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Abstract 18 

FGF21 is an endocrine member of the fibroblast growth factor superfamily that has been shown to 19 

play an important role in the physiological response to nutrient deprivation. Food restriction 20 
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enhances hepatic FGF21 production, which serves to engage an integrated response to energy 21 

deficit. Specifically, elevated FGF21 levels lead to reduced gluconeogenesis and increased hepatic 22 

ketogenesis.  However, circulating FGF21 concentrations also paradoxically rise in states of metabolic 23 

dysfunction such as obesity. Furthermore, multiple peripheral tissues also produce FGF21 in addition 24 

to the liver, raising questions as to its endocrine and paracrine roles in the control of energy 25 

metabolism. The objectives of this study were to measure plasma FGF21 concentrations in the 26 

Siberian hamster, a rodent which undergoes a seasonal cycle of fattening and body weight gain in the 27 

long days (LD) of summer, followed by reduction of appetite and fat catabolism in the short days (SD) 28 

of winter. Groups of adult male hamsters were raised in long days, and then exposed to SD for up to 29 

12 weeks. Chronic exposure of LD animals to SD led to a significant increase in circulating FGF21 30 

concentrations. This elevation of circulating FGF21 was preceded by an increase in liver FGF21 31 

protein production evident as early as 4 weeks of exposure to SD.  FGF21 protein abundance was also 32 

increased significantly in interscapular brown adipose tissue, with a positive correlation between 33 

plasma levels of FGF21 and BAT protein abundance throughout the experimental period.  Epididymal 34 

white adipose tissue and skeletal muscle (gastrocnemius) also produced FGF21, but levels did not 35 

change in response to a change in photoperiod.  In summary, a natural programmed state of fat 36 

catabolism was associated with increased FGF21 production in the liver and BAT, consistent with the 37 

view that FGF21 has a role in adapting hamsters to the hypophagic winter state. 38 

  39 

 40 

 41 

 42 
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Introduction 44 

Fibroblast growth factor 21 (FGF21) was first identified in the liver [Nishimura et al., 2000], and later 45 

studies demonstrated its significant potential to regulate glucose homeostasis and metabolic 46 

function [Kharitonenkov et al., 2005]. Enhanced hepatic FGF21 production occurs during the adaptive 47 

response to starvation [Badman et al., 2007], where it is proposed to function in an autocrine fashion 48 

to regulate hepatic fatty acid breakdown, oxidation and subsequently ketone body production 49 

downstream of the master regulator of the hepatic fasting response, PPARα [Badman et al., 2007; 50 

Inagaki et al., 2007].  In addition, secreted FGF21 may also function in an endocrine manner targeting 51 

the brain to regulate reproductive behavior, appetite and locomotor activity [Owen et al., 2013; 52 

Bookout et al., 2013]. Production of FGF21 has subsequently been detected in multiple systemic 53 

tissues, including pancreas, brown adipose tissue (BAT), skeletal and cardiac muscle [Hondares et al., 54 

2011; Planavila and et.al., 2013; Johnson et al., 2009], and appears to have a variety of additional 55 

physiological functions. For example, cold-exposure increases FGF21 production in BAT 56 

[Chartoumpekis et al., 2011; Hondares et al., 2011] where it stimulates the expression of several 57 

thermogenic genes [Fisher et al., 2012]. It is also reported to induce a BAT-like phenotype in white 58 

adipose tissue [Coskun et al., 2008; Fisher et al., 2012; Adams et al., 2013], a process termed 59 

‘browning’ [Bartelt and Heeren, 2014].   60 

Given the initial identification of enhanced FGF21 production as a protective mechanism 61 

during starvation, it is somewhat surprising that other studies have demonstrated increased FGF21 62 

production in states of positive energy balance, for example in obese humans, and in genetic and 63 

dietary models of obesity in rodents [Fisher et al., 2010; Zhang et al., 2008; Dushay et al., 2010]. Such 64 

observations suggest that FGF21 may have multiple physiological and behavioral actions in addition 65 

to its roles in the adaptation to starvation, glucose homeostasis and cold exposure (Adams and 66 

Kharitonenkov, 2012). However, a recent publication has indicated that FGF21 is partially truncated 67 

in the plasma of human volunteers (Hager et al., 2013), an effect that has previously been reported 68 

to inactivate the protein in vitro (Kharitonenkov et al., 2008), calling into question the relevance of 69 
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circulating FGF21 to pathophysiological and physiological outcomes. New insights into these 70 

functions may be obtained by studying the function of FGF21 in seasonal mammals such as Siberian 71 

hamsters that display natural adaptations synchronized by changes in photoperiod, which stimulate 72 

systemic integrated modulation of energy balance, for example catabolism of abdominal fat depots 73 

resulting in body weight loss, reduced appetite, and increased thermogenic capacity [Warner et al., 74 

2010; Heldmaier et al., 1982]. Our recent studies in this species demonstrated that exogenous 75 

treatment with recombinant FGF21 reduced appetite, increased energy expenditure and promoted 76 

fat oxidation, thus significantly decreased body weight [Murphy et al., 2013].  These effects were 77 

more pronounced in hamsters in the summer long-day (LD) state when the hamsters maintain a high 78 

body weight than in hamsters exposed to short days (SD) that promotes the winter-adaptive state.  79 

This implies that there may be an underlying change in FGF21-sensitivity across the seasonal cycle. 80 

Moreover, we also observed a significant increase in endogenous plasma levels of FGF21 in Siberian 81 

hamsters maintained in SD [Murphy et al., 2013]. However, it is not known which tissues are 82 

responsible for this elevation in plasma FGF21, nor when during the LD to SD transition plasma levels 83 

of FGF21 begin to increase. Since FGF21 appears to play an important role in the adaptive response 84 

to starvation and cold exposure, the primary objective of the present investigation was to determine 85 

the temporal profile of FGF21 levels in the liver, white adipose tissue (WAT), brown adipose tissue 86 

(BAT), skeletal muscle and plasma during the LD to SD transition.   87 

 88 

Materials and methods 89 

Animal housing and experimental design 90 

Adult male animals were obtained from a colony of Siberian hamsters (Phodopus sungorus) 91 

maintained at the University of Nottingham Biomedical Services Unit [Ebling, 1994]. All studies were 92 

carried out in accordance with the UK Animals (Scientific Procedures) Act of 1986 (project licence: PPL 93 
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40/3604) and approved by the University of Nottingham Ethical Review Committee. Hamsters were 94 

group housed and maintained at approximately 21oC and 40% humidity, and were allowed ad libitum 95 

access to water and standard laboratory chow comprising of 19% protein, 45% carbohydrate, 9% fat 96 

(Teklad 2019, Harlan, UK).  Animals were housed from birth in long day conditions (LD) of 16 hours 97 

light: 8 hours dark with lights off at 11:00 GMT.  Groups of hamsters (n=6/group) that were aged 3-4 98 

months at the start of the study were transferred at 4 week intervals to short days (Fig. 1, top), thus 99 

were exposed to 8 hours light: 16 hours dark (SD) with lights off maintained at 11:00 GMT.  24 100 

hamsters were used for the main study such that after 12 weeks groups had been exposed to 0, 4, 8 101 

and 12 weeks of SD (Fig. 1).  Food intake and body weight were recorded every two weeks. After 12 102 

weeks of SD animals were euthanized, blood samples were collected into EDTA tubes on ice by cardiac 103 

puncture under terminal anesthesia, and plasma collected after centrifugation and stored at -80°C 104 

until required for assay.  Samples of liver, interscapular BAT, epididymal WAT, and skeletal muscle 105 

(gastrocnemius) were collected for tissue specific FGF21 analysis. 106 

Hormone measurement  107 

An ELISA kit (Millipore, MA, USA) was used to measure circulating levels of FGF21 (rat/mouse kit 108 

EZRMFGF21-26K) in the plasma samples; the detection limit was 49 pg/mL. All samples were assayed 109 

in duplicate within a single assay. 110 

 111 

Western blotting 112 

Protein extraction  113 

Protein was extracted from the organic phase of the RNA extraction homogenate solution. 1.5ml of 114 

isopropanol per ml of Trizol originally used was added to each sample. Samples were mixed, and left 115 

at room temperature for 10 minutes to allow for protein precipitation. Samples were centrifuged at 116 

12,000g for 10 minutes, 2ml of wash solution was added and samples were mixed on a daisy wheel 117 
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for 20 minutes at room temperature. Samples were centrifuged at 7,500g for 5 minutes at 4°C, then 118 

pellets were vortexed in 2ml of 100% EtOH and left to stand at room temperature for 20 minutes. 119 

Samples were then centrifuged at 7,500g for 5 minutes at 4°C. Protein pellets were then re-dissolved 120 

in 400µl, of protein re-suspension solution and stored at -80°C. Quantification of protein 121 

concentration in the supernatant from liver, white and brown adipose and muscle tissue was 122 

conducted using the Pierce Bovine Serum Albumin (BSA) Protein Assay. 123 

Western blotting 124 

Protein separation was carried out using SDS-PAGE, using 5-20% gradient gels and then transferred 125 

overnight onto a hydrophobic polyvinylidene difluoride (PVDF) membrane (GE Healthcare). 126 

Membranes were then incubated in blocking buffer (e.g., BSA or milk) on a shaker for 1 hour. Primary 127 

antibodies for FGF21 (Eli Lilly) and β-actin (Cell Signalling) were diluted in TBS and blocking buffer (1-128 

5%), applied to membranes that were then incubated overnight at 4°C on a shaker. Following the 129 

incubation period, membranes were incubated with rabbit anti-mouse HRP (Amersham Biosciences, 130 

UK) secondary antibodies at ratio of 1:2000 diluted in TBS-T containing 1-2% blocking buffer, for 1hr 131 

at room temperature. Protein bands were visualised by soaking membranes with either ECL Plus for 5 132 

minutes and exposing membranes to Amersham Hyperfilm ECL (GE Health Care). All immunoreactive 133 

proteins were visualized using ECL plus (Amersham Biosciences, UK) and quantified by densitometry 134 

using the Quantity One 1-D Analysis Software version 4.5 (Bio-Rad Laboratories, Inc., USA).  135 

Statistical analysis 136 

All data analysis was carried out using Prism v5.0 (GraphPad, San Diego, CA). Longitudinal home cage 137 

measures of body weight and food intake were analyzed using a two factor repeated measures model. 138 

Subsequent comparisons of group means at specific time points were made by t-tests using 139 

Bonferroni corrections as appropriate.  Cross-sectional measures were analyzed using a one-factor 140 
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ANOVA, with further comparisons of mean values at different stages of SD vs the LD control group 141 

made using Dunnett’s tests. In all cases p<0.05 was considered statistically significant. 142 

Results 143 

Food intake, body and organ weights 144 

As expected, there was a progressive decrease in body weight when hamsters were transferred from 145 

LD to SD (Fig. 1, middle). Post-hoc analysis revealed that body weight was significantly decreased by 146 

up to 20% in the groups exposed to SD for 8 or 12 weeks (Fig. 2A; effect of photoperiod F=25.84, 147 

p<0.0001).  Daily food intake was decreased by approximately 25% following 12 weeks SD exposure 148 

when compared to that of animals maintained in LD (Fig. 1 bottom; effect of photoperiod F=6.60, 149 

p<0.01).  There was approximately a 50% decrease in mean testis weight in animals maintained in SD 150 

for 12 weeks (Fig. 2B; overall effect of photoperiod, p=0.07, F=2.26). There was a progressive 151 

decrease in fat mass as hamsters were exposed to increasing periods of SD (Fig. 2D). Epididymal 152 

white adipose tissue (WAT) was approximately decreased by 18%, 50% (p<0.0001) and 60% 153 

(p<0.0001) following 4, 8 and 12 weeks of SD exposure respectively when compared to animals 154 

maintained in LD (Fig. 2D; effect of photoperiod, p<0.0001). Throughout the 12-week experimental 155 

period, animals maintained in LD had a summer pelage score of 4. However, following 8 and 12 156 

weeks of SD exposure a winter pelage had begun to develop, as indicated by a decrease in pelage 157 

score (Figure 2C; effect of photoperiod, p<0.0001, F=23.14).  158 

Plasma FGF21 159 

There was a significant increase in plasma FGF21 levels following exposure to SD (Fig. 2E, p<0.05). 160 

Plasma concentrations of FGF21 were increased by 4.5-fold (p<0.05) and 2.9-fold (p<0.05) following 8 161 

and 12 weeks of SD respectively (with no difference between those two time points) when compared 162 

to those of animals maintained in LD.  163 

 164 
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FGF21 abundance in tissues 165 

In order to identify which tissues may be responsible for the increased plasma levels of FGF21 when 166 

exposing Siberian hamsters to SD, we measured protein levels in discrete tissues. In the liver and BAT 167 

there was a progressive increase in FGF21 protein abundance when switching animals from LD to SD 168 

(Fig. 3A). In liver, FGF21 protein content was increased by 1.4 fold relative to LD samples following 4 169 

weeks of SD, and continued to increase by 1.8 and 2.4 fold following 8 and 12 weeks of SD 170 

respectively when compared to that of animals maintained in LD (Fig. 3A; effect of photoperiod, 171 

p<0.01). Similarly, there was a significant increase in FGF21 protein abundance in BAT following 8 (2.7 172 

fold) and 12 (2.1 fold) weeks of SD when compared to that of animals maintained in LD (Fig. 3A; 173 

effect of photoperiod, p<0.01). There was a strong positive correlation between plasma FGF21 levels 174 

and BAT FGF21 protein abundance throughout the 12-week experimental period (r=-0.97 r2=0.94; 175 

p<0.05). There were also high levels of FGF21 detected in skeletal muscle and WAT (Fig. 3B), but no 176 

significant effects of photoperiod on FGF21 protein content expression was observed in these tissues 177 

(Fig. 3B). 178 

Discussion 179 

The primary objective of the present investigation was to determine the effects of short-day 180 

photoperiod on tissue specific protein abundance of FGF21, in order to identify the tissues 181 

responsible for the temporal changes in plasma FGF21 levels induced by photoperiod in a seasonal 182 

model of adiposity. The main findings were a significant increase in plasma levels of FGF21 following 183 

8 and 12 weeks of SD, associated with increased FGF21 protein abundance in liver and BAT. 184 

Characteristic of their natural progression into SD, there was a significant decrease in body weight 185 

and epididymal white adipose tissue throughout the 12-week experimental period in hamsters 186 

transferred to SD when compared to that of animals maintained in LD. These reductions in body 187 

weight and fat mass were associated with a reduction in daily food intake following 8-weeks of SD. 188 

The increased systemic availability of FGF21 appears to be accounted for initially by increased 189 
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hepatic production of FGF21, which was evident by 4 weeks of SD exposure.   Increased production 190 

of FGF21 in BAT may also contribute to the increase in plasma as FGF21 content in this tissue was 191 

significantly increased after 8 weeks exposure to SD.  Two other tissue samples, the epididymal white 192 

fat pad and the gastrocnemius leg muscle also contained substantial amounts of FGF21, but we 193 

found no evidence for photoperiodic regulation of FGF21 content in these tissues, suggesting that 194 

the seasonal increase in FGF21 reflects a tissue-specific mechanism rather that an generic response 195 

associated with decreased appetite and loss of body weight. 196 

The effects of photoperiod on body weight and food intake have been well characterised across a 197 

range on mammalian species and the underlying central mechanisms are well understood [Hanon et 198 

al., 2008; Ebling and Barrett, 2008]. The reduction in body weight and daily food intake that occurs 199 

when switching Siberian hamsters from their LD fat state to that of their SD lean state is primarily 200 

associated with a reduction in hypothalamic thyroid hormone availability [Murphy et al., 2012]. 201 

Hepatic production of FGF21 was increased after just 4 weeks of SD exposure, so it is tempting to 202 

speculate that this response is also centrally mediated. Support for this notion is provided by studies 203 

in rats indicating that hypothalamic thyroid hormone signalling pathways are capable of regulating 204 

hepatic metabolic gene expression and glucose homeostasis via sympathetic out-flow [Klieverik et 205 

al., 2009; Fliers et al., 2010]. Further evidence suggesting interplay between the thyroid hormone 206 

signalling and hepatic production of FGF21 is provided by [Adams et al., 2010] who reported that 207 

peripherally administered thyroid hormone is capable of stimulating the production of FGF21 in a 208 

PPAR dependent manner in the liver of rodents [Adams et al., 2010]. Thus, it may be that in 209 

contrast to peripherally acting thyroid hormone, in the Siberian hamster reduced hypothalamic 210 

thyroid hormone signalling is sufficient to stimulate hepatic FGF21 production. Hepatic FGF21 may 211 

function in an autocrine manner to regulate locally hepatic fatty acid metabolism, but may also 212 

function in an endocrine manner targeting other peripheral and central tissues to facilitate the SD 213 

state. In support of a central mode of action, the starvation-induced increase in circulating FGF21 is 214 

reported to function centrally to suppress reproduction in mice [Owen et al., 2013]. FGF21 has been 215 
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reported to be capable of crossing the blood brain barrier [Hsuchou et al., 2007] and ICV infusion of 216 

FGF21 in obese rats increases energy expenditure and improves insulin sensitivity [Sarruf et al., 217 

2010]. Therefore, it will be important to determine whether enhanced FGF21 production in SD 218 

contributes to the reduction in activity of the hypothalamo-pituitary-gonadal axis in hamsters. 219 

In addition to the increased FGF21 content in liver, there was also a significant increase in the 220 

abundance of FGF21 in BAT following 8 weeks of SD exposure, which may also contribute to the 221 

increased systemic availability of FGF21 in SD. Hamsters were maintained at a constant ambient 222 

temperature in the current study, suggesting that this is an adaptive response in preparation for 223 

anticipated cold-exposure in winter. Studies in rats reveal that BAT also responds directly to 224 

thermogenic activation via the secretion of FGF21 into the circulation, due to adrenergic activation of 225 

the cAMP dependent PKA and p38 MAPK pathway [Hondares et al., 2011]. In line with these data, 226 

noradrenergic activation of β3 receptors is reported to stimulate the expression of several genes 227 

associated with BAT thermogenesis in the Siberian hamster exposed to SD [Demas et al., 2002; 228 

Bowers et al., 2005] .  Bowers et al., [2005] have reported that the SD-induced decrease in whole-229 

body fat mass is partly due to increased sympathetic out-flow to WAT and BAT after 5 and 10 weeks 230 

of SD. Demas et al., [2002] have reported that in response to SD photoperiod there is a significant 231 

upregulation of the mRNA content of several downstream targets of FGF21 including PGC1 and 232 

UCP1. Thus, taken together it seems likely that in response to sympathetic stimulation, BAT increases 233 

the production of FGF21 in order to aid in the regulation of BAT thermogenesis during the LD to SD 234 

transition. Following prolonged exposure to SD (~ 12 weeks) hamsters will enter short daily bouts of 235 

torpor, in order to conserve energy, which are characterised by a reduced physical activity, body 236 

temperature and metabolic rate [Heldmaier et al., 1999], and are dependent on the SD-induced 237 

reduction in hypothalamic thyroid hormone availability [Murphy et al., 2012]. After these brief bouts 238 

of torpor there is a need for hamsters to rapidly increase body temperature via BAT-induced 239 

thermogenesis [Heldmaier and Buchberger, 1985; Cannon and Nedergaard, 2004]. It has recently 240 

been proposed that FGF21 produced by the liver plays a crucial role in the induction of thermogenic 241 
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activity of BAT in ground squirrels following brief periods of torpor [Nelson et al., 2013]. Thus, FGF21 242 

may also function in BAT of the Siberian hamster in an autocrine manner to regulate the production 243 

of heat via BAT-induced thermogenesis following brief bouts of torpor.   244 

 245 

We conclude that increased hepatic and BAT production of FGF21 are likely to underlie the increased 246 

plasma levels of FGF21 in Siberian hamsters exposed to short photoperiods.  In line with previous 247 

observations, the seasonal functions of FGF21 may be both locally in liver to regulate fatty acid 248 

metabolism and in BAT to regulate thermogenesis. Secreted FGF21 could also function centrally 249 

promote short day adaptations in this species, for example the reduction in appetite. 250 
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