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Abstract 

 

Durability is one of the most important properties of an asphalt mixture. A key factor 

affecting the durability of asphalt pavements is moisture damage. Moisture damage is 

generally considered to be the result of two main mechanisms; the loss of adhesion 

between bitumen and aggregate and the loss of cohesion within the mixture. 

Conventional test methods for evaluating moisture damage include tests conducted on 

loose bitumen-coated aggregates and those conducted on compacted asphalt mixtures. 

The former test methods are simpler and less expensive to conduct but are 

qualitative/subjective in nature and do not consider cohesive failure while the latter, 

though more quantitative, are based on bulky mechanical test set-ups and therefore 

require expensive equipment. Both test methods are, however, empirical in nature 

thus requiring extensive experience to interpret/use their results. The rolling bottle test 

(EN 12697-11) for loose aggregate mixtures and the Saturation Ageing Tensile 

Stiffness (SATS) test (EN 12697-45) for compacted asphalt mixtures are two such 

methods, which experience suggests, could clearly discriminate between ‘good’ and 

mailto:james.grenfell@nottingham.ac.uk


 2 

‘poor’ performing mixtures in the laboratory. A more fundamental approach based on 

surface energy (SE) measurements offers promise to better understand moisture 

damage. This paper looks at results from the rolling bottle and the SATS tests in an 

attempt to better understand the underlying processes and mechanisms of moisture 

damage with the help of surface energy measurements on the constituent bitumen and 

aggregates. For this work, a set of bitumens and typical acidic and basic aggregate 

types were selected. Combinations of these materials were assessed using both the 

rolling bottle and SATS tests. The surface energy properties of the binders were 

measured using a Dynamic Contact Angle Analyser and those of the aggregates using 

a Dynamic Vapour Sorption device. From these surface energy measurements it was 

possible to predict the relative performance of both the simple rolling bottle test and 

the more complicated SATS test. Mineralogical composition of the aggregates 

determined using a Mineral Liberation Analyser was used to explain the differences in 

performance of the mixtures considered. 

 

Keywords: Bitumen; Asphalt mixtures; Surface energy; Moisture damage; SATS; 

Rolling Bottle Test, Adhesion, Mineralogical composition. 

 

1. Introduction 

 

The majority of the roads throughout the world are constructed by using asphalt 

mixtures. However, like any other man-made structure, asphalt pavements deteriorate 

with the passage of time.  Moisture damage is considered to be one of the major 

causes of distress in asphalt pavements with almost 2.5 billion pounds being spent 

annually by local authorities in England and Wales for road maintenance and 

rehabilitation works (ALARM, 2006). Although not all damage is caused directly by 

moisture, its presence increases the extent and severity of already existing distresses 

like cracking, potholes and rutting (Miller and Bellinger, 2003). The presence of 

moisture results in the degradation of the mechanical properties of the asphalt 

mixture, i.e. loss of stiffness and mechanical strength, which ultimately leads to the 

failure of the road structure. Moisture damage thus has a great economic impact as it 

causes premature pavement failure and hence results in increased rehabilitation work 

and maintenance costs. 
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Bitumen and aggregates are considered as the main constituents of an asphalt mixture 

and their physical and chemical properties have a direct influence on the performance 

of the mixture. A lack of compatibility between bitumen and aggregate is one of the 

main causes of moisture damage in an asphalt mixture. Moisture damage is normally 

related to the loss of adhesion between bitumen and aggregate and/or loss of cohesion 

within the bitumen (or more realistically the bitumen-filler mastic) in the presence of 

water (Terrel and Al-Swailmi, 1994). Replacement of bitumen film from the 

aggregate surface by water is termed ‘stripping’ (Kandhal et al., 1994), with this 

phenomenon depending largely on the chemical composition of the bitumen and 

aggregates, and their affinity towards each other (Emery and Seddik, 1997). The 

bitumen film is removed from the surface of aggregates in the presence of water 

because of weak adhesive bond between the two (bitumen and aggregate) materials. 

Hence the individual properties of the material, along with the properties of the 

resulting asphalt mixture, largely affect the structural performance of the road 

pavement. 

 

It is important to be able to identify materials and asphalt mixtures that are prone to 

moisture damage. A number of laboratory tests have been developed over the years to 

determine the moisture susceptibility of asphalt mixtures but the majority do not show 

good correlation between the results obtained in the laboratory and the field 

performance of the mixtures (Solaimanian et al., 2003; Birgisson et al. 2005). In most 

of these tests, the moisture sensitivity/damage is simply related to the mechanical 

properties of the bulk asphalt mixture with the physical and chemical properties of the 

individual materials (bitumen and aggregate) not being addressed. These physico-

chemical properties are directly related to the adhesion characteristics of the two 

materials and are responsible for adhesion or debonding between the materials (MS-

24, 2007). Surface energy (or more correctly surface free energy) properties of the 

materials can be used to assess these adhesion characteristics (Bhasin, 2006). Surface 

free energy (SFE) can therefore be considered to truly represent the physico-chemical 

surface characteristics of bitumen and aggregates and has been successfully used as a 

tool for selection of moisture resistant materials (Cheng, 2002). The physico-chemical 

characteristics of bitumen and aggregates, which can be assessed using surface energy 

principles, are believed to be a key factor responsible for the adhesion between the 

two materials.  
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While the surface energy properties of the bitumen and aggregates can be successfully 

used to assess the cohesive and adhesive bond strengths of the two materials, the 

effect of moisture/water on the bond strength of a bitumen-aggregate system can also 

be assessed by using SFE and various thermodynamic calculations (Bhasin et al., 

2006; Cheng et al., 2002a, and Cheng et al., 2002b). The measurement of these 

fundamental material properties related to adhesion and cohesion can be used to 

explain the cause of poor and good moisture performance. However, because of the 

complex nature of asphalt material and the fact that the surface energy properties of 

the material (bitumen and aggregate) can be considerably different to its bulk 

chemistry, the use of SFE and related theories to address moisture damage is not 

straight forward (Kim, 2009). 

 

This paper presents a combination of surface energy testing techniques with 

mechanical moisture sensitivity assessment techniques for identification of 

compatible bitumen-aggregate combinations. A complete characterisation is possible 

once results from SFE measurements and calculations are compared with those of 

standard mechanical tests. Tests like the rolling bottle test (RBT) and the saturated 

ageing tensile stiffness (SATS) test are considered good for the comparative analysis 

of the moisture susceptibility of asphalt mixtures (Airey and Choi, 2006). The RBT 

and SATS techniques have therefore been included to provide a comparison to the 

surface energy results for various bitumen-aggregate combinations. 

 

2. Materials 

 

2.1  Constitutive materials 

 

Four aggregates commonly used in UK asphalt mixtures were chosen for the study. 

The aggregates (two limestones and two granites) were selected based on their 

difference in mineralogy and the fact that they exhibit different moisture damage 

performance (Airey et al., 2007). The mineralogy of the different aggregates was 

studied using a Mineral Liberation Analyser (MLA) in order to understand their 

morphology and to help with the overall analysis of results. 
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MLA comprises a procedure used to identify the mineral phases present in aggregates 

by combining a large specimen chamber automated Scanning Electron Microscope 

(SEM) and multiple Energy Dispersive X-ray detectors with automated quantitative 

mineralogy software. The software controls the SEM hardware to quantitatively 

analyse mineral and material samples. Automated stage control and image acquisition 

allows for rapid and systematic Back Scattered Electron (BSE) imaging and 

subsequent X-ray analysis of thousands of mineral grains and particles. Automatic 

recalibration ensures consistent results. An FEI Quanta 600 SEM with MLA 

capability was used for the mineral phase determination (see Figure 1). Aggregate 

samples were prepared by casting aggregates in resin, followed by polishing of the 

surface. The samples were then carbon coated to make them electron conductive and 

scanned in BSE mode with Electron Dispersive X-ray analysis (EDX) being carried 

out in an array of spots across the particles. The resultant spectra were then used to 

determine mineral phases at specific points in the microstructure which allowed 

mineralogical maps to be generated for each of the aggregate types. 

 

The MLA results for all the aggregates used in this study (Limestone A, B and 

Granite A, B) are presented in Table 1. The results show that the aggregates have 

significantly different mineralogical make-up with Limestone A being made up of 

predominantly (about 97%) calcite. Granite A, on the other hand, is made up of a 

number of different mineral phases with the predominant phase being quartz, but with 

significant quantities of albite and K_feldspar. It is believed that the large proportion 

of the quartz phase has the potential to lead to deleterious moisture properties, due to 

the poor adhesion between quartz and bitumen. However, there is also evidence that a 

high feldspar content can be responsible for interfacial failure between bitumen and 

aggregate surfaces (Horgnies et al., 2011). A typical MLA result shown as an iumage 

obtained from Granite A is shown in Figure 2. 

 

In general, the limestone aggregates, being basic, are believed to perform better in 

practice as well as in moisture sensitivity tests, while the granite aggregates have been 

found to perform poorly in previous moisture sensitivity work (Grenfell et al., 2012). 
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2.2  Asphalt mixture 

 

Twelve combinations of the four aggregates (two limestones and two granites) and 

three bitumens (15, 50 and 100 penetration grades) were included in the study. A 

standard continuously graded 0/32 mm (28 mm) dense bitumen macadam (DBM) 

base material was used with the four aggregate types. The grading curves for 

Limestone A and Granite A, based on the mixture design for the 0/32 mm DBM, are 

shown in Figure 3. All four asphalt mixtures (two limestones and two granites) were 

within the specified grading envelope. 

 

A target binder content of 4% by total mixture mass was selected for all the asphalt 

mixtures and roller compacted slabs (305 mm x 305 mm x 100 mm) were 

manufactured and finally cored and trimmed to produce 100 mm diameter by 60 mm 

high specimens with a target air voids content of between 8 and 10% (typical of field 

cores). Only cores that achieved this target were selected for the SATS test. 

 

3. Testing methodology 

 

3.1  Surface Free Energy 

 

The surface free energy of a material is defined as the energy needed to create a new 

unit surface area of the material in a vacuum condition. The surface energies of 

bitumen and aggregate or a bitumen-aggregate system (asphalt mixture) are mainly 

comprised of an apolar (nonpolar) component and an acid-base component (Fowkes, 

1962; Good and van Oss, 1991 and Good, 1992). Equation 1 is used to describe the 

total surface energy and its components: 

 

ABLW                                             (1) 

 

Where:  = surface energy of bitumen or aggregate (mJ/m2); 

LW = Lifshitz–van der Waals component of the surface energy (mJ/m2); and 

AB = acid-base component of the surface energy (mJ/m2). 
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The Lifshitz-van der Waals force contains at least three components: London 

dispersion forces, Debye induction forces, and Keesom orientation forces (Maugis, 

1999). The acid-base interaction includes all interactions of electron donor (proton 

acceptor) - electron acceptor (proton donor) type bonds including hydrogen bonding. 

To quantitatively predict and treat the acid-base interaction, Good and van Oss (1991) 

postulated a resolution of the acid-base term, AB into a Lewis acidic surface 

parameter and a Lewis basic surface parameter. The relationship among the AB and 

its components is shown in equation 2: 

 

  2AB                                                  (2) 

 

Where: + = Lewis acid component of surface interaction, and 

- = Lewis base component of surface interaction. 

 

3.2  Dynamic Contact Angle (DCA) Tests 

 

Surface energy components of the bitumen were determined indirectly using contact 

angle measurements. A Cahn Model dynamic contact angle analyser (Figure 4) was 

used to measure the contact angles of a set of three carefully selected probe liquids on 

bitumen coated glass slides under dynamic conditions. The probe liquids used 

included water, glycerol and diiodomethane. All the tests were conducted at room 

temperature (23°C ± 2°C) and 50% ± 5% relative humidity. During the test, a clean 

40 mm x 24 mm x 0.45 mm No. 15 microscope glass slide was coated with bitumen 

and hung from the balance of the DCA equipment with the help of a crocodile clip 

(Figure 4). A beaker containing a probe liquid was placed on a movable stage 

positioned under the glass slide. The bottom edge of the slide was kept parallel with 

the surface of the probe liquid. The bitumen-coated glass slide was then immersed up 

to a maximum depth of 5 mm (advancing) and then withdrawn (receding) from the 

liquid by moving the stage up and down, respectively, at a constant speed of 40 

microns/sec while continuously recording the change in mass of the bitumen-coated 

slide with depth of immersion. The measured mass-depth relationships were used to 

estimate the force acting on the bitumen-slide while being immersed or removed from 
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probe liquid and used subsequently to determine the contact angle between bitumen 

and probe liquid. 

 

The contact angle (θ) values are obtained by considering the equilibrium forces acting 

on the bitumen-coated slide while advancing and receding from the probe liquid using 

Eq. 3 (Bhasin, 2006): 

 

 

Lt

airLim

P

gVF







cos        (3) 

 

Where: tP = perimeter of the bitumen coated plate 

 L = total surface energy of the probe liquid 

F = difference between weight of plate in air and partially submerged in 

probe liquid 

imV = volume of solid immersed in the liquid 

L = density of the liquid 

air = air density 

g = gravitational force 

 

To obtain surface energy values for the bitumen, contact angle values for at least three 

probe liquids are measured and applied to the Young-Dupré equation (Eq. 4) for the 

work of adhesion (WSL) between the two materials. Three equations are thus produced 

using the known surface energy components of the three probe liquids (Table 1) for 

the determination of the three surface energy components (
  ,,LW
) of the 

bitumen. 

 

WSL=     LSLS

LW

L

LW

SL  222cos1    (4) 

 

Where subscripts L and S represents liquid and solid respectively, and θ is the contact 

angle. 
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3.3  Dynamic Vapour Sorption (DVS) Test 

 

It is difficult to use the contact angle technique on high surface energy materials like 

aggregates (SFE values generally > 60 mJ/m2) as probe liquids readily spread on high 

energy surfaces and it is difficult to obtain accurate contact angles. Therefore, for this 

study a dynamic vapour sorption system (DVS Advantage 2, Surface Measurement 

Systems, Middlesex, UK) shown in Figure 5 was used to determine sorption 

isotherms for the various aggregates and probe vapour combinations and the results 

used to determine the SFE components of the aggregate. The desired partial vapour 

pressures were varied from 0 to 95% with 5-10% increments (14 steps). 

 

Prior to testing, the aggregates to be tested were first washed with deionised water and 

then dried in an oven to constant mass (up to 16 hours). Aggregate fraction passing 

5mm and retained on 2.36mm was used. The upper limit on aggregate size is dictated 

by the material holding capacity of the sample chamber. The cleaned oven-dried 

aggregate samples (less than 10 g) were again pre-heated in the DVS sample chamber 

at a temperature of 110°C for up to five hour to completely dry the samples before the 

sorption test. 

 

To perform the sorption test, carefully selected probe vapours (octane, ethyl acetate, 

and chloroform) with known SFE components were passed through the aggregate 

sample, under controlled temperature and partial vapour pressure conditions, with the 

aid of an inert carrier gas (nitrogen). The probes that were chosen for the aggregate 

testing had relatively low surface tension values as compared to the ones that are used 

for testing the bitumen to aid the ability to achieve a uniform adsorption/monolayer of 

the probe on the aggregate surface. Due to the surface characteristics of the aggregate, 

vapour probes get adsorbed on their surfaces which results in an increase in the mass 

of the aggregate sample that is then measured using a sensitive balance. 

 

During the test, the aggregate material was exposed to different concentrations/vapour 

pressures of the probe liquids (shown in Figure 6) and the increase in mass of the 

aggregates because of adsorption of the probe vapours on the aggregate surface was 

measured. All the tests were performed at a temperature of 25°C. The change in mass 

of an aggregate sample was plotted against the increasing partial vapour pressure 
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values to generate sorption isotherms which were used to estimate specific surface 

area and spreading equilibrium pressures of the aggregates.  

 

3.3.1 Specific surface area 

 

A typical obtained adsorption isotherm is shown in Figure 7 for Limestone A 

aggregate with octane probe vapour for partial vapour pressures (concentrations) 

ranging from 0 to 95%. Similar isotherms were obtained for the other aggregates. 

From Figure 7, it can be seen that the plot of adsorbed mass versus partial vapour 

pressures for Limestone A shows characteristics typical of Type II isotherms (Erbil, 

2006). This suggests that the BET model can be used to fit the sorption isotherms (up 

to 35% partial vapour pressure) using the Langmuir approach (Eq. 5) as shown in 

Figure 8, where a plot of P/(P0-P)n against P/P0 gives a straight line from which the 

BET constant (c) and the specific amount of vapour adsorbed on the surface of 

aggregate (nm), can be obtained. The results were used to estimate the specific surface 

area of the aggregates using Eq. 6 (Shaw, 1991 and Sing, 1969).  

 

cnP

P

cn

c

PPn

P

mm

11

)( 00










 



       (5) 

 

Where: P = partial vapour pressure, Pa 

P0 = saturated vapour pressure of solvent, Pa 

n = specific amount adsorbed on the surface of the absorbent, mg; and 

c = BET constant (parameter theoretically related to the net molar enthalpy of 

the adsorption) 

 











M

Nn
SSA om         (6) 

Where: SSA = specific surface area of solid, m2 

nm = monolayer specific amount of vapour adsorbed on the aggregate surface, 

mg 

N0 = Avogadro’s number, 6.022 x 1023 mol-1 

M = molecular weight of the vapour, g/mol 
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 = projected or cross-sectional area of the vapour single molecule, m2 

 

3.3.2 Spreading Pressure 

 

In addition to estimating the specific surface as previously described, the sorption 

isotherms were also used to calculate the spreading pressure which is required to 

determine surface energy components of the aggregates. Adsorption of vapour 

molecules on the aggregate surface reduces its SFE, so spreading pressure, as a result 

of adsorption of the vapour molecules, can be expressed as: 

 

SVSe            (7) 

 

Where: e = spreading pressure at maximum saturated vapour pressure or equilibrium 

spreading pressure, mJ/m2 

 S = aggregate surface energy in vacuum 

 SV = aggregate surface energy after exposure to vapour 

 

Spreading pressure at maximum saturation vapour pressure, e  for each solvent, is 

calculated by using the following Gibbs free energy model (Eq. 8): 

 

dP
P

n

A

RT
Po

e 
0

         (8) 

 

Where:  R = universal gas constant, 83.14 cm3 bar/mol.K 

 T = absolute temperature, K 

 

By introducing spreading pressure, e , in the Young-Dupre relation (Eq. 4), the 

following relationship is obtained: 

 

  cos1 LVeSLW        (9) 
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The contact angle value for high energy solids such as aggregates is zero, therefore, 

Eq. 9 can be re-written as: 

 

LVeSLW  2         (10) 

 

By substituting the above relation in Eq. 4, the following equation is obtained: 

 

  LSLS

LW

L

LW

SeL  2222      (11) 

 

From Eq. 11, if the spreading pressures from three different probe vapours are 

measured, then the three surface energy components of the aggregates ( LW

S , 

S , 

S ) 

can be determined by solving three simultaneous equations. 

 

The surface energy properties of the bitumen and the aggregates on their own have 

very little significance. However, when combined thermodynamically, they are 

helpful for estimating the interfacial work of adhesion between the two materials, with 

or without the presence of moisture. 

 

3.4  Dry and wet work of adhesion 

 

The main objective for measuring surface energy of bitumen and aggregates is to be 

able to estimate the moisture sensitivity of asphalt mixtures using the principles of 

thermodynamics and physical adhesion. This objective was accomplished by using the 

surface energy properties of the aggregate and bitumen to calculate their interfacial 

work of adhesion (dry bond strength) and the reduction in free energy of the system 

(work of debonding) when water displaces bitumen from the aggregate-bitumen 

interface (Eqs 12 and 13). For an asphalt mixture to be durable and less sensitive to 

moisture, it is desirable that the work of adhesion between the bitumen and the 

aggregate be as high as possible.  

 

In addition to the two parameters: dry bond strength and work of debonding, a third 

parameter, the cohesion of bitumen, can be calculated from the surface energy 

properties of bitumen. These three bond energy parameters (bitumen cohesion, dry 
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bond strength, and work of debonding) can then be used to assess the moisture 

sensitivity of an asphalt mixture. Bitumen cohesion is the cohesive bond strength of 

the material and is estimated as twice the total surface energy of the material. Dry 

bond strength (
a

BAW ) is defined as given in Eq. 12 as the interfacial work of adhesion 

between the bitumen (B) and aggregate (A). A bigger value of dry bond strength 

suggests greater adhesion between the two materials and hence more resistance 

against debonding.  

 

  ABAB

LW

A

LW

B

a

BAW  222      (12) 

 

Eq. 13 gives the work of debonding ( a

BWAW ) which is considered as the reduction in 

bond strength of a bitumen-aggregate system when water (W) is introduced into the 

system or when water displaces the bitumen from the aggregate surface. A smaller 

value of this parameter for a given bitumen-aggregate system is indicative of a better 

moisture damage performance of that system. 
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2

05.505.5267.4
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2

2
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   (13)

 

 

3.5  Bitumen-aggregate bond energy parameters 

 

The ratio (ER1) between the adhesive bond energy values in the dry condition (
a

BAW ) 

and in the presence of water ( a

BWAW ) can be used to predict the moisture sensitivity of 

asphalt mixtures. A higher value of energy ratio indicates better resistance to moisture 

damage for that bitumen-aggregate combination. Bhasin et al. (2006) used energy 

ratio ER1 to study different types of asphalt mixtures and concluded that mixtures with 

a ratio higher than 1.5 were more moisture resistant than the ones with ratios lower 

than 0.8. 
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a

BWA

a

BA

W

W
ER 1

        

 (14) 

 

Aggregates with higher surface roughness and greater surface area are supposed to 

bond better with bitumen by providing more bond area and better interlocking. In 

order to accommodate this effect, a second bond energy parameter (ER1*SSA) 

obtained by multiplying the bond energy ratio (ER1) with specific surface area (SSA) 

has been proposed in addition to ER1 to predict moisture sensitivity of asphalt 

mixtures.  

 

Wetting/coating of an aggregate with bitumen is not only affected by the surface 

properties of the two materials; the viscosity or cohesion of the bitumen itself also 

plays a very important role. Bitumen with lesser cohesion and greater affinity for the 

aggregates will have a higher wettability and will coat the aggregate surface more 

than bitumen having lesser wettability characteristics. However, softer bitumen 

having lesser cohesion may be more prone to emulsification (decrease in cohesion) in 

the presence of water. The effects of cohesion and wettability on moisture resistance 

can be accounted for by modifying the ER1 parameter by replacing the bond strength 

in the dry condition (
a

BAW ) with a wettability relationship ( BB

a

BA WW  ). This new 

moisture sensitivity assessment parameter (ER2) is given by Eq. 15. In order to 

accommodate the effects of aggregate micro-texture on the bitumen-aggregate bond 

strength in the presence of moisture, the bond parameter ER2 can be multiplied by 

specific surface area of the aggregates to obtain a fourth bond energy parameter 

(ER2*SSA). 

 

a

BWA

BB

a

BA

W

WW
ER


2

        (15) 

 

Where (
a

BAW ) and ( BBW ) represent bitumen-aggregate dry bond strength and bitumen 

cohesion respectively. 

 

These four bitumen-aggregate bond energy parameters (ER1, ER1xSSA, ER2 and 

ER2xSSA) were used to assess the moisture susceptibility of the asphalt mixtures. In 
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all cases, higher energy ratios are associated with mixtures with better moisture 

resistance. 

 

3.6  Rolling Bottle Test 

 

The rolling bottle test (RBT) was conducted in accordance with EN 12697-11 

(Bituminous mixtures - Test methods for hot mix asphalt Part 11 - Determination of 

the affinity between aggregate and bitumen).  Dust-free aggregate (passing 5 mm and 

retained on 2.36 mm sieve) samples weighing 170 g were dried in an oven at 105±5°C 

overnight to constant mass and then coated with 5.7 g of molten bitumen.  Mixing of 

the aggregates with bitumen was conducted at 120±5°C.  The aggregate-bitumen 

mixture was then cooled loose at room temperature.  The loose mixture was stored at 

ambient temperature for 12 to 64 hours before testing.  Each of the test bottles were 

filled to about half their volume with deionized water and about 150 g of the loose 

aggregate-mixture was placed in each bottle.  The whole assembly was put in the 

bottle roller rotating at a speed of 60 rotations per minute for six hours.   

 

At the end of the test, the degree of bitumen coverage of the aggregate particles were 

estimated by visual observation and recorded to the nearest 5%.  The procedure (i.e. 

rotation in the bottle roller and measuring of bitumen coverage) is repeated for three 

more cycles (24 hours, 48 hours, and 72 hours) with fresh water replacing the fouled 

water in the test bottle at the end of each cycle and the degree of bitumen coverage 

being measured.   

 

3.7 Saturation Ageing Tensile Stiffness (SATS) Test  

 

The saturation ageing tensile stiffness (SATS) test is the first procedure of its kind 

that combines the ageing and water damage mechanisms to which an asphalt 

pavement is subjected in service within a single laboratory test. The test has been 

found to successfully reproduce the loss in stiffness observed with high modulus 

asphalt material in the field (Collop et al. 2004a), and to distinguish between poor 

performing material and alternative mixtures incorporating aggregate with good 

durability track records, when manufactured at 4% binder content and 8% air voids 

(Choi et al, 2002, Airey et al. 2003, Collop et al. 2004b and Choi, 2005). It has also 
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been shown that the SATS test is able to rank asphalt mixtures in terms of moisture 

sensitivity, in the same order as the AASHTO T283 procedure (Anon, 2000), although 

the relative performance of a mixture containing a moisture sensitive aggregate was 

significantly lower in the SATS test (Airey et al., 2006). 

 

The standard SATS procedure involves conditioning five pre-saturated specimens 

simultaneously in a pressure vessel under 2.1 MPa air pressure at a temperature of 85 

ºC for a period of 65 hours.  This conditioning is followed by a cooling period of 24 

hours before the air pressure is released and the vessel opened to remove the 

specimens for stiffness testing. This procedure is applicable for asphalt mixture 

specimens made with 15 pen bitumen with a modified SATS protocol being used to 

test asphalt mixtures with softer 50 pen and 100 pen binders (Grenfell et al., 2012). 

 

4. Results 

 

4.1  DCA Tests 

 

Results of the DCA contact angle measurements for the three bitumens and three 

probe liquids are presented in Figure 9.  From Figure 9, it can be seen that water 

exhibited the largest contact angle values (93.0-95.1°) with the bitumen followed by 

glycerol (80.2-84.2°) and then diiodomethane (58.3-68.9°). The higher the contact 

angle between a solid and a liquid, the lower the potential for the two to adhere to 

each other. In general contact angles above 70° suggest hydrophobic tendencies, 

therefore, the results appear to support the hydrophobic nature of bitumen.  

 

The contact angle values were used to estimate surface energy components as 

previously discussed. The resulting surface energy components for the three bitumens 

are presented in Table 2. As expected, the softer 100 pen bitumen exhibited 

comparatively lower total surface energy (19.1 mJ/m2) with the results for the 50 pen 

and 15 pen bitumen being very similar. 
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4.2  DVS tests 

 

For the four aggregates, only fractions passing the 5 mm sieve and retained on the 

2.36 mm sieve were tested and reported in this paper.  The results were used to 

estimate specific surface area (SSA) and equilibrium pressure from which the surface 

energy parameters were calculated. 

 

4.2.1 Specific surface area 

 

Specific surface area obtained for the four aggregates are presented in Table 3 using 

octane as the probe vapour. Specific surface area for the various aggregates showed 

large differences depending on aggregate type. The differences can be attributed to the 

different microstructure of the aggregates. The specific surface area obtained for each 

aggregate was used in two different ways: 1) to determine the equilibrium spreading 

pressure and 2) to calculate the moisture compatibility ratios. 

 

4.2.2 Equilibrium spreading pressure 

 

The SSA values were used to calculate the equilibrium spreading pressures on the 

aggregate surfaces for all three probes. Octane, being non-polar in nature, is supposed 

to give more accurate values of surface area (because non-polar substances do not 

have affinity for polar substances). The obtained spreading pressures are provided in 

Table 4. 

 

4.2.3 Surface energy components 

 

Computed surface energy components ( LW

S , 

S , 

S ) as well as the total surface 

energy ( T

S ) for the aggregates are provided in Table 5. The results show that surface 

energy properties vary considerably, in terms of surface energy components as well as 

total surface energy, amongst the different aggregates. The differences can be 

attributed to different elemental and mineralogical compositions of the aggregates. 

The test results indicate that there is not a big difference between the van der Waals 
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components of the aggregates though Limestone A has a value (75.2 mJ/m2) that is 

slightly higher than the SE (67.8 mJ/m2) for Granite A. 

 

Differences were seen when the total surface energy of the four aggregates (a measure 

of adhesive potential of a material) are compared. On the basis of total surface energy 

alone, and for the same bitumen, Granite A (γT = 353.5 mJ/m2) should theoretically 

form stronger adhesive bond than Limestone A (γT = 222.7 mJ/m2). Note that this 

assertion assumes a completely dry aggregate. 

 

4.3  Dry and wet work of adhesion 

 

Work of adhesion results for the various aggregate-bitumen combinations are 

presented in Table 6. The results show both the influence of the different aggregates 

and bitumen on work of adhesion.  Work of debonding values for the aggregate-

bitumen combinations are presented in Table 7. In addition to the work of adhesion, 

the greater the magnitude of work of debonding when water displaces bitumen from 

the aggregate-bitumen interface, the greater will be the thermodynamic potential that 

drives moisture damage. The results show that for a given aggregate, work of 

debonding increases (in magnitude) for softer bitumen compared to harder (stiffer) 

binders. Similarly the effect of aggregate on work of debonding increases as one 

moves from limestone to granite. 

 

4.4  Aggregate-bitumen bond energy parameters related to moisture damage 

 

Table 8 shows the aggregate-bitumen bond energy parameters (ER1, ER2, ER1*SSA 

and ER2*SSA) for the asphalt mixtures. These four bond energy parameters can be 

used to predict moisture sensitivity of asphalt mixtures using threshold values defined 

to separate ‘good’ from ‘poor’ moisture damage performing aggregate-bitumen 

combinations. The threshold limits are 0.75 for ER1, 0.50 for ER2, 0.50 for ER1*SSA 

and 0.35 for ER2*SSA (Bhasin, 2006; Bhasin et al., 2006). 

 

The aggregate-bitumen combinations that are classified as ‘poor’ based on these 

threshold limits are shown in bold and underlined in Table 9. The results show that 

the ranking of the ‘good’ versus ‘poor’ moisture damage performing aggregate-
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bitumen combinations for ER1 and ER2 are quite similar; both parameters placing the 

same number of combinations in ‘good’ versus ‘poor’ categories.  The results for the 

other two parameters, ER1*SSA and ER2*SSA, are also similar but the later placed 

slightly more mixtures in the ‘poor’ category. The results suggest, for the materials 

considered, that ER1 and ER2 are sensitive to binder cohesion as the softer 100 pen 

bitumen showed lower ratios irrespective of the aggregate type.  

 

Compared to the ER1 and ER2 parameters, the results for ER1*SSA and ER2*SSA 

show the significant influence of SSA on the selection of ‘good’ versus ‘poor’ 

moisture damage performing aggregate-bitumen combinations. Because of the 

apparent large influence of SSA on moisture sensitivity of asphalt mixtures shown in 

Table 8, the bond parameters ER1*SSA and ER2*SSA appear to be more suitable 

indices for determining the performance of the different aggregate-bitumen 

combinations with a clear distinction in terms of ‘good’ and ‘poor’ aggregates. Most 

of the granite-bitumen combinations were identified as ‘poor’ aggregates which is in 

agreement with past field experience with these aggregates.  

 

4.5  RBT tests 

 

In the RBT method, the degree of bitumen coverage of the coated aggregate particles 

was assessed after 6 hours, 24 hours, 48 hours, and 72 hours of conditioning in a 

bottle roller. Sample results for two aggregates (Limestone A and Granite A) coated 

with 50 pen bitumen are presented in Figure 10. Similar results were obtained for all 

the aggregate-bitumen combinations. From Figure 10, it could be seen that the 

percentage of bitumen coverage decreased slowly with testing time for Limestone A, 

while on the contrary, percentages for Granite A reduced sharply during the test 

period. For instance, during the first six hours, Limestone A showed only a 2% binder 

loss while Granite A showed about 20% loss. In addition, the percentage of binder 

loss for granite at 6 hours is equal to that for the limestone aggregate at 72 hours. The 

RBT results in Figure 10 ranking the limestone aggregate as better than the granite is 

in agreement with both the surface energy results presented in Table 8 and the 

observed field performance of these aggregates. 
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4.6  SATS tests 

 

SATS tests were carried out using the modified SATS protocol (Grenfell et al., 2012) 

on both the limestone and the granite aggregates in the form of 0/32 mm dense 

roadbase mixtures using the same 50 pen bitumen. Results from the SATS tests can be 

seen in Figure 11, which demonstrates the superior moisture resistance of the mixture 

made with the limestone aggregate. It can be seen that the retained stiffness for the 

limestone mixture specimens is in excess of 0.8, whereas for the granite mixture, the 

retained stiffness ranges from 0.2 to 0.5. It is generally accepted that if a retained 

stiffness of less than 0.6 is achieved that a mixture is considered moisture susceptible. 

This suggests the granite mixtures are more moisture sensitive than the limestone 

mixtures. 

 

5. Discussion 

 

As previously indicated, the key objective of this study was to determine if the 

moisture sensitivity assessment parameters for different bitumen-aggregate 

combinations obtained by using surface energy parameters of the individual materials 

can identify ‘good’ and ‘poor’ performing asphalt mixtures and to determine how the 

surface energy-based prediction compare with two standard asphalt mixture tests 

(RBT and SATS). Figure 12 shows a plot depicting the relationships between SATS 

retained stiffness and the bond energy parameter ER1 compare with the RBT percent 

bitumen coverage. In all cases a higher value of the parameter suggests better 

resistance to moisture damage. On this basis, aggregate-bitumen combinations 

plotting near the upper right hand side of the plot (equivalent to higher values of ER1, 

RBT coverage and/or SATS retained stiffness) are expected to be more moisture 

resistant than mixtures plotting in the lower left hand side. The results show that 

limestone mixtures should be expected to perform better than granite mixtures. The 

results also illustrate the close agreement between the three techniques for evaluating 

moisture sensitivity. 

 

The ‘good’ performance of most of the limestone mixtures observed in this study 

could be attributed to several physico-chemical and mineralogical characteristics of 

the aggregates used. Analysis of the sorption isotherms indicated differences in 
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surface energy characteristics of the aggregates. The effect of physico-chemical 

characteristics of the aggregates is manifested in the sensitivity of the bond energy 

parameters presented in Table 8.  

 

Results of mineralogical characterisation of the aggregates determined using an MLA 

on samples of both the limestone and the granite aggregates are presented in Table 1. 

The differences in moisture sensitivity seen in the aggregates can be attributed in part 

to the mineralogical characteristics of the aggregates. 

 

6. Conclusions  

 

This paper presents results from the RBT and SATS tests in an attempt to better 

understand the underlying processes and mechanisms of moisture damage with the 

help of surface energy measurements on the constituent materials (bitumen and 

aggregates) and aggregate morphology from MLA measurements. The following 

conclusions were reached based on the results presented in the paper. 

 

 Surface energy parameters obtained from the DCA testing suggests cohesive 

strength varies with bitumen grade. Surface energy of the softest bitumen 

tested (100 pen) was about 60% that of the stiffer bitumens (15 pen and 50 

pen). 

 The adhesive bond strengths for both the dry and the wet conditions were used 

to compute four compatibility ratios using the surface energy parameters 

obtained for the bitumen and aggregates. Higher magnitudes of the ratios 

suggest better resistance to moisture damage. The results show that for a given 

aggregate, moisture resistance of stiffer binders is higher than softer binders. 

The results also show that for a given bitumen grade, and for the aggregates 

considered in this study, the limestone aggregate mixtures should exhibit 

higher resistance (higher ratios) to moisture damage.  

 The four aggregate-bitumen bond energy parameters (ER1, ER2, ER1*SSA and 

ER2*SSA) can be used to predict moisture sensitivity of asphalt mixtures 

using threshold values (0.75 for ER1, 0.50 for ER2, 0.50 for ER1*SSA and 0.35 

for ER2*SSA ) defined to separate ‘good’ from ‘poor’ moisture damage 

performing aggregate-bitumen combinations. Most of the aggregates that were 
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identified as ‘poor’ aggregates in this study have also been found to perform 

poorly in previous studies. 

 Compared to the ER1 and ER2 parameters, the results for ER1*SSA and 

ER2*SSA showed the significant influence of SSA on the selection of ‘good’ 

versus ‘poor’ moisture damage performing aggregate-bitumen combinations. 

Because of the apparent large influence of SSA on moisture sensitivity of 

asphalt mixtures shown in this study, the bond parameters ER1*SSA and 

ER2*SSA appear to be more suitable indices for determining the performance 

of the different aggregate-bitumen combinations with a clear distinction in 

terms of ‘good’ and ‘poor’ aggregates. 

 Results from the RBT showed that the percentage of bitumen coverage (a 

measure of adhesiveness) varies depending on aggregate type. About 90% of 

the limestone aggregate remained coated with bitumen at the end of the rolling 

bottle test compared with only 20% for the granite aggregate. This suggests 

that in the presence of moisture, limestone aggregate maintains a better 

adhesive bond with bitumen than granite aggregate which agrees with the 

surface energy ranking of the mixtures. 

 Moisture damage factors (moisture factors) obtained from the SATS tests for 

limestone aggregate asphalt mixtures were comparatively higher than that for 

granite mixtures. Higher moisture factors indicate better moisture resistance. 

Thus the SATS test results appear to be in agreement with the RBT as well as 

the surface energy parameters.  

 Mineralogical testing of the aggregates, using MLA, showed that Limestone A 

is composed predominantly (97%) of calcite with trace amounts of quartz 

(0.5%) while the dominant mineral phases in Granite A consisted of quartz 

(33%), albite (28%), and feldspar (17%). Therefore, the differences in 

moisture sensitivity of the mixtures observed in this study for the different 

aggregates can be attributed in part to aggregate mineralogy.  

 It is concluded that moisture resistance of asphalt mixtures are influenced by 

the mineralogical composition of the aggregates as well as the adhesive bond 

between the aggregate and bitumen in the presence of moisture. Both the RBT 

and SATS are useful in evaluating moisture damage in asphalt mixtures as the 
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ranking obtained in these empirical tests are similar to surface energy and 

mineralogical characteristics of the asphalt mixtures. 

 The research undertaken in the paper has contributed towards a better 

understanding of the moisture susceptibility of asphalt mixtures. The surface 

energy testing protocols and adhesive bond strength calculations can be used 

to compliment available asphalt mixture design methods by identifying 

compatible bitumen-aggregate combinations. Surface energy properties of the 

materials combined with the parameters obtained by conventional moisture 

sensitivity assessment techniques can also contribute towards the development 

of a material screening protocol for determining the best combinations of 

bitumen and aggregates for the local road material providing better bitumen-

aggregate adhesion and less susceptibility to moisture damage/stripping. 
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Table 1. Mineral composition of aggregates obtained using MLA. 

Mineral name 

Granite A Granite B 

Quartz 33.17 15.86 

Albite 28.30 32.73 

K-feldspar 16.93 9.64 

Chlorite 11.90 13.52 

Muscovite 4.58 3.43 

Other 1.19 1.91 

Epidote 1.06 1.37 

Biotite 1.00 0.34 

Anorthite 0.82 18.54 

Calcite 0.78 0.08 

Hornblende 0.27 2.57 

  Limestone A Limestone B 

Calcite 96.98 98.94 

Dolomite 1.30 0.00 

Clay 0.93 0.37 

Quartz 0.49 0.55 

Other 0.30 0.13 

K-feldspar = potassium-dominant feldspar 

 

 

Table 2.  Surface energy components of bitumen 

Bitumen 

Surface Energy Components (mJ/m2) 

γLW γ+ γ- γAB γT 

15pen 31.1 0.01 3.37 0.37 31.4 

50pen 30.6 0.00 2.40 0.00 30.6 

100pen 19.1 0.00 0.78 0.00 19.1 

 

 

Table 3.  Specific surface area (m2/g) of aggregates. SSA was obtained using octane probe liquids. 

Aggregate 
SSA (m2/g) 

Limestone A 0.79 

Limestone B 0.17 

Granite A 0.38 

Granite B 0.44 

 

 

Table 4.  Equilibrium spreading pressure (mJ/m2) of aggregates 

Aggregate Probe liquid 

Octane Ethyl Acetate Chloroform 

Limestone A 37.5 128.5 63.6 

Limestone B 32.5 46.6 39.2 

Granite A 33.6 68.5 56.7 

Granite B 33.4 145.0 74.8 
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Table 5.  Surface Energy Characteristics of Aggregates 

Aggregate Surface energy components 

(mJ/m2) 

Total surface 

energy (mJ/m2) 

γLW γ+ γ- γT 

Limestone A 75.2 109.0 49.9 222.7 

Limestone B 66.1 2.9 5.0 73.8 

Granite A 67.8 164.0 123.0 352.5 

Granite B 68.1 16.5 41.2 120.2 

 

 
Table 6.   Work of adhesion (mJ/m2) between bitumen and aggregates 

Bitumen Limestone A Limestone B Granite A Granite B 

15 pen 136 97 141 141 

50 pen 128 95 131 133 

100 pen 94 74 95 98 

 

 
Table 7.   Work of debonding (mJ/m2) in the presence of water 

Bitumen Limestone A Limestone B Granite A Granite B 

15 pen -47 56 -103 -42 

50 pen -51 58 -109 -46 

100 pen -68 54 -127 -64 

 
 

Table 8.   Bond energy parameters (compatibility ratios) for aggregate-bitumen combinations. The 

aggregate-bitumen combinations that are classified as ‘poor’ are shown in bold and underlined. 

ER1 

Bitumen Limestone A Limestone B Granite A Granite B 

15 pen 2.89 1.75 1.37 3.41 

50 pen 2.52 1.64 1.20 2.93 

100 pen 1.39 1.36 0.70 1.54 

ER2 

15 pen 1.56 0.61 0.76 1.86 

50 pen 1.31 0.58 0.64 1.56 

100 pen 0.82 0.66 0.44 0.94 

ER1*SSA 

15 pen 0.49 1.38 0.61 0.36 

50 pen 0.43 1.29 0.53 0.31 

100 pen 0.24 1.07 0.33 0.16 

ER2*SSA 

15 pen 0.27 0.48 0.34 0.20 

50 pen 0.22 0.46 0.28 0.16 

100 pen 0.14 0.52 0.19 0.10 
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Figure 1. FEI Quanta 600 Scanning Electron Microscope (SEM) with Mineralogical Liberation 

Analyser (MLA).
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Figure 2. MLA analysis of Granite A aggregate. 

 

 

 

Figure 3. Gradation curves for aggregates Limestone A and Granite A for a 28mm DBM asphalt 

mixture. 
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Figure 4. Dynamic contact angle analyser test set-up. A bitumen-coated glass slide hangs (via 

crocodile clip) from a micro-balance. A movable stage positioned directly below the bitumen-coated 

slide supports the probe liquid in a glass beaker. 
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Figure 5. Dynamic vapour sorption device (DVS Advantage 2) for determining sorption isotherms of 

aggregates exposed to various probe liquids. An ultra-sensitive microbalance continuously measures 

weight changes of aggregate resulting from vapour adsorption.  
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Figure 6. Sample Partial Pressure and Aggregate Change in Mass. Only the adsorption cycle was used 

in the computation of surface energy for this study.
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Figure 7. Typical sorption isotherm obtained for Limestone A aggregate using octane vapour as probe 

for partial vapour pressures (concentration) ranging from 0 to 95% with 5-10% increments (14 steps). 

The isotherms  

 

Figure 8. BET model was used to fit the sorption isotherms up to 35% partial vapour pressure. The 

slope and intercept of the BET plots were used to estimate the parameters nm and c that used to 

calculate surface area of the aggregate. 
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Figure 9. Contact angle of probe liquids obtained from the DCA test.  The higher the contact angle 

between a solid and a liquid, the lower the potential for the two to adhere to each other.
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Figure 10. A plot of the percentage of aggregates that remain coated with bitumen as a function of 

conditioning time during the rolling bottle test. The results show Limestone A is more resistant (higher 

percent remaining coated) than Granite A for the mixtures considered.  
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Figure 11. Comparison of SATS retained stiffness with retained saturation for 50 pen mixtures. SATS 

appears to rank limestone better (higher retain stiffness at a given saturation level) than granite in terms 

of moisture resistance.
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Figure 12. Plots of SATS retained stiffness and bitumen coverage during RBT as a function of bond 

energy ratio, ER1, for 50 pen bitumen showing the influence of aggregate type on moisture sensitivity. 

Both SATS and RBT ranked limestone mixtures higher (higher retained stiffness and higher bitumen 

coverage) than granite mixtures which is in agreement with compatibility ratio obtained from surface 

energy measurements. 

 

 

 

  


