al) (100 mg) containing H2L
1
 both internally 

in the pores and externally as discrete crystals was loaded into reactor 1. The extraction was 

run for 2 hr with reactor 1 held at 250 °C and reactor 2 cooled with water and with a liquid 
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ethanol flow rate of 0.5 ml min
-1

 and a back pressure of 100 bar. Figure 2 shows a schematic 

of this extraction rig. 

 

Volumetric Gas Adsorption 

N2 isotherms were carried out on a Quantachrome Autosorb-1 (model no. As1-GYTKXL11, 

software ver. 1.61). Samples were degassed overnight, MIL-53(Al) material at 125°C and 

HKUST-1 at 100°C. The BET pressure range for the batch sample was 7.0  10
-3

 to 2.9  

10
-3

 P/P0 and for the continuous process sample 2.5  10
-3

 to 5.3  10
-2

 P/P0, consistent with 

criteria used by Snurr and co-workers.
1,2

 

 

Gravimetric Gas adsorption 

CO2 and CH4 adsorption experiments were carried out using a Hiden Isochema Intelligent 

Gravimetric Analyzer (model no. IGA-003 system) at the University of Nottingham under 

ultra-high vacuum in a clean system with a diaphragm and turbo pumping system. IGASwin 

system software v.1.03.143 (Hiden Isochema, 2004) was used to fit all isotherm data points. 

All changes in sample weight were corrected for buoyancy effects. 

 

PXRD 

X-ray powder diffraction patterns were collected on a Pananalytical X’Pert Pro 

diffractometer operating at 160 W (40 kV, 40 mA) CuKα (λ= 1.5406 Å). High resolution 

powder diffraction data were collected on Beamline I11 at Diamond Light Source using 

multi-analysing-crystal detectors (MACs) and an in situ gas cell system.
3
 

 

TGA 

Thermogravimetric analyses were performed on a Perkin Elmer Thermogravimetric analyzer 

Pyris 1 TGA (model no. R1R151 TGA, software Ver. 11.0.0.0449). A heating rate of 5 °C 

min
-1

 was used from room temperature up to 700 °C. 

 

Infrared (ATR-FTIR) 

Attenuated total reflectance (ATR) Fourier transformed Infrared (FTIR) was used to collect 

IR spectra for MOF samples. The data were collected using a Fisher Thermo Scientific 

Nicolet iS5 with iD5-ZnSe ATR attachment and Ominic (software ver. 8.2.0.387) using 16 

scans with a data spacing of 0.482 cm
-1

 over a range of 600-4000 cm
-1

. 
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MIL-53(Al) 

The phase referred to as MIL-53(Al)op (CDS ref. code SABVUN) and MIL-53(Al)hy (CDS 

ref. code SABWAU) were first reported by Loiseau et al.
4
 The phase referred to as 

MIL-53(Al)ta (CDS ref. code SABVOH01) was reported by Vougo-Zanda et al,
5
 and the 

phase referred to as H2L
1
 (CDS ref. code TEPHTH) was first reported by Bailey and  Brown,

6
 

with the phase referred to as γ-AlO(OH) (ICSD collection code Collection Code 59609) 

reported by Bokhimi et al..
7
 The simulated PXRD patterns were generated using Mercury 

3.1.
8
 

 

 

Figure S2 PXRD pattern of the reaction product MIL-53(Al) prepared by batch reaction at 

150 °C (black), 200 °C (red) and 250 °C (blue) and simulated pattern for H2L
1 
(green). 

 

 

 

Figure S3 PXRD patterns for MIL-53(Al) produced in batch at 250 °C; as-synthesised 

(green), after treatment with scEtOH (pink), and after degassing and rehydration (yellow). 

The rehydrated material can be seen to match MIL-53(Al) hydrate (blue) by comparison with 

the simulated pattern. The small shoulder on the first peak is due to incomplete rehydration. 
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Figure S4 PXRD pattern of MIL-53(Al) after washing with scEtOH. The shift in peak 

positions and absence of peaks from 14-16° confirms that this phase does not match 

previously reported phases, consistent with the formation of MIL-53(Al).xEtOH. MIL-53(Al) 

was produced in batch at 250 °C, before being washed with scEtOH for 2h. 

 

 

 
Figure S5 PXRD pattern of MIL-53(Al) prepared in batch (250 °C), activated with scEtOH, 

degassed, and then and exposed to air (black). The sample matches the MIL-53(Al)hy (red). 

 

Treatment of as-synthesised MIL-53(Al) with scEtOH produced new phases which do not 

match the known phases MIL-53(Al)ta, MIL-53(Al)hy or MIL-53(Al)op phase. Rehydration 

of the material affords MIL-53(Al) hydrate by comparison with the simulated pattern. The 

small shoulder on the first peak (Figure S6) is due to incomplete rehydration. None of the 

MIL-53(Al)ta phase is present after scEtOH treatment confirming that H2L
1
 has been 

removed from the pores. 
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Figure S6 PXRD pattern of MIL-53(Al) prepared in continuousflow, treated with scEtOH, 

degassed and then partially rehydrated upon exposure to air (black).The sample matches the 

phases MIL-53(Al)op (red) and MIL-53(Al)hy (blue), and a minor phase γ-AlO(OH)(green) 

is present. 

 

A Le Bail refinement was performed on PXRD data for the degassed sample of MIL-53(Al) 

produced in batch at 250 °C. The refinement confirms that the bulk material matches with the 

known phase MIL-53(Al)op. 

 

 

 

Figure S7 Le Bail profile fitting of MIL-53(Al) after degassing showing peaks at 2θ =  0-40° 

shown, r_wp = 9.06, r_p = 6.24, gof = 5.53, cell parameters: Imma, V = 1423.87(11), a = 

6.63198(25), b = 16.75117(61), c = 12.81691(69). The material was produced in batch at 

250 °C, treated with scEtOH, and degassed in situ. 
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Figure S8 Le Bail profile fitting of PXRD data for MIL-53(Al) after degassing showing 

higher angle peaks with 2θ =  13-39°. 

 

 

 

 

 

Figure S9 High resolution PXRD pattern (λ = 0.827107 Å) of partially hydrated MIL-53(Al) 

(black), degassed in situ (red) and CO2 loading at 1 bar (blue). The material was produced in 

batch at 250 °C before treatment with scEtOH and drying. The PXRD data confirm that 

MIL-53(Al) exhibits the expected flexibility on degassing and CO2 adsorption. 
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Figure S10 Comparison of PXRD patterns for products isolated from continuous flow 

reactions at 200 °C, 225 °C, 250 °C, 275 °C and 300 °C. PXRD patterns for MIL-53(Al)ta, 

MIL-53(Al)hy, H2L
1
 and AlO(OH) are shown for comparison. 

 

 

In the TGA for [Al(OH)(L
1
) + xH2L

1
]n , the step of 38.5% between 215°C and 440°C is 

attributed to the loss of in-pore H2L
1
 (Figure S11). From this it has been calculated the as-

synthesised product contains 0.8 equivalents of H2L
1
. The step of 39.2% from 540 °C to 

665 °C corresponds to loss of terephthalate linker and structure decomposition of the 

framework to aluminium oxide. For as-synthesised MIL-53(Al) Loiseau et al reported two 

steps in the range of 275-420 °C for the sublimation of H2L
1
 removal and the loss of 0.7 H2L

1
 

equivalents.
3
 Here the additional steps between 200-300 °C may also include direct 

sublimation of amorphous H2L
1
 located outside of the pores. This is plausible since we have 

used a higher H2L
1
:Al ratio in the synthesis of the material. 
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Figure S11 TGA of the as-synthesised batch sample [Al(OH)(L
1
) + 0.8H2L

1
]n (black) with 

derivative plot (blue) showing the rate of change of % weight loss with temperature. 

 

TGA for the as-synthesised MIL-53(Al) from the continuous flow process has a step of 

23.6% between 215 °C and 440 °C attributed to the loss of in-pore H2L
1
 and is divided into 

three steps (Figure S12). From this it has been calculated that the as-synthesised product 

contains 0.41 H2L
1
 equivalents. The step of 36.4% from 500 °C to 690 °C corresponds to loss 

of ligand and structure decomposition of the framework to aluminium oxide. 

 

 
 

Figure S12 TGA under N2 of as-synthesised MIL-53(Al) produced using the continuous flow 

process; the derivative plot (blue) shows the rate of change of % weight loss with 

temperature. 
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Figure S13 TGA under air of as-synthesised MIL-53(Al) produced using the continuous flow 

process; the derivative plot (blue) shows the rate of change of % weight loss with 

temperature. 

 

The TGA for MIL-53(Al) produced in batch at 250 °C after treatment with scEtOH has an 

initial weight loss of 6.0% between 15 °C at 100 °C corresponding to loss of ethanol trapped 

in the pores (Figure S14). The TGA shows a weight loss of only 2.4% in the region of 215 °C 

to 475 °C, confirming that in-pore H2L
1
 has been removed. The second step of 63.6% 

between 500 °C and 700 °C is due to the decomposition of the material. 

 

 
 

Figure S14 TGA of MIL-52(Al) produced in batch after treatment with scEtOH to remove 

uncoordinated H2L
1
 from within the pores. 
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Figure S15 ATR-FTIR of MIL-53(Al) synthesised using HTW at 250 °C via batch (red) and 

continuous flow process (blue) and of H2L
1
 (black) for comparison. 

 

 
 

Figure S16 ATR-FTIR of MIL-53(Al) produced in batch; the as-synthesised (red) and 

partially rehydrated sample (blue). The partially rehydrated sample was first treated with 

scEtOH to remove H2L
1
 from the pores, followed by degassing at 120 °C overnight and then 

partial rehydration on exposure to air. The absence of the peak at 1695 cm
-1

 (uncoordinated) 

confirms that H2L
1
 is no longer present in the pores. The FTIR spectrum of H2L

1
 is shown for 

comparison. 
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Figure S17 CO2 and CH4 isotherms at 10 °C for MIL-53(Al) produced in batch at 250 °C. 

The higher uptake of CO2 indicates selectivity for CO2 over CH4. 

 

 

 
 

Figure S18 N2 isotherms at 77 K for products of continuous flow reactions at 225 °C, 

250 °C, 275 °C and 300 °C. Prior to gas adsorption scEtOH treatment was used to remove 

unreacted H2L
1
. Note that the yield of the reaction at 200 °C was too low to produce 

sufficient material for gas adsorption. 

 

 

Independent measurements of the surface area and uptake of N2 for the material produced by 

scaling up the reaction and for the commercial sample were performed by MCA Services, 

Unit 1A, Long Barn, North End, Meldreth, Cambs, SG8 6NT, UK. The results show our 

scale-up sample had a BET surface area of 1010 m
2
 g

-1
 and the commercial sample 

553 m
2
 g

-1
. 
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Figure S19 N2 isotherm at 77K for our scaled-up sample of MIL-53(Al) and for a 

commercial sample. Uncoordinated H2L
1
 was removed from the scale-up sample by heating 

at 330 °C for 3 days. 

 

 

HKUST-1 

The synthesis of [Cu3(L
2
)2]n, HKUST-1, was achieved using the same procedure as with 

MIL-53(Al) except EtOH was used in place of water. Since both trimesic acid (H3L
2
) and 

Cu(NO3)2 are soluble in EtOH the use of ligand salts was not required. Thus, treatment of 

Cu(NO3)2·3H2O (86.2 mg, 0.357 mmol) with H3L
2
 (50.0 mg, 0.238 mmol) in EtOH (5.0 ml) 

at 200 °C for 10 minutes afforded a material the PXRD of which matches that of HKUST-1 

(Figure S16). No free H3L
2
 was recovered with the material and so a further purification step 

was not necessary. The material produced by continuous process had a surface area of 

1554 m
2
 g

-1
, a maximum nitrogen uptake of 416.9 cm

3
 g

-1
 (0.95 P/P0), and a pore volume of 

0.62 cm
3
 g

-1
. The space time yield of HKUST-1 in this process was 730 kg m

-3
 d

-1
. 

 

Figure S20 N2 gas sorption isotherm of HKUST-1 prepared by continuous flow reaction in 

EtOH at 200 °C. 
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The TGA for as-synthesised HKUST-1 produced by continuous flow exhibits the expected 

thermal behaviour with three steps (Figure S21). The first of 11.4% between 20 and 70 °C is 

the result of loss of EtOH from the pores. The second step of 19.7% between 70 °C and 

220 °C is attributed to the loss of coordinated solvents with a total solvent loss of 31.1%. The 

third step of 30.7% between 295 °C and 450 °C corresponds to decomposition of the 

material. 

 

Figure S21 TGA of as-synthesised HKUST-1 prepared by continuous flow (black); the first 

derivative plot (blue) shows the rate of change of % weight loss with temperature. 

 

 
 

Figure S22 ATR-FTIR of as-synthesised of HKUST-1 via batch (red) and continuous flow 

process (blue) using EtOH at 200 
o
C, and of trimesic acid H3L

2
 (black). 
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