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The mechanical vibrations of magnetically levitated droplets were investigated using a simple optical deflection technique.
Droplets of water and a water-based solution of poly(acrylamide-co-acrylic acid ) were levitated in the bore of a supercon-
ducting magnet and perturbed with a short puff of air. Centre of mass and surface vibrations were monitored using laser light
refracted through the droplet, focussed on to the end of an optical fiber and detected using a photodiode. Time dependent vari-
ations in the voltage generated by the photodiode were Fourier transformed to obtain the frequency and spectral width of the
drops’ mechanical resonances. A simple theory of drop vibration was developed to extract the rheological properties of the
droplets from these quantities. The resulting values of G’ and G” that were extracted were found to be in good agreement with
values obtained using conventional rheology techniques.

1 Introduction

The frequencies and spectral widths of the normal modes of a
Newtonian liquid droplet are well known1,2. However, there
is little experimental data and/or theory describing the oscil-
lations of an isolated viscoelastic droplet. Additives such as
polymers and small particles can have a dramatic effect on
the surface and rheological properties of small liquid droplets.
These can, in turn, influence properties such as the wetting,
spreading and dewetting behaviour of the fluids3–6. They
also have a significant influence on their performance in ap-
plications such as droplet atomisation, ink jet printing, fuel
injection7, microscale mixing/demixing8,9, and during drop
impact and rebound phenomena6. Viscoelastic vibrational
modes may also influence the dynamical properties of atomic
nuclei10, crustal deformation of planets11,12 and energy relax-
ation mechanisms in neutron stars13.

Vibration of small liquid and viscoelastic droplets provides
a potentially attractive route for determining parameters such
as the surface tension and mechanical properties of materials
where sample volumes are limited. Previous studies have suc-
cessfully used isolated drops to extract values for the surface
tension and viscosity of liquid drops. However, little theoret-
ical or experimental work has been performed on viscoelastic
drops14–19.

In this article we demonstrate that the vibrational frequen-
cies and spectral widths of the mechanical oscillations of vis-
coelastic droplets of polymer solutions can be used to extract
values of the frequency-dependent storage and loss moduli
(G′ and G′′ respectively). We also derive a heuristic model
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to describe the vibration of free/levitated viscoelastic droplets
that can be used to extract these quantities. To the best of our
knowledge this study represents the first combined experimen-
tal and theoretical study of the vibration of isolated viscoelas-
tic droplets. As such it represents a significant step forward
in our understanding of the drop vibration phenomenon and
our ability to measure the rheological properties of polymer
solutions where the sample volumes are small (∼ µl to ml).

2 Experimental

Solutions of poly(acrylamide-co-acrylic acid) (PAA, Mw=15
MDa, Sigma, UK) were prepared in deionised water (pro-
duced by an ELGA purifier) and made up to concentrations
of 0, 0.5 and 1 wt% respectively. The overlap concentration
for this polymer20 is ∼ 0.1wt% and as such both of the poly-
mer solutions studied are likely to contain chains that are en-
tangled. Droplets of these solutions were suspended individ-
ually in the bore of a 16 T superconducting solenoid mag-
net (Oxford Instruments) using diamagnetic levitation. In this
technique, a spatially-varying magnetic field exerts an approx-
imately uniform upward body force on a diamagnetic liquid,
strong enough to balance its weight while retaining a spheri-
cal drop shape. The vertical component of the magnetic force
per unit volume is given by F = χ B

µo
∂B
∂ z , where B is the mag-

nitude of the magnetic field, χ is the magnetic volume sus-
ceptibility (which is approximately that of water in our ex-
periments, −9.0×10−6), µo is the permeability of free space
and z is the vertical displacement in the magnet bore. The
droplets of polymer solution levitated at a critical value of
B ∂B

∂ z ≈ 1370T 2m−1. Further details of the technique, includ-
ing the mechanical stability of the levitation, are described in
detail elsewhere21–25.
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Vibrations were excited in the droplets by applying an im-
pulse in the form of a short puff of air which had a duration
of ∼ 1s and a pressure of ∼ 1−10Pa. This was delivered via
a 4mm diameter nozzle inside the magnet bore placed within
∼ 5cm of the droplet. The resulting centre of mass and surface
vibrations caused by the application of the impulse were de-
tected optically: a laser beam was passed through the droplets
and time dependent variations in the scattered laser intensity
were measured using a photodiode connected to a PC via a
National Insturments data acquisition card(see figure 1). The
incident and scattered light were delivered to and collected
from the droplet using optical fibers.

Fig. 1 Diagram of the experimental setup. PAA droplets were
levitated in the bore of a super conducting magnet. A puff of air was
used to vibrate the droplets and vibrations were detected by
measuring temporal changes in the intensity of scattered laser light.

Figure 2 shows an example of a set of results obtained from
a 0.98g droplet of 0.5 wt% PAA in water. The intensity vari-
ations in the top panel show that the droplets experience low
frequency vibrations which correspond to centre of mass os-
cillations and higher frequency vibrations that are associated
with shape changes (surface vibrational modes) in the drops.
The acquisition time used to collect the data was fixed at 5
seconds for all the droplets studied. For longer times, viscous
damping effects reduced the amplitudes of the surface oscilla-
tions below the level that can be distinguished from the noise.

However, it was often necessary to wait for large amplitude
centre of mass oscillations (caused by placing the droplets in
the bore) to die down before the drops were excited with the
impulse and surface vibrations could be detected. As a result
of this, droplets were held in the bore of the magnet for 10-
15 minutes before each experiment. Evaporation losses were
minimised by sealing the ends of the magnet bore during this
period. Estimates of the mass loss during this time were ob-
tained from measurements of the mass of the pipette before
and after placing the drop in the bore and also from the final
mass of the drop (which was obtained by soaking the drops on
to a small piece of paper towel). These measurements indicate
that the mass loss due to evaporation was in the range 2−6%
for the most volatile drops i.e. water.

Fig. 2 Vibrational response of PAA loaded droplets. The top panel
shows a plot of the temporal response of intensity variations
measured using the photodiode for a 0.98g droplet of 0.5 wt% PAA.
The bottom panel shows the vibrational spectrum of the droplet
obtained by Fourier transformation of the data shown in the top
panel. In both panels, features due to centre of mass oscillations and
surface vibrations of the droplets are highlighted. The top panel
inset shows the expected shape of the lowest (n = 2) surface
vibrational mode. The bottom panel inset shows how the frequency,
f , and width, ∆ f , of the mechanical resonances are defined.

Fourier transformation of the photodiode signal shown in
the top panel of figure 2 gives the mechanical vibrational spec-
trum of the droplet (bottom panel). The frequency and spectral
width (hereafter referred to as the width), which we quantify
as the full width at half maximum, were then extracted (see
inset in figure 2 for the definition of these quantities). This
process was repeated for droplets of different size and com-
position. Measurements of the density of the PAA solutions
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were obtained by weighing known volumes of the solutions.
The radius of each droplet was then determined from its mass
and density. Photographs of pendant droplets of the solutions
were used to extract the surface tension of the PAA solutions
using the well known pendant drop technique26 (see inset in
figure 3).

3 Results and Discussion

Figure 3 shows how the frequency and width of the lowest
vibrational peak (n = 2) vary with the droplet radius for water
and a 1 wt% solution of PAA. As anticipated, the frequency
of vibration and width of the vibrational peaks decreases with
increasing drop size. The solid line in the top panel of this
figure shows the predictions of the vibrational frequencies of
the n = 2 mode for liquid water drops. This was obtained
using the equation1

f =

√
n(n−1)(n+2)γ

4π2ρR3 (1)

where ρ and γ are the density and surface tension of the liq-
uid droplet respectively. The data shown in figure 3 is in
excellent agreement with this equation assuming values of
ρ = 1000kgm−3 and γ = 72mJm−2 for water.

Our analysis of the polymer solution droplets is limited to
the study of the two lowest vibrational modes (n= 2 and 3) be-
cause larger viscous damping effects in the droplets for higher
order vibrational modes made it difficult to extract f and ∆ f
values for these peaks.

In the absence of a full theory for the normal mode frequen-
cies of a viscoelastic droplet we adopt a heuristic approach in
relating the rheological properties of the liquid to the mea-
sured vibrational frequencies and widths of the droplet: we
consider the dispersion of capillary waves on the surface of
a semi-infinite viscoelastic medium with surface tension, as
described by Pleiner et. al27,

4π2ρ ( f + i∆ f )2 =
4i( f + i∆ f )(G”( f )− iG′( f ))k2

f
+ γk3.

(2)
where ρ and γ are again the density and surface tension of
the viscoelastic medium, G′ and G” are the frequency depen-
dent shear storage and loss moduli respectively, f and ∆ f are
the frequency and spectral width of the vibrations and k is the
magnitude of the surface wavevector. This last quantity is re-
lated to the wavelength of the surface vibrations, λ , by k = 2π

λ .
The semi-infinite medium assumption is justified here be-

cause the radius of the droplets is typically an order of magni-
tude larger than the observed amplitudes of vibration. For the
range of droplet radii studied (3-9 mm), the amplitudes were
typically observed to be less than 0.3-0.9 mm respectively.

Fig. 3 Radius dependence of droplet vibrational properties. The top
panel shows measured variations in the vibrational frequencies of
droplets extracted for the n = 2 vibrational mode. The bottom panel
shows the corresponding variation in the width of the mechanical
resonances. Data are shown for water (�) and a 1 wt% PAA
solution (⃝) respectively. The solid line in the top panel shows the
predictions of equation 1 for the n = 2 mode of a water droplet 1.
The top panel inset shows a typical photograph of a pendant drop of
a 1 wt% PAA solution used to extract the surface tension. The
diameter of the end of the pipette shown in this image is 0.7 mm and
the white line shows the fit to the drop profile shape obtained using
the method outlined in 26. The bottom panel inset shows the
concentration dependence of the surface tension of PAA solutions
obtained from similar images.
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The magnetogravitational trap in which the droplet levi-
tates, exerts an effective gravitational force on the drop which
acts normal to its surface, giving rise to an effective gravi-
tational acceleration of magnitude geff ∼ 0.01g. Under these
conditions, the capillary length lcap =

√
γ

ρge f f
≈ 2 cm, which

is ∼ 2−10× larger than the radius of the droplets in our exper-
iments. The reduced gravitational contribution to the forces
exerted on the droplets results in a slight increase in the fre-
quencies of the normal modes of vibration24. However, for
the viscoelastic droplets studied here, this correction is small
compared to the experimental uncertainty in the measurement
of the vibration frequency.

The allowed values of the wavevector, k, of surface vibra-
tions at resonance are determined by the requirement that an
integer number of vibrational wavelengths, λ , fit around the
periphery of the droplet. This gives the result that nλ = 2πR,
where n is a mode number and R is the radius of the drop. We
therefore obtain values of k = 2π

λ = n
R for the allowed surface

wavevector magnitudes. Inserting this result into equation 2
and equating real and imaginary parts gives the following ex-
pressions for the storage and loss moduli

G′ =
π2ρ f 2R2

n2

(
1− γn3

4π2ρR3 (∆ f 2 + f 2)

)
(3)

G′′ =
π2ρ f ∆ f R2

n2

(
1+

γn3

4π2ρR3 (∆ f 2 + f 2)

)
(4)

in the limit when a = | ρ( f+i∆ f ) f R2

4π2n2(G”−iG′)
| << 1. Inserting typical

values of G′ ∼ G” ∼ 10Pa, f = 30Hz, ∆ f = 15Hz, n = 2,
R = 3mm, ρ = 1000kgm−3 and γ = 72mJm−2 we obtain a
value of a = 0.004 for the droplets studied here.

In the case of a Newtonian liquid droplet, where G′ = 0,
combining equations 3 and 4 gives an expression for the width
of the resonance, ∆ f = η

πρR2 n2, where the viscosity η = G”
2π f .

This compares favourably with the exact solution for a vis-
cous sphere, ∆ f = η

2πρR2 (n−1)(2n+1), derived by Chan-

drasekhar2. The only discrepancy lies in the dependence of
the width on the mode number n. In the case of the heuristic
model presented here, the width scales as η

ρR2 multiplied by
factors of 4 and 9 for the lowest modes (n = 2 and n = 3).
However, the full solution predicts multiplicative factors of
2.5 and 7 for these two modes. For higher modes (n > 3),
the multiplicative factors predicted by the two theories start to
converge as (n−1)(2n+1)/2 → n2 in the limit of large n.

Reinserting the result for the width into equation 3 gives an
expression for the frequency of vibration of the drops of the
form

f =

√
γn3

4π2ρR3 − ηn2

πρR2 (5)

which has a similar form that predicted for an inviscid liquid
drop (equation 1) with a correction for viscous damping. If we
use a typical value for the viscosity of water η = 1mPas this
function predicts values for the frequency of vibration that are
within 0.04% of those predicted by equation 1. As such, a
plot of this function would be indistinguishable from the plot
of equation 1 shown in figure 3.

For the case of a perfectly elastic sphere with no dissipation,
we would expect surface tension effects to be negligible and
the loss modulus to be zero , i.e. γ = 0 and G” = 0. This
predicts that the width of the resonance, ∆ f , should also be
zero and that the frequency of vibration of the sphere is given

by f = n
πR

√
G′
ρ . This gives a corresponding speed of sound

in the material, c = f λ = 2
√

G′
ρ , which is consistent with the

form of the group velocity of acoustic phonons in elastic solids
(to within a factor of 2)28.

Figure 4 shows plots of G′ and G′′ values that were calcu-
lated using values of f and ∆ f obtained from the droplets. In
addition this plot shows measurements of the surface tension γ
for each solution (see inset) which are used in equations 3 and
4. In each case, the calculated values of G′ and G′′ obtained
from f and ∆ f are plotted against the vibrational frequency
of the droplets f . These data are compared to the results of
shear rheology experiments that were performed on the same
solutions using a Kinexus rheometer (Malvern) operating in
strain control mode (lines in figure 4). The values of G′ and
G′′ measured using the rheometer were collected at fixed strain
amplitudes in the range 1-10 % and no amplitude dependence
was observed. Values of G′ are not given for water in figure 4
because these are extremely small (∼ 10−5 Pa over the range
of frequencies studied) and were difficult to extract in both the
shear rheology and droplet vibration studies.

The quantitative agreement between rheology and drop vi-
bration data demonstrates that our model captures the essen-
tial physics of vibration of isolated viscoelastic droplets. The
scatter in the values obtained for G′ and G” reflects the reso-
lution of the Fourier transform data used to extract f and ∆ f ,
which is fixed by the duration, T , of the temporal signals
(T ∼ 5s). Obtaining the optimum frequency resolution (1/T )
is a trade off between acquiring data over a long enough period
and reducing the contributions of noise from signals that are
obtained from heavily damped droplets. Additional sources of
error relate to the approximations used for the dispersion re-
lation of capillary waves on a flat, semi-infinite medium and
the condition imposed at resonance (see the discussion above).
Curvature of the drop is expected to modify the dispersion re-
lation and to introduce an additional source of uncertainty into
the values obtained for G′ and G”. In addition, the finite size of
the drops will add a correction to this relation which is likely
to be drop size dependent. Moreover, we note that the cor-
rect solution to this problem would involve expansion of the
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Fig. 4 Frequency dependence of the rheological properties of water
and PAA solutions. Data are shown for values of G′ (top panel) and
G′′ (botom panel). The symbols correspond to values obtained from
measurements of vibrational frequencies and widths (see text) of
droplets of water (�), 0.5 wt% PAA solutions (△) and 1.1 wt% PAA
solutions (⃝). The lines show the results of rheology measurements
obtained for the same solutions using a Malvern Kinexus rheometer.

spherical harmonics associated with vibrations of an isolated
viscoelastic sphere. This would correct the small errors asso-
ciated with the incorrect mode number dependence discussed
above, but has proved to be a challenging task and has not
yet been realised. Differences in the near surface rheological
properties of the droplets relative to the bulk could also affect
the values of G′ and G” obtained from the vibration method
used here. Such deviations would be expected to be larger
in drops with higher surface-to-volume ratios i.e. for smaller
drops/higher frequencies.

4 Conclusions

A facile optical detection technique was used to measure
the vibrational frequencies and spectral widths of diamag-
netically levitated water droplets and droplets of water based
poly(acrylamide-co-acrylic acid) solutions. Measurements of
the size dependence of the frequency and width were used in
combination with a heuristic model of viscoelastic drop vi-
bration to extract the frequency dependent rheological prop-
erties of the droplets. In the absence of a complete theory of
viscoelastic droplet vibration, the heuristic approach adopted
here provides a practical alternative for extracting frequency
dependent values of G′ and G”. The simple measurement tech-
nique described above also lends itself to the measurement of
liquid properties (e.g. surface tension, viscosity and viscoelas-
tic properties) in a range of different environments (ambient,
high pressure, ultrahigh vacuum e.g. ionic liquids) and ge-
ometries (e.g. sessile/pendant drops, bubbles, emulsions).
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