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Abstract In the most popular logics combining knowledge and awareness, it is not
possible to express statements about knowledge of unawareness such as “Ann knows
that Bill is aware of something Ann is not aware of” – without using a stronger
statement such as “Ann knows that Bill is aware of p and Ann is not aware of p”,
for some particular p. In Halpern and Rêgo (2006, 2009b) (revisited in Halpern and
Rêgo (2009a, 2013)) Halpern and Rêgo introduced a logic in which such statements
about knowledge of unawareness can be expressed. The logic extends the traditional
framework with quantification over formulae, and is thus very expressive. As a con-
sequence, it is not decidable. In this paper we introduce a decidable logic which can
be used to reason about certain types of unawareness. Our logic extends the tradi-
tional framework with an operator expressing full awareness, i.e., the fact that an
agent is aware of everything, and another operator expressing relative awareness,
the fact that one agent is aware of everything another agent is aware of. The logic is
less expressive than Halpern’s and Rêgo’s logic. It is, however, expressive enough
to express all of the motivating examples in Halpern and Rêgo (2006, 2009b). In
addition to proving that the logic is decidable and that its satisfiability problem is
PSPACE-complete, we present an axiomatisation which we show is sound and com-
plete.

Thomas Ågotnes
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1 Introduction

Formal models of knowledge or belief extended with a notion of awareness has
been of interest to researchers in several fields, including economics and game the-
ory, philosophy, and multi-agent systems. One of the most popular frameworks is
the logic of general awareness (Fagin and Halpern, 1988), which has been shown
(Halpern, 2001) to be a generalisation of frameworks used by economists (Modica
and Rustichini, 1994, 1999). The logic of general awareness has a traditional (im-
plicit) knowledge operator Ki where Kiφ is interpreted as truth of φ in all accessible
worlds in a Kripke structure, in addition to an awareness operator Ai where Aiφ

is interpreted by a syntactic assignment of truth value, and an explicit knowledge
operator Xi such that Xiφ is interpreted as the conjunction of Kiφ and Aiφ . This
framework is very flexible and general. However, as pointed out by Halpern and
Rêgo (2006), in many situations, agents have knowledge about their own or others’
unawareness, and this cannot be expressed properly in the logic of general aware-
ness. An example, taken directly from (Halpern and Rêgo, 2006), is the following.

Example 1.
Consider an investor (agent 1) and an investment fund broker (agent 2). Suppose that
we have two facts that are relevant for describing the situation: the NASDAQ index
is more likely to increase than to decrease tomorrow (p), and Amazon will announce
a huge increase in earnings tomorrow (q). [...] [B]oth agents explicitly know that the
NASDAQ index is more likely to increase than to decrease tomorrow. However, the
broker also explicitly knows that Amazon will announce a huge increase in earnings
tomorrow. Furthermore, the broker explicitly knows that he (broker) is aware of this
fact and the investor is not. On the other hand, the investor explicitly knows that
there is something that the broker is aware of but he is not.

In order to be able to reason formally about situations involving knowledge
of unawareness such as this one, Halpern and Rêgo (2006, 2009b) introduced
a logic which extends the logic of general awareness with variables standing
for formulae and quantification over these variables. For example, the formula
X1(∃x(A2x∧¬A1x)) expresses the fact that the investor, in the example above, ex-
plicitly knows that there is some fact he is unaware of but the broker is aware of.
This introduction of quantifiers makes the logic very expressive, but unfortunately
also makes it undecidable.

There is a subtle distinction in the motivating arguments of Halpern and Rêgo
(2006, 2009b). On the one hand, it is initially argued that it would be useful to
express the fact that an agent “knows that there are facts of which he is unaware”. We
will refer to awareness of everything as full awareness. Explicit knowledge of the
lack of full awareness can be expressed in Halpern’s and Rêgo’s logic by a formula
such as Xi(∃x¬Aix). On the other hand, Example 1 above requires the expression
of knowledge of a more specific property of unawareness: that an agent (explicitly)
knows that he is unaware of some fact which another agent is aware of. We will refer
to this latter form of unawareness as lack of relative awareness. We say that an agent
has relative awareness with respect to another agent if he is aware of everything the
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other agent is aware of. As discussed above, knowledge of lack of relative awareness
can be expressed in Halpern’s and Rêgo’s logic by a formula such as Xi(∃x(Ajx∧
¬Aix)). Full awareness implies relative awareness, but in general not the other way
around.

The logic proposed by Halpern and Rêgo (2006, 2009b) was criticised by re-
searchers working on formal models of awareness in mathematical economics,
where the approach to modelling awareness and the assumptions made are some-
what different. In particular, two common assumptions are that awareness is gener-
ated by primitive propopositions (agpp), and that agents know what they are aware
of (ka). Given these assumptions, the statement that an agent does not know whether
he is aware of all formulas, ¬Xi¬∀xAix∧¬Xi∀xAix, is not satisfiable in the logic of
Halpern and Rêgo (2006, 2009b), so such an agent cannot be modelled in the logic.
To solve this problem, a new variant of the logic is introduced in Halpern and Rêgo
(2009a, 2013), where each ‘possible world’ has a different language associated with
it.

In this paper we introduce an alternative logic for reasoning about knowledge of
unawareness, which extends the logic of general awareness with explicit operators
for full and relative awareness. For each agent i, the logic has a nullary operator Ci
standing for “agent i has full awareness”, and for each agent i and each agent j a
nullary operator Rij standing for for “agent j has greater awareness relative to agent
i”. In this language, both types of knowledge of unawareness mentioned above can
be expressed, viz. as Xi¬Ci and Xi¬Rji, respectively. With these operators in place of
unlimited quantification over formulae, the logic is, obviously, much less expressive
than Halpern’s and Rêgo’s logic. However, it can be used to express all the motivat-
ing examples in (Halpern and Rêgo, 2006, 2009b). Furthermore, the logic presented
in this paper is decidable, as other epistemic modal logics developed in computer
science are, and can be used for automated reasoning and verification. The property
describing an agent being uncertain whether he is aware of all formulas, which mo-
tivated the development of Halpern and Rêgo (2009a, 2013), is expressible in the
preliminary version of our logic (Ågotnes and Alechina, 2007) as ¬Xi¬Ci∧¬XiCi.
It is satisfiable without the resort to having different languages in different possible
worlds. However, in (Ågotnes and Alechina, 2007) we did not consider the agpp
and ka assumptions. With those assumptions added, the property of being uncertain
concerning the awareness of all formulas is no longer satisfiable. It was pointed out
by Halpern and Rêgo (2013) that they believe that the variant of our logic presented
in (Ågotnes and Alechina, 2007) can be modified so that it does not have this prob-
lem and is still decidable, but they have not checked this conjecture. We show that
this is indeed the case, by incorporating both the agpp and ka assumptions as well
as the idea from (Halpern and Rêgo, 2009a, 2013) of different languages associated
with different states.

Of related work, both Modica and Rustichini (1999) and Halpern (2001) de-
velop logics of unawareness, but for the single-agent case only. Board and Chung
(2006) add awareness operators to first order logic. Sillari (2006) also combines
first-order logic and awareness, this time interpreted over neighborhood structures.
There is a fundamental difference, however, between quantification in these two lat-
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ter frameworks and in that of Halpern and Rêgo (2006, 2009b,a, 2013). In (Board
and Chung, 2006) and (Sillari, 2006), quantification is over objects of the universe
of discourse, while in Halpern and Rêgo’s work quantification is over formulae. In
general, we need the latter type of quantification to reason about unawareness of
formulae. Heifetz et al. (2007) develop a set theoretic framework, as opposed to the
syntactic approach of Halpern and Rêgo. Our work also belongs to the syntactic
tradition.

This paper is organised as follows. In the next section we introduce the logic of
general awareness, and different versions of Halpern’s and Rêgo’s logics. Our logic
of full and relative awareness is then presented in Section 3, and an axiomatisation
proved sound and (weakly) complete in Section 4. The satisfiability problem for the
logic is studied in Section 5. We prove that the problem is decidable, and that it
is PSPACE-complete. In Section 6 we compare the logic to Halpern’s and Rêgo’s
logic. We conclude in Section 7.

2 Background: Logics of Awareness and Unawareness

In this paper we consider several logical languages L . We define the meaning of
each of these by defining the concept of a formula φ ∈L being true (or satisfied)
in the context of the combination of a model M ∈M in some class of models M
and a state s of M, written (M,s) |= φ . φ is valid (with respect to M ), written |= φ ,
if (M,s) |= φ for all M ∈M and all states s in M. We also consider (Hilbert style)
logical systems S over L ; `S φ means that φ is derivable in S. S is sound with
respect to M iff `S φ implies that |= φ ; S is (weakly) complete if the converse
holds. Strong completeness means that if Γ |= φ then Γ `S φ where Γ may be an
infinite set of formulas.

2.1 Awareness Structures and The Logic of General Awareness

We briefly recall the logic of general awareness (Fagin and Halpern, 1988) (our
notation is similar to that of Halpern and Rêgo (2013)).

An awareness structure for n agents {1, . . . ,n} over primitive propositions Φ

and logical language L is a tuple (S,π,K1, . . . ,Kn,A1, . . . ,An), where S is a non-
empty set of states, π : S→ Φ says which primitive propositions are true in each
state, Ki ⊆ S×S is the accessibility relation for agent i, and Ai : S→ 2L defines the
awareness set Ai(s)⊆L for each agent i in each state s ∈ S. Intuitively, (s, t) ∈Ki
means that when the state of the world actually is s agent i considers it possible that
the state of the world is t; φ ∈ Ai(s) means that agent i is aware of the formula φ

when the state of the world is s.
We shall consider several model classes, defined by requiring the accessibility

relations to be reflexive ((s,s) ∈Ki for all s ∈ S), transitive ((s, t) ∈Ki and (t,u) ∈
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Ki implies that (s,u)∈Ki) and/or Euclidean ((s, t)∈Ki and (s,u)∈Ki implies that
(t,u)∈Ki). For Z ⊆ {r, t,e}, we use M Z

n (Φ ,L ) to denote the awareness structures
for n agents over Φ and L where the accessibility relations are required to have
the properties in Z (“r” means reflexive, etc.). We sometimes write Mn(Φ ,L ) for
M /0

n (Φ ,L ) – the class of all awareness structures.
Given a number n of agents and a set Φ of primitive propositions, the formulae

φ of the language L K,X,A
n (Φ) are defined by the following grammar:

φ ::= p | φ1∧φ2 | ¬φ | Kiφ | Xiφ | Aiφ

where p ∈ Φ and 1 ≤ i ≤ n. The usual derived propositional connectives are used,
for example we write φ ∨ψ for ¬(¬φ ∧¬ψ) and so on. The formula Aiφ means that
agent i is aware of φ .

Below we describe how awareness structures for n agents over primitive propo-
sitions Φ and logical language L K,X,A

n (Φ) are used to interpret the language
L K,X,A

n (Φ). In the following sections of the paper we shall also look at other lan-
guages L , and we will then use awareness structures for n agents over Φ and L to
interpret L .

The notion of a formula φ ∈L K,X,A
n (Φ) being true, or satisfied, in a state s of

an awareness structure M = (S,π,K1, . . . ,Kn,A1, . . . ,An) ∈Mn(Φ ,L K,X,A
n (Φ)),

written (M,s) |= φ , is defined as follows, where p ∈Φ and 1≤ i≤ n:

(M,s) |= p ⇔ p ∈ π(s)
(M,s) |= φ1∧φ2 ⇔ (M,s) |= φ1 and (M,s) |= φ2
(M,s) |= ¬φ ⇔ (M,s) 6|= φ

(M,s) |= Kiφ ⇔ ∀(s, t) ∈Ki,(M, t) |= φ

(M,s) |= Aiφ ⇔ φ ∈Ai(s)
(M,s) |= Xiφ ⇔ (M,s) |= Kiφ ∧Aiφ

Example 2 (Example 1 continued). (Adapted from Halpern and Rêgo (2006)). The
situation described in Example 1 up until immediately before the last sentence (“On
the other hand..”) can be modelled by an awareness structure M2 = (S,π,K1,K2,
A1, A2) for 2 agents over the set {p,q} of primitive propositions and logical lan-
guage L K,X,A

2 ({p,q}), defined as follows. S = {s}; π(s) = {p,q}; K1 = K2 =
{(s,s)}; A1(s) = {p}; A2(s) = {p,q,A2q,¬A1q,A2q∧¬A1q}. The following hold:

• (M2,s) |= X1p∧X2p: both the investor and the broker explicitly know that the
NASDAQ index is more likely to increase than to decrease tomorrow

• (M2,s) |= ¬X1q∧X2q: the investor does not explicitly know that Amazon will
announce a huge increase in earnings tomorrow, but the broker does

• (M2,s) |= X2(A2q∧¬A1q): the broker explicitly knows that he (broker) is aware
of this fact (regarding Amazon) and the investor is not.
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2.2 A Logic of Knowledge of Unawareness

Halpern and Rêgo (2006) extended the logic of general awareness in order to be able
to reason about knowledge of unawareness. We will refer to this logic as HR06. In
describing the logic we follow Halpern and Rêgo (2013).

Let X be a countably infinite set of variables. The language extends the language
of the logic of general awareness with variables, and formulae of the form ∀xφ ,
where x is a variable. Formulas of L ∀,K,X,A

n (Φ ,X ) are defined by the following
grammar:

φ ::= p | φ1∧φ2 | ¬φ | Kiφ | Xiφ | Aiφ | ∀xφ | x

where p ∈ Φ , 1 ≤ i ≤ n and x ∈X . We use the usual abbreviations in addition to
∃xφ for ¬∀x¬φ . A sentence is a formula without free variables; S ∀,K,X,A

n (Φ ,X )
denotes the set of all sentences.

Satisfaction of a L ∀,K,X,A
n (Φ ,X ) sentence φ is defined in relation to a pair con-

sisting of an awareness structure M ∈Mn(Φ ,S ∀,K,X,A
n (Φ ,X )) and a state s in M.

The domain of quantification only contains sentences of L K,X,A
n (the quantifier-free

language). The definition of satisfaction is by nested induction, first over the to-
tal number of free and bound variables and then on the length of the formula. The
additional clause for the quantified formulas is

(M,s) |= ∀xφ ⇔ (M,s) |= φ [x/ψ], for all ψ ∈L K,X,A
n (Φ ,X )

Example 3 (Example 2 continued). (Adapted from Halpern and Rêgo (2006)). Now
we can take the last sentence in Example 1 into account in our model of the situation.
Let M3 ∈Mn(Φ ,S ∀,K,X,A

n (Φ ,X )) be as M2 except that we let the investor be aware
of the fact that there is something the broker is aware of but the investor is not:
A1(s) = {p,∃x(A2x∧¬A1x)}.

The formulae in Example 2 continue to hold in M3 as well. The following two
formulae (from Halpern and Rêgo (2006)) illustrate reasoning about unawareness.
We have that:

• (M3,s) |= X1(∃x(A2x∧¬A1x)): the investor explicitly knows that there is some-
thing that the broker is aware of but he is not

• (M3,s) |= ¬X2(∃x(A2x∧¬A1x)): the broker does not explicitly know that there
is something he is aware of but the investor is not

Let Kn,∀ be the axiom system over the language L ∀,K,X,A
n (Φ ,X ) consisting of

the following axioms and rules:

Prop all propositional tautologies
K Ki(φ → ψ)→ (Kiφ → Kiψ)
A0 Xiφ ↔ Kiφ ∧Aiφ

1∀ ∀xφ → φ [x/ψ] if ψ is quantifier free and substitutable2 for x in φ

2 Substitutable means that no free variable of ψ becomes bound as a result of the substitution.



A Logic for Reasoning about Knowledge of Unawareness 7

K∀ ∀x(φ → ψ)→ (∀xφ →∀xψ)
N∀ φ →∀xφ if x is not free in φ

Barcan ∀xKiφ → Ki∀xφ

Gen∀ From φ infer ∀xφ

MP From φ and φ → ψ infer ψ

Gen From φ infer Kiφ

Furthermore, given the following three extra axioms,

T Kiφ → φ

4 Kiφ → KiKiφ

5 ¬Kiφ → Ki¬Kiφ

KZ
n,∀ is the system obtained by adding axioms Z to Kn,∀, where Z ⊆ {T,4,5}. It is

well known that T,4 and 5 correspond to the accessibility relations being reflexive,
transitive and Euclidean, respectively.

Theorem 1 (Halpern and Rêgo (2006)). Let Z ⊆ {T,4,5} and let Z be the corre-
sponding subset of {r, t,e}. If Φ is countably infinite, KZ

n,∀ is a sound and complete

axiomatisation of the language L ∀,K,X,A
n (Φ ,X ) with respect to the class of aware-

ness structures M Z
n (Φ ,L ∀,K,X,A

n (Φ ,X )).

Consider the addition to HR06 of the following two natural properties:

agpp: For all agents i, φ ∈Ai(s) iff all the primitive propositions that appear in
φ are in Ai∩Φ

ka: For all agents i and states s, t such that (s, t) ∈Ki, Ai(s) = Ai(t).

Note that the agpp implies a somewhat counterintuitive property of awareness,
as also pointed out in Halpern and Rêgo (2009a). The agent is always aware of
all formulas that do not contain any primitive propositions (such as ∀xAix). From
the point of view of awareness common in computer science literature (an agent is
aware of sentences that are represented its finite working memory or can be obtained
from them using some algorithm), agpp itself is a rather counterintuitive property,
since it implies that an agent is always aware of infinitely many arbitrarily complex
sentences. However this property is accepted in economics literature, as is the more
appealing ka property. Given these two properties, the HR06 logic derives Xi∀xAix∨
Xi¬∀xAix. In other words, the agent cannot be uncertain whether it is aware of all
formulas. This is because in all Ki-accessible states s, Ai(s) is the same, hence in
all such s the agent is either aware of all formulas or in all of them he is not aware
of all formulas. However it must be possible to model an agent that is uncertain
of whether he is aware of everything. This problem was addressed in (Halpern and
Rêgo, 2009a, 2013).
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2.3 A Revisited Logic of Knowledge of Unawareness

We give a brief review of the new version of the logic as presented in (Halpern and
Rêgo, 2013), henceforth called the HR13 logic. The syntax of the logic is the same
as for HR06.

In order to overcome the problem with the HR06 logic mentioned in the previ-
ous section, the notion of an awareness structure is extended to include a function
PL that assigns to each state a language (a set of propositional variables). The re-
sulting structures of the form (S,π,PL ,K1, . . . ,Kn,A1, . . . ,An) are referred to as
extended awareness structures. In extended awareness structures over a logical lan-
guage L , it is required that every formula in Ai(s) can only contain propositional
variables from PL (s). agpp and ka are assumed to hold in extended awareness
structures. The class of all extended awareness structures over Φ and logical lan-
guage L is denoted N Z

n (Φ ,L ) (where Z means the same as for standard aware-
ness structures).

The HR13 logic is interpreted in extended awareness structures over the language
L ∀,K,X,A

n (PL (s),X ).
A formula (including negated formulae) can only be true in a state if it belongs

to the language of that state. If φ 6∈L ∀,K,X,A
n (PL (s),X ), then both φ and ¬φ are

false in s. For example,

(M,s) |= p ⇔ p ∈PL (s) and p ∈ π(s)
(M,s) |= ¬φ ⇔ φ ∈L ∀,K,X,A

n (PL (s),X ) and (M,s) 6|= φ

(M,s) |= ∀xφ ⇔ (M,s) |= φ [x/ψ], for all ψ ∈L K,X,A
n (PL (s),X )

Let us denote by A p
i (s) the set Ai(s)∩Φ . Clearly, in extended awareness struc-

tures, it is required that A p
i (s) ⊆PL (s). Given agpp, the truth definition for Aiφ

can be equivalently rewritten as

(M,s) |= Aiφ ⇔ Φ(φ)⊆A p
i (s)

In what follows, we will (equivalently) specify extended awareness structures
using propositional awareness sets rather than awareness sets, that is, as structures
of the form (S,π,PL ,K1, . . . ,Kn,A

p
1 , . . . ,A p

n ).
Validity is defined as follows: φ is valid in a class N of extended awareness

structures if for all extended awareness structures M ∈ N and states s such that
Φ(φ) ∈PL (s), (M,s) |= φ .

In (Halpern and Rêgo, 2013), a new system AXK,X,A,A∗,∀
e is introduced for ex-

tended awareness structures. The authors only give a soundness and completeness
result for S5 (reflexive, transitive and Euclidean knowledge accessibility relations).
The new system is Kn,∀ with Gen and Barcan replaced by Gen∗ and Barcan∗

and with AGPP, KA, NKA, AGPP∗, A0∗ and FA∗ added. Below, A∗i φ stands for
Ki(φ ∨¬φ).

Prop all propositional tautologies
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AGPP Aiφ ↔
∧

p∈Φ(φ) Aip where Φ(φ) is the set of primitive proposition in φ

KA Aiφ → KiAiφ

NKA ¬Aiφ → Ki¬Aiφ

AGPP∗ A∗i φ ↔
∧

p∈Φ(φ) A∗i p
FA∗ ∀x¬A∗i x→ Ki∀x¬A∗i x
K Ki(φ → ψ)→ (Kiφ → Kiψ)
A0 Xiφ ↔ Kiφ ∧Aiφ

A0∗ Kiφ → A∗i φ

1∀ ∀xφ → φ [x/ψ] if ψ is quantifier free and substitutable3 for x in φ

K∀ ∀x(φ → ψ)→ (∀xφ →∀xψ)
N∀ φ →∀xφ if x is not free in φ

Barcan∗ (A∗i (∀xφ)∧∀x(A∗i x→ Kiφ)→ Ki(∀xA∗i x→∀xφ)
Gen∀ From φ infer ∀xφ

MP From φ and φ → ψ infer ψ

Gen∗ From φ infer A∗i φ → Kiφ

In addition,

5∗ (¬Kiφ ∧A∗i φ)→ Ki¬Kiφ

Theorem 2 (Halpern and Rêgo (2013)). AXK,X,A,A∗,∀
e ∪{T,4,5∗} is a sound and

complete axiomatisation of the language L ∀,K,X,A
n (Φ ,X ) with respect to N r,e,t

(Φ , L ∀,K,X,A
n (Φ , X )).

It was proved in (Halpern and Rêgo, 2006, 2009b) that the HR06 logic is un-
decidable. There is no corresponding result for the HR13 logic, but it is arguably
not the most elegant of logical systems. The purpose of the formalism proposed by
Halpern and Rêgo (2013) was ease of comparison with the systems proposed in eco-
nomics literature. In the next section we propose a system which can express similar
properties of awareness and unawareness but is more computationally tractable and
simple.

3 A Logic of Full and Relative Awareness

In this section we introduce the logic of full and relative awareness. It is motivated
by the motivating examples of Halpern and Rêgo (2006, 2009b), but does not have
variables or explicit quantification, and, furthermore, it is decidable. It also takes
into account key two ideas in (Halpern and Rêgo, 2013), namely the agpp and ka
properties, and the use of extended awareness structures to model different lan-
guages in different states. As discussed above, this combination makes it consistent
that an agent is uncertain about being aware of everything. However, it does not
incorporate the idea from (Halpern and Rêgo, 2013) of reativising truth of all for-
mulae to the language in the current state (we view this as an orthogonal feature and

3 Substitutable means that no free variable of ψ becomes bound as a result of the substitution.
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choose a simpler framework in order to highlight the main ideas of full and relative
awareness).

The language L C,R,K,X,A
n (Φ) is defined by the following grammar:

φ ::= p | φ1∧φ2 | ¬φ | Kiφ | Xiφ | Aiφ | Ci | Rij

where p∈Φ and i, j∈ [1,n]. Note that the two new connectives Ci and Rij are nullary
(they don’t take any arguments). Ci is intended to mean that agent i has full aware-
ness. Rij is intended to mean that agent j has relative awareness with respect to agent
i, i.e., that j is aware of everything i is aware of.

Recall that agpp and ka are assumed to hold in all extended awareness struc-
tures. Satisfaction of L C,R,K,X,A

n (Φ) formulae is defined in relation to an extended
awareness structure M ∈Nn(Φ , L C,R,K,X,A

n (Φ)) and a state s of M.

(M,s) |= p ⇔ p ∈ π(s)
(M,s) |= φ1∧φ2 ⇔ (M,s) |= φ1 and (M,s) |= φ2
(M,s) |= ¬φ ⇔ (M,s) 6|= φ

(M,s) |= Kiφ ⇔ ∀(s, t) ∈Ki,(M, t) |= φ

(M,s) |= Aiφ ⇔ Φ(φ)⊆A p
i (s)

(M,s) |= Xiφ ⇔ (M,s) |= Kiφ ∧Aiφ

(M,s) |= Ci ⇔ A p
i (s) = PL (s)

(M,s) |= Rij ⇔ A p
i (s)⊆A p

j (s)

Note that unlike HR13 we do not require that the formula belongs to the language
of s in order for it to be true in s. We essentially interpret PL (s) as the set of
primitive propositions that agents can be in principle aware of in s, which is different
from the (larger) set of propositions which may be true or false in s. We adopt
this change since it simplifies the technical developments, but also because we find
the distinction between the propositions that agents may be aware of (given their
subjective limitations) in a given state, and objective properties that may be true or
false in all states intuitively acceptable. For example, in the Middle Ages people
could not be possibly aware of p where p is a statement that the hydrogen atom
consists of one proton and one electron, however one could argue that p was still
true.

Note that Ci cannot be expressed by a finite conjunction of the form Aip1∧Aip2
∧ Aip3∧ . . . since PL (s) is different in different s and also because it may be
infinite. ¬Ci means that there exists a primitive proposition p such that p 6∈A p

i (s).
Thus, Xi¬Ci expresses knowledge of unawareness: agent i explicitly knows that
there is something he is unaware of. Rij means that i’s awareness set is included in
j’s awareness set, that j is aware of everything i is aware of. ¬Rij means that there is
something i is aware of but j is not.

It is possible that Ki¬Ci is true, without there being any φ such that Ki¬Aiφ

is true, and it is possible that Ki¬Rji is true without there being any φ such that
Ki(Ajφ ∧¬Aiφ) is true.
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Example 4 (Example 3 continued). Let M4 be an extended awareness structure with
the same components and the same propositional awareness sets as M3 from 3. The
fact that there is something that the broker is aware of but the investor is not aware
of can now be expressed by the formula ¬R21.

The formula can now be expressed as follows:

• (M4,s) |= X1(¬R21)

Note that the logic is not compact. As a counter example take the theory
{¬Ci} ∪ {Aiφ : φ ∈ L C,R,K,X,A

n (Φ)}, or the theory {¬Rij} ∪ {¬Aiφ ∨ Ajφ : φ ∈
L C,R,K,X,A

n (Φ)}.
In the next section, we present an axiomatisation of the logic.

4 Axiomatisation

Let S be the axiom system consisting of the following axioms and inference rules,
over the language L C,R,K,X,A

n (Φ):

Prop all propositional tautologies
K Ki(φ → ψ)→ (Kiφ → Kiψ)
AGPP Aiφ ↔

∧
p∈Φ(φ) Aip

KA Aiφ → KiAiφ

NKA ¬Aiφ → Ki¬Aiφ

A0 Xiφ ↔ Kiφ ∧Aiφ

A1 Rij→ (Aiφ → Ajφ)
A2 Rii
A3 Rij∧Rjk→ Rik
C1 Ci→ Aiφ

C2 Ci→ Rji
C3 (Ci∧Rij)→ Cj
MP From φ and φ → ψ infer ψ

Gen From φ infer Kiφ

Prop, K, A0, MP and Gen axiomatise the logic of general awareness (Fagin and
Halpern, 1988). AGPP, KA and NKA correspond to agpp (awareness generated by
primitive propositions) and ka (the agents know what they are and are not aware of),
respectively. 4 A1 says that relative awareness implies that the agent with greater

4 The system S without AGPP, KA and NKA has been shown in Ågotnes and Alechina (2007) to
be sound and complete for the class of awareness structures (without the assumption of different
language in different states, agpp and ka) with the truth definitions for Ci and Rij stated as follows:

(M,s) |= Ci ⇔ Ai(s) = L C,R,K,X,A
n (Φ)

(M,s) |= Rij ⇔ Ai(s)⊆Aj(s)



12 Thomas Ågotnes and Natasha Alechina

awarenesss is aware of any formula the other agent is aware of. A2 and A3 say that
relative awareness is reflexive and transitive, respectively. C1 says that full aware-
ness implies awareness of any particular formula. C2 says that full awareness im-
plies relative awareness (with respect to any other agent), and C3 says that relative
awareness implies full awareness in the case that the other agent has full awareness.

Furthermore, S Z is the system obtained by adding axioms Z to S , where
Z ⊆ {T,4,5}.

The following theorem shows that the axiomatisation is sound and weakly com-
plete5.

Theorem 3 (Soundness and Weak Completeness). Let Z ⊆ {T,4,5} and let Z be
the corresponding subset of {r, t,e}. S Z is a sound and weakly complete axioma-
tisation of the language L C,R,K,X,A

n (Φ) with respect to N Z
n (Φ ,L C,R,K,X,A

n (Φ)).

Proof. Soundness is straightforward.
For completeness, let φ be a S Z consistent formula. We will show that φ is

satisfiable in N Z
n (Φ ,L C,R,K,X,A

n (Φ)), which completes the proof.
First, we build a canonical (standard) Kripke structure Mc = (Sc,π,K1, . . . ,Kn)

in the standard way:

• Sc is the set of all maximal S Z consistent sets of formulae
• (s, t) ∈Ki iff Kiψ ∈ s implies that ψ ∈ t, for all formulae ψ

• p ∈ π(s) iff p ∈ s

Note that Mc is guaranteed to satisfy the required properties of Ki. If r ∈ Z,
T ∈ Z ensures that each Ki is reflexive, and similarly for t/4 and e/5 (can be
shown in the standard way).

We are going to construct an extended awareness structure M = (Sc,π,PL ,K1,
. . ., Kn,A1, . . . ,An) that satisfies agpp, ka and the Truth Lemma in three stages.
By the Truth Lemma, we mean the following property. Let Subf (φ) be the set of
subformulas of φ closed under single negation. The Truth Lemma is as follows: for
every formula ψ ∈ Subf (φ),

(M,s) |= ψ ⇔ ψ ∈ s

In the first stage, we will construct M1 that satisfies agpp, ka and the truth lemma
for propositional formulas, formulas of the form Aiψ , Kiψ and Xiψ (but not Rij
and Ci). Then we will construct M2 where in addition the truth lemma holds for all
subformulas of φ , but ka does not. Then finally we construct M by enforcing ka
while preserving agpp and the truth lemma for all types of subformulas of φ .

To construct M1, we add to Mc awareness sets constructed in a straightforward
way:

• ψ ∈Ai(s) iff Aiψ ∈ Subf (φ) and Aiψ ∈ s.

5 Note that weak completeness of our logic does not imply strong completeness, because the logic
is not compact: it is possible to exhibit an infinite unsatisfiable set of formulas every finite subset
of which is satisfiable.
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Note that the AGPP axiom guarantees that this is equivalent to the following
condition:

• p ∈A p
i (s) iff for some Aiψ ∈ s, Aiψ ∈ Subf (φ) and p ∈Φ(ψ)

In what follows, we will be working with A p
i (s) sets rather than with Ai(s). We

also set

• PL (s) = ∪iA
p

i (s)

It is easy to check that M1 satisfies agpp, ka (because of KA and NKA axioms)
and the truth lemma for boolean formulas, formulas of the form Aiψ , Kiψ and Xiψ .
However, the truth lemma does not hold for subformulas of φ of the form Rij and
Ci. For example, it is possible that ¬Rij ∈ s but A p

i (s) = A p
j (s), or that ¬Ci ∈ s but

A p
i (s) = PL (s). Next, we construct M2 where we add extra propositional variables

to propositional awareness sets and fix this problem ‘locally’ in each state, so that
the truth lemma holds for each s. However ka does not hold any longer because the
fixes are different in different states.

The construction of M2 only involves changes to the propositional awareness
sets A p

i and to PL , and proceeds in n + 1 steps. Let q1,q2, . . . ,qn+1 be a set of
propositional variables not occurring in Subf (φ). For each agent i, set Xi

0 to be
A p

i (s) from M1 and PL 0(s) to PL (s) from M1. At the step corresponding to
agent i, if ¬Rij ∈ s then add qi to Xi

k, for every k such that Rik ∈ s (including Xi
i).

We also add qi to PL i(s) and reassign Xi
m(s) to be PL i(s) for all m such that

Cm ∈ s. Finally, we set PL n+1(s) to be PL n(s)∪{qn+1} and set Xn+1
m (s) to be

PL n+1(s) for all m such that Cm ∈ s. (The latter step is to deal with the situation
when for some m, Xn

m(s) = PL n(s) but ¬Cm ∈ s.) We set A p
i (s) in M2 to be Xn+1

i
and PL (s) to be PL n+1. It is easy to check that now the truth lemma holds for
all subformulas of φ . However, now ka does not hold because it is possible that for
some (s, t) ∈Ki that Rij ∈ s and ¬Rij ∈ t, so qi ∈A p

i (t) but qi 6∈A p
i (s).

In the last stage of the construction, we modify M2 to obtain M where ka holds,
as well as the other properties of extended awareness structures. In addition, we
want the truth lemma for subformulas of φ to continue to hold. For the latter, it is
sufficient to maintain the following four properties:

(R) if Rij ∈ s then A p
i (s)⊆A p

j (s)
(C) if Ci ∈ s then A p

i (s) = PL (s)
(notR) if ¬Rij ∈ s then A p

i (s) 6⊆A p
j (s)

(notC) if ¬Ci ∈ s then A p
i (s)⊂PL (s)

In constructing M, we first unravel M2 from some state s0 such that φ ∈ s0 (pre-
serving symmetry, transitivity etc. of Ki as required) so that for every s and t in
the new structure, (s, t) ∈Ki for at most one i (but possibly (s, t′) ∈Kj for t′ 6= t
and j 6= i). This establishes the property that in M, it is not possible to go from s
to t (s 6= t) by Ki and by Kj (j 6= i) (or to come back from t to s by Kj). This
rules out impossible to fix situations like Rij ∈ s, (s, t) ∈Ki∩Kj, and ¬Rij ∈ t (this
would mean that A p

i (s) = A p
i (t), A p

j (s) = A p
j (t), but in s we need to ensure that
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A p
i (s) ⊆A p

j (s) and in t, A p
i (t) 6⊆A p

j (t)) and enables the construction below of a
model where ka holds for all states and agents.

Let K(s, i) = {t : (s, t) ∈ TC(Ki)}, where TC(Ki) is the reflexive transitive clo-
sure of Ki. (So s ∈ K(s, i)). We need transitive closure because if Ki is not transi-
tive, then after we ‘fix’ A p

i (t) for some t accessible by Ki from s to ensure A p
i (s) =

A p
i (t), we may need to ‘fix’ it again because (t, t′) ∈Ki and A p

i (t) ⊂A p
i (t′), and

this will ‘undo’ the fix to ka for i in s.) Observe that because of KA and NKA
axioms, all states in K(s, i) contains the same formulas of the form Aiψ .

Note that for every s, i, and j 6= i, K(s, i)∩K(s, j)⊆{s} because of the unravelling.
Let A(s, i) be

⋃
t∈K(s,i) A

p
i (t). A(s, i) is finite since it contains only propositional

variables in Subf (φ) and at most n + 1 additional propositional variables used for
‘local fixing’ to compute propositional awareness sets in M2. Also observe that al-
though K(s, i) may be infinite, it contains only finitely many ‘types’ of states with
respect to the contents of their propositional awareness sets and the pattern of Rij
and Ci formulas (since the number of agents is finite). We are going to make all
propositional awareness sets A p

i (t) for t ∈ K(s, i) the same by extending them to
be equal to A(s, i). Note that A p

i (t) only differ from A(s, i) in the new propositional
variables used as witnesses (since they agree on all p ∈ Φ(φ)). The procedure is as
follows:

For all q ∈ A(s, i):
For all t ∈ K(s, i) such that t 6∈A p

i (t):
step 1 A p

i (t) := A p
i (t)∪{q}

step 2 for all k with Rik ∈ t, A p
k (t) := A p

k (t)∪{q} (note that this also adds q to
A p

k (t) for all k such that Ck ∈ t, since Rik ∈ t by axiom C2.)
step 3 if q 6∈PL (t), PL (t) := PL (t)∪{q}

It is easy to check that this procedure terminates (if we interpret iterating over t ∈
K(s, i) as iterating over finitely many ‘types’ of t) and results in all A p

i (t) being
equal. It also makes sure that the conditions (R) and (C) which are necessary for
the truth lemma are satisfied. However we may have broken the conditions (notR)
and (notC): it is possible that after adding an extra q to some A p

k (t) with Rik ∈ t we
destroyed a witness for ¬Rjk ∈ t for some j (if q = qj) or a witness for ¬Ck ∈ t (if
q = qn+1). So we add two extra steps of ‘fixing’ those witnesses:

step 4 if ¬Rjk ∈ t and A p
j (t) = A p

k (t), add a new q′ to A p
j (t) and all A p

m(t) for m
with Rjm and to PL (t)

step 5 if ¬Ck ∈ t and A p
j (t) = PL (t), add a new q′′ to PL (t)

Note that steps 4 and 5 do not affect A p
i (t). Let us consider step 4. Suppose ¬Rjk ∈ t

such that after adding some propositional variable q to A p
i (t) and to A p

k (t) for k
with Rik, A p

j (t) = A p
k (t). We assume that before that A p

j (t) 6⊆ A p
k (t). This can

only happen if previously q ∈ A p
j (t) and q 6∈ A p

k (t) and q was added to A p
k (t). In

other words, q was the witness for ¬Rjk. Note that this entails that j 6= i (since q was
added in step 1 or step 2, either k = i or Rik ∈ t, hence if j were equal to i we would
get a contradiction with ¬Rjk). This also entails that Ci 6∈ t (by the same reasoning,
if i = k or Rik ∈ t and ¬Rjk ∈ t, we would get a contradiction with Rji that follows
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from Ci). So we can fix ¬Rjk by adding a new proposition to A p
j (s) and propagating

it to A p
m with Rjm and the language of t; this will never involve changing A p

i (t).
Similarly, in step 5, if for some k with ¬Ck ∈ t after propagating new proposi-

tional variables from A p
i (t) on step 2 causes A p

k (t) = PL (t), this means that q
was the witness for ¬Ck. Again we add a new propositional variable as a witness
for ¬Ck to PL (t) and all awareness sets A p

m(t) such that Cm ∈ t. Note that by the
previous reasoning ¬Ci ∈ t and this procedure does not affect A p

i (t).
Let us denote the set of new propositional variables used in steps 4 and 5 D(s, i).

Note that A(s, i)∩D(s, i) = /0. We use a new propositional variable for every instance
of steps 4 and 5, so for i 6= j, D(s, i)∩D(s, j) = /0.

This finishes the description of how, for a single state s and agent i, we can
enforce ka for s and Ki. To enforce ka globally (for all states and all agents) we
start in s0 and fix K(s0, i) for each i. Note that the only state that the sets K(s0, i)
for different is have in common is at most s0 itself. However it is not sufficient to
fix each K(s0, i) once since it is possible that Rij and Rji are in s0 for different i and
j. This means that after K(s0, i) is fixed it is possible that the fix to K(s0, j) changes
A p

i (s0) and it needs to be fixed again. However since the sets D(s, i) and D(s, j) are
disjoint, no new faults which need fixed by steps 4 and 5 will occur after the second
execution of steps 1 - 3.

To sum up, we have constructed a model M where ka and agpp hold and the
conditions on Ki (reflexivity, transitivity and symmetry) hold if the corresponding
axioms are present in the logic. Thus, M ∈N Z

n (Φ ,L C,R,K,X,A
n (Φ)). Since φ ∈ s0,

the truth lemma will imply that M,s0 |= φ so φ is satisfiable.
The proof of the truth lemma is by structural induction over ψ ∈ Subf (φ):

• ψ = Aiγ: for the direction to the left, Aiγ ∈ s implies that Φ(γ) ∈ X0
i ⊆ A p

i (s)
hence M,s |= Aiγ . For the direction to the right, let Φ(γ) ∈A p

i (s). If Ci ∈ s then
Aiγ ∈ s by C1. If Ci 6∈ s, it must be the case that Φ(γ) ∈ X0

i since γ ∈ Subf (φ) (γ
cannot contain any witness propositions added in the construction of M1,M2,M),
and thus

∧
p∈Φ(γ) Aip ∈ s and by AGPP, Aiγ ∈ s.

• ψ = Rij: for the direction to the left, let Rij ∈ s. By (R), A p
i (s) ⊆ A p

j (s) hence
M,s |= Rij. For the direction to the right, let Rij 6∈ s, then¬Rij ∈ s, hence by (notR),
Ai(s) 6⊆Aj(s), so M,s 6|= Rij hence M,s |= ¬Rij.

• ψ = Ci: For the direction to the left, let Ci ∈ s. A p
i (s) = PL (s) by (C), so

(M,s) |= Ci.
For the direction to the right, let A p

i (s) = PL (s). The only way that can happen
is when Ci ∈ s (otherwise, ¬Ci ∈ s, and by (notC), A p

i (s)⊂PL (s).
• ψ = Kiγ: this case can be shown in the standard way.

Let Kiγ ∈ s. To show that (M,s) |= Kiγ , consider an arbitrary t such that Ki(s, t).
By the definition of Ki, γ ∈ t, and by the inductive hypothesis (γ ∈ Subf (φ))
(M, t) |= γ . Hence, (M,s) |= Kiγ .
Let Kiγ 6∈ s. We will find a t with Ki(s, t) such that (M, t) 6|= γ . This will show
that (M,s) 6|= Kiγ . Consider the set {¬γ}∪{χ : Kiχ ∈ s}. This set is consistent
(otherwise `S χ1 ∧ . . .∧ χk → γ for some χ1, . . . ,χk from this set, hence `S
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Kiχ1∧ . . .∧Kiχk→ Kiγ , which would force Kiγ ∈ s). So, it can be extended to a
mcs t. Since ¬γ ∈ t, γ 6∈ t, and by the inductive hypothesis (M, t) 6|= γ .

• The cases for atomic propositions, ¬ and ∧ are straightforward.

2

5 Decidability and Complexity

We are going to show that the satisfiability problem for N Z
n (Φ ,L C,R,K,X,A

n (Φ)) for
any Z ⊆ {r, t,e} is decidable in PSPACE.

Theorem 4 (Complexity). The satisfiability problem for N Z
n (Φ ,L C,R,K,X,A

n (Φ))
for any Z ⊆ {r, t,e} is PSPACE-complete.

Proof. PSPACE-hardness follows from the results for corresponding multi-modal
logics, see Halpern and Moses (1992).

To show PSPACE upper bound, we adapt the tableau algorithm of Halpern
and Moses (1992) for logics KZ

n , Z ⊆ {T,4,5}. A tableau for KZ
n is a tuple

T = (S,L,K1, . . . ,Kn), where S is a set of states, Ki for each agent i in a binary
relation on S, and L is a labelling function which associates with each state s ∈ S a
set L(s) of formulas such that

PT L(s) is a propositional tableau (that is, a set of formulas satisfying (PT(a)) if
¬¬ψ ∈ L(s) then ψ ∈ L(s); (PT(b)) if ψ ∧ψ ′ ∈ L(s), then ψ,ψ ′ ∈ L(s); (PT(c))
if ¬(ψ ∧ψ ′) ∈ L(s), then either ¬ψ ∈ L(s) or ¬ψ ′ ∈ L(s); and (PT(d)) for no ψ ,
ψ ∈ L(s) and ¬ψ ∈ L(s)

K1 if Kiψ ∈ L(s) and (s, t) ∈Ki, then ψ ∈ L(t)
K2 if ¬Kiψ ∈ L(s), then there exists t with (s, t) ∈Ki and ¬ψ ∈ L(t)
T a Tn tableau in addition satisfies the condition if Kiψ ∈ L(s), then ψ ∈ L(s)
4 a 4n tableau satisfies the condition if Kiψ ∈ L(s) and (s, t)∈Ki, then Kiψ ∈ L(t)
5 a 5n tableau satisfies the condition if (s, t),(s,u) ∈ Ki, and Kiψ ∈ L(t), then

Kiψ,ψ ∈ L(u).

S5n (Z = {T,4,5}) tableaux have a simpler condition, namely if (s, t) ∈Ki, then
Kiψ ∈ L(s) iff Kiψ ∈ L(t).

A tableau T is a tableau for φ if φ ∈ L(s) for some s ∈ S. Halpern and Moses
(1992) prove that a modal formula φ is KZ

n -satisfiable iff there is a KZ
n tableau for

φ . Together with a terminating algorithm for constructing a tableau for a given for-
mula, this gives a decidability proof for the multi-modal logics KZ

n . Showing that a
tableau can be constructed using space polynomial in the size of the formula gives
the PSPACE complexity result. The algorithm uses the following terminology. A set
of formulas Γ is called fully expanded if for every formula φ ∈ Γ and a subformula
ψ of φ , either ψ ∈ Γ or ¬ψ ∈ Γ . ψ ∈ Γ is a witness that Γ is not a propositional
tableau if one of the clauses (PT(a))-(PT(c)) with Γ in place of L(s) does not apply
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to ψ; similarly ψ is a witness that Γ is not fully expanded if ψ is a subformula of
some φ ∈ Γ and neither ψ nor ¬ψ are in Γ . Γ is blatantly inconsistent if (PT(d))
with Γ in place of L(s) is violated.

Below we give the algorithm for constructing a Kn tableau for a formula φ0 from
Halpern and Moses (1992) and modifications for KZ

n , and then show how to extend
the algorithm for L C,R,K,X,A

n (Φ) formulas. The algorithm below constructs a pre-
tableau for φ0; a tableau is obtained by keeping only the fully expanded and not
blatantly inconsistent nodes (states) and only the edges labelled by some agent i
between them (corresponding to Ki).

1. Construct a tree consisting of a single root node s0 with L(s0) = {φ0}.
2. Repeat until none of (a)-(d) below applies:

a. Forming a propositional tableau: if s is a leaf of the tree, L(s) is not blatantly
inconsistent, L(s) is not a propositional tableau, and ψ is the first (in some
lexicographic ordering of formulas) witness to this fact, then
i. if ψ is of the form ¬¬ψ ′, then create a child s′ of s in the tree and set

L(s′) = L(s)∪{ψ ′}
ii. if ψ is of the form ψ1 ∧ψ2, then create a child s′ of s in the tree and set

L(s′) = L(s)∪{ψ1,ψ2}
iii. if ψ is of the form ¬(ψ1∧ψ2), then create two children s1 and s2 of s and

set L(si) = L(s)∪{ψi}.
b. Forming a fully expanded propositional tableau: if s is a leaf of the tree, L(s) is

not blatantly inconsistent, L(s) is not a propositional tableau, and ψ is the first
(in some lexicographic ordering of formulas) witness to this fact, then create
two children s1 and s2 of s and set L(s1) = L(s)∪{ψ}, L(s2) = L(s)∪{¬ψ}.

c. Creating i-successor nodes: if s is a leaf of the tree, L(s) is not blatantly in-
consistent, and L(s) is a fully expanded propositional tableau, then for each
formula of the form ¬Kiψ ∈ L(s) create an i-successor node s′ (add an edge
from s to s′ to the tree labelled i) and let L(s′) = {ψ ′ : Kiψ

′ ∈ L(s)}∪{¬ψ}.
d. Marking nodes satisfiable: if s is not marked satisfiable then mark s satisfiable

if either L(s) is not a fully expanded propositional tableau and some successor
s′ of s is marked satisfiable, or L(s) is a fully expanded propositional tableau,
there are no formulas of the form ¬Kiψ in L(s), and L(s) is not blatantly in-
consistent, or L(s) is a fully expanded propositional tableau, s has successors,
and all of them are marked satisfiable.

3. If the root of the tree is marked satisfiable, then return ‘φ0 is satisfiable’, other-
wise return ‘φ0 is not satisfiable’.

To produce a tableau for Tn, an additional condition is added for marking nodes as
satisfiable: a node is not marked as satisfiable if it contains Kiψ and ¬ψ for some
ψ .

Step 2(c) for 4n and 5n is modified slightly to ensure that the construction termi-
nates. To be precise, step 2(c) for 4n is:

if s is a leaf of the tree and L(s) is a fully expanded propositional tableau, then
for each formula of the form ¬Kiψ ∈ L(s), let L′′(s,ψ) = {Kiψ

′ : Kiψ
′ ∈ L(s)}∪
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{¬ψ}. If there is no ancestor s′′ in the tree such that L(s′′) = L(s,ψ), then create
an i-successor s′ with L(s′) = L′′(s,ψ).

and step 2(c) for 5n is:

if s is a leaf of the tree and L(s) is a fully expanded propositional tableau, then
for each formula of the form ¬Kiψ ∈ L(s), let L′′(s,ψ) = {Kiψ

′ : Kiψ
′ ∈ L(s)}∪

{¬Kiψ
′ : ¬Kiψ

′ ∈ L(s)}∪{¬ψ}. If there is no ancestor s′′ in the tree such that
L(s′′) = L(s,ψ), then create an i-successor s′ with L(s′) = L′′(s,ψ).

This modification ensures that (4) and (5) conditions in the definition of tableaux
are satisfied while construction terminates and the depth of the constructed pre-
tableau tree is polynomial in |φ0|2. This tree can be traversed in depth-first fashion
while using space polynomial in |φ0|, since |L(s)| ≤ 2|φ0| for any s.

Finally, we can extend the algorithm of Halpern and Moses (1992) to L C,R,K,X,A
n (Φ)

formulas. The extended algorithm constructs a tableau T = (S,L,PL ,K1, . . . ,Kn,
A1, . . . ,An) which is the same as a tableau for KZ

n , but with awareness sets and lan-
guage assignment function added. We show how to extend the step for forming a
fully expanded propositional tableau by expansion rules for formulas of the form
Aiψ , Ci and Rij in such a way that information about every node in the tableau can
still be stored using space polynomial in |φ | (the formula for which we are con-
structing a tableau) and the number of agents n. The modal depth of the tableau is
not affected. Then we add additional conditions for when a node is marked as unsat-
isfiable. Finally, we show that for every formula ψ , ψ ∈ L(s) implies T,s |= ψ and
¬ψ ∈ L(s) implies T,s |= ¬ψ , where T is the model corresponding to the tableau, s
is a node marked as satisfiable, and L(s) is its labelling.

The additional expansion rules are:

rel-awareness if Aiψ,Rij ∈ L(s), then create a successor s′ of s with L(s′) = L(s)∪
{Ajψ}

transitivity if Rij,Rjk ∈ L(s), then create a successor s′ of s with L(s′) = L(s)∪
{Rik}

full-awareness if Rij,Ci ∈ L(s), then create a successor s′ of s with L(s′) = L(s)∪
{Cj}

The i-expansion step 2(c) is modified to include awareness formulas:

Creating i-successor nodes: if s is a leaf of the tree, L(s) is not blatantly incon-
sistent, and L(s) is a fully expanded propositional tableau, then for each formula
of the form ¬Kiψ ∈ L(s) create an i-successor node s′ (add an edge from s to s′

to the tree labelled i) and let L(s′) = {ψ ′ : Kiψ
′ ∈ L(s)}∪ {Aiψ

′ : Aiψ
′ ∈ L(s)}∪

{¬Aiψ
′ : ¬Aiψ

′ ∈ L(s)}∪{¬ψ}.

Additional conditions for when a node is marked as unsatisfiable are:

mark s as unsatisfiable if L(s) contains ¬Aiψ where Φ(ψ) ⊆ Φ({ψ ′ : Aiψ
′ ∈

L(s)})
mark s as unsatisfiable if L(s) contains ¬Rii for any i
mark s as unsatisfiable if L(s) contains Ci and ¬Aiψ for any i and ψ .
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Note that to store the node information in the extended language it is not enough
to have a bit vector of length 2|φ | to represent which of φ ’s subformulae or their
negations are present, but we also need n|φ | bits to represent extra formulas which
may be added by step rel-awareness, 2n2 bits for the formulas of the form Rij added
by transitivity and 2n for the formulas of the form Ci which may be added by full-
awareness. However, the resulting space usage is still polynomial in |φ | and n (or
in |φ | if we are treating n as a constant).

Finally, we need to show that if a node s is marked as satisfiable, then we can
construct a language assignment function PL and awareness sets A1(s), . . . ,An(s)
so that for all formulas ψ ∈ Subf (φ) of the form Aiγ,Ci,Rij,

ψ ∈ L(s) implies T,s |= ψ , and ¬ψ ∈ L(s) implies T,s |= ¬ψ .

Instead of constructing Ai(s) directly, we construct their propositional subsets
A p

i (s). The construction is similar to the one in the proof of Theorem 3. We use
fresh propositional witnesses q1, . . . ,qn, . . . which are not in Subf (φ). For each agent
i, let X0

i (s) to {p∈Φ(ψ) : Aiψ ∈ L(s)}. We set PL 0(s) to be ∪iX0
i (s). If Ci ∈ L(s),

we reassign X0
i (s) to be PL 0(s).

Next, we construct awareness sets and language assignments that work locally at
each s. (After that, we will need to make sure that the condition ka is satisfied).

The construction of ‘locally correct’ PL (s) and A p
i (s) consists of n + 1 steps,

where n is the number of agents. At the step corresponding to agent i, if Rik,¬Rij ∈
L(s) then we add qi to Xi

k, for every such k, and to Xi
i . We also add qi to PL i(s)

and reassign Xi
m(s) to be PL i(s) for all m such that Cm ∈ L(s). Finally, we set

PL n+1(s) to be PL n(s)∪ {qn+1} and set Xn+1
m (s) to be PL n+1(s) for all m

such that Cm ∈ L(s). (The latter step is to deal with the situation when for some m,
Xn

m(s) = PL n(s) but ¬Cm ∈ L(s).) We set A p
i (s) to be Xn+1

i .
It is straighforward to check that the construction above ensures that for sub-

formulas of φ , if Aiψ is in L(s) then its propositional variables are in A p
i (s), and

if ¬Aiψ ∈ L(s) then there is at least one propositional variable in ψ that is not in
A p

i (s). Also, the following conditions hold:

(R) if Rij ∈ L(s), then A p
i (s)⊆A p

j (s)
(notR) if ¬Rij ∈ L(s), there is a propositional variable that is in A p

i (s) but not in
A p

j (s),
(C) if Ci ∈ L(s) then A p

i (s) = PL (s)
(notC) if ¬Ci ∈ L(s) then A p

i (s) 6= PL (s).

However the condition ka is not guaranteed to hold. Although for all s and t with
(s, t) ∈Ki, the set of formulas of the form Aiψ and ¬Aiψ in L(s) and L(t) are the
same, formulas of the form Rij and Ci may be different. For example, it is possible
that Rij ∈ L(s) and ¬Rij ∈ L(t), and similarly for Ci ∈ L(s) and ¬Ci ∈ L(t). This may
lead to A p

i (s) being different from A p
i (t).

As in the proof of Theorem 3, for a node s let K(s, i) be the set of i-descendants
of s (nodes in the reflexive transitive closure of the i-successor relation). Let A(s, i)
be

⋃
t∈K(s,i) A

p
i (t). We start with the root node s0 of the tableaux and for each i and

t ∈ K(s0, i) make A p
i (t) equal to A(s0, i). This involves adding extra propositional
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variables to A p
i (t) which are then propagated to A p

j (t) for all j such that Rij ∈ L(t)
or Cj ∈ L(t), and added to PL (t) if not already there. This ensures that conditions
(R) and (C) are satisfied. Then we check for every ¬Rkm and ¬Ck ∈ L(t) whether
(notR) and (notC) are still satisfied and if not add a new witness proposition to
A p

k (t) (and propagate it to ensure (R) and (C)) and to PL (t) (and propagate it to
A p(m) with Cm ∈ L(t)). Similarly to the proof of Theorem 3, it can be proved that
the fixes for (notR) and (notC) do not affect A p

i (t). After we execute this procedure
once for each agent i, A p

i (s0) may be changed for some i which requires fixing
ka the second time. However the second time none of the problems with (notR)
and (notC) can occur, so there is no change to any A p

j (s0) as the result. After two
passes, the procedure terminates and results in a set of awareness sets and language
assignments that satisfy ka and (R), (C), (notR) and (notC).

Now we prove that ψ ∈ L(s) implies T,s |= ψ , and ¬ψ ∈ L(s) implies T,s |=¬ψ .
Consider the three non-trivial cases:

ψ = Aiγ . If Aiγ ∈ L(s), then Φ(γ) ⊆ A p
i (s),so T,s |= Aiγ . If ¬Aiγ ∈ L(s), then

A p
i (s) is not equal to PL (s) (because s is consistent, so Ci 6∈ L(s)) and Ai(s)

does not contain some variable from γ (because again due to consistency Φ(γ) 6⊆
A p

i (s)). So T,s |= ¬Aiγ .
ψ = Ci. If Ci ∈ L(s), then A p

i (s) = PL (s), so T,s |= Ci. If ¬Ci ∈ L(s) then
A p

i (s) 6= PL (s), so T,s |= ¬Ci.
ψ = Rij. Suppose by contradiction that Rij ∈ L(s) and Ai(s) 6⊆ Aj(s). By con-
struction and consistency of s, Ai(s) and Aj(s) are not equal to PL (s). So the
variable which is in Ai(s) but not in Aj(s) is either some p such that p occurs in
γ and Aiγ ∈ L(s), or one of the witness variables. The first case is excluded by
the rel-awareness rule which forces Ajγ ∈ L(s), hence in p ∈Aj(s). The second
case is excluded by the transitivity rule and the way we add witnesses.
Let ¬Rij ∈ L(s). Then we added a witness qi to Xi

i , which is not in Aj(s). So
T,s |= ¬Rij.

2

6 Discussion

We cannot directly compare our logic with HR13 logic since we have chosen a
different truth definition (a formula does not have to belong to the language defined
in a state in order to be true in that state). This means that our definition of validity
is different, too.

There is a clear sense however that Rij closely corresponds to ∀x(Aix→ Ajx) and
Ci corresponds to ∀xAix, and in this sense we can reason about a strict subset of
the properties HR13 can reason about. The main advantage of our approach is the
decidability of the logic. This means that similarly to the logic of general awareness
it can be used for automated reasoning and verification of multi-agent systems.
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Our approach can express properties of relative awareness; however it is not ex-
pressive enough to state properties of relative explicit knowledge rather than aware-
ness. As pointed out to us by Yoram Moses, it is easy to paraphrase Example 1 so
that it is no longer expressible in L C,R,K,X,A

n (Φ). Namely, consider replacing the
last sentence in Example 1 by the following sentence

Example 5.
. . . On the other hand, the investor explicitly knows that there is something that the
broker explicitly knows but he is not aware of.

(replace ‘the broker is aware of’ with ‘the broker explicitly knows’). This example
can be expressed in the language of HR13 logic but not in L C,R,K,X,A

n (Φ).

7 Conclusions

We have pointed out that the full expressiveness of unrestricted quantification over
formulas is not needed to express knowledge of unawareness in the motivating ex-
amples of Halpern and Rêgo (2006, 2009b), that quantification restricted to full and
relative awareness is sufficient, and that the logic of full and relative awareness is
decidable (in PSPACE). We have presented a sound and complete axiomatisation of
that logic.

By negating full and relative awareness, we have seen that we can express the
fact that there is at least one fact the agent is not aware of, and there is at least
one fact the agent is aware of and the other agent is not aware of, respectively. This
could possibly be generalised to there is at least n, for arbitrary natural numbers n.
We studied such “at least n” operators in (Ågotnes and Alechina, 2006), where we
investigated an epistemic language interpreted in purely syntactic structures (Fagin
et al., 1995), extended with an operator min(n) meaning that the agent explicitly
knows at least n formulae. A promising direction of research would be to introduce
relative knowledge operators to express examples such as ‘The investor explicitly
knows that there is something that the broker explicitly knows but the investor is
not aware of’. Perhaps relative knowledge can be expressed using formulas to ex-
press inclusion of accessibility relations in the states building on the work of van
Ditmarsch et al. (2009).
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