
Optimisation of piezoelectric cantilever energy

harvesters including non-linear effects

R Patel, S McWilliam, A A Popov

Dept. of Mechanical, Materials and Manufacturing Engineering, University of

Nottingham, Nottingham, NG7 2RD, UK

E-mail: Rupesh.Patel@nottingham.ac.uk

Abstract. The paper proposes a versatile non-linear model for the prediction of

piezoelectric energy harvester performance. The presented model includes (i) material

non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-

linearity incorporated by assuming in-extensibility and accurately representing beam

curvature. The addition of a sub-model, which utilises the transfer matrix method

to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate

optimisation of piezoelectric layer coverage. A validation of the overall theoretical

model is performed through experimental testing on both uniform and non-uniform

samples manufactured in-house.

For the harvester composition used in this work, the magnitude of material

non-linearity exhibited by the piezoelectric layer is 35 times greater than that of

the substrate layer. It is also observed that material non-linearity, responsible for

reductions in resonant frequency with increases in base acceleration, is dominant over

geometric non-linearity for standard piezoelectric harvesting devices. Lastly, over the

tested range, energy loss due to damping is found to increase in a quasi-linear fashion

with base acceleration.

During an optimisation study on piezoelectric layer coverage, results from the

developed model were compared with those from a linear model. Unbiased comparisons

between harvesters were realised by using devices with identical natural frequencies

– created by adjusting device substrate thickness. Results from three studies,

each with a different assumption in mechanical damping variations, are presented.

Findings showed that, depending on damping variation, a non-linear model is essential

for such optimisation studies with each model predicting vastly differing optimum

configurations.

Energy harvesting, Piezoelectric beam, Geometric non-linearity, Material non-linearity,

Coverage optimisation
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1. Introduction

Over the last decade there has been a growing increase in research in the field

of vibrational energy harvesting. The principle is to convert ambient vibrational

energy into electrical energy with practical devices primarily targeted at replacing or

supplementing the batteries used to power wireless sensors for condition monitoring,

e.g. a tyre pressure sensor [1]. The use of piezoelectric materials is seen to be the most

effective transduction method [2]; a statement which is reflected by piezoelectric devices

receiving the most interest. For general information on vibrational energy harvesting

the reader is referred to compendium in the form of a recent book [3]. However, more

specifically for piezoelectric energy harvesters the reader is directed to Piezoelectric

Energy Harvesting [4].

There has been a great deal of work on the linear modelling of cantilever

piezoelectric harvesters. Sodano et al . [5] used the Rayleigh-Ritz procedure for

estimating the power output from a cantilever mounted piezoelectric generator. Ertuk

and Inman [6] later developed a distributed-parameter electromechanical model for

energy harvesters. Validation was also completed by the authors with theoretical

results in good agreement with experimental data [7]. Patel et al . expanded on

this by accurately incorporating the effects of non-uniform beams created by altering

piezoelectric layer coverage. Utilisation of the model showed vast improvements

in performance are achievable with experimental data indicating model validity [8].

However, despite the level of interest in the area, reliable non-linear modelling of

piezoelectric harvesters validated through detailed experimental work is generally

lacking.

Models exist to simulate energy harvesters operating in conditions or arrangements

where non-linearity is induced intentionally. This approach is utilised to assist in

overcoming a major limitation to vibrational energy harvester usability – a limited

operational bandwidth [9]. In early research, Ramlan et al . [10] theoretically

investigated the effects of introducing non-linearity via spring hardening with system

behaviour represented in the form of the Duffing equation. System bandwidth was

found to increase, with the peak magnitude of generated voltage remaining on a similar

level to that predicted by a linear model. Similar theoretical and experimental research,

whereby non-linearity is induced through the use of magnets, can be found in [11, 12] to

name a few. More recent advances on the use of magnets are presented by Tang et al. in

[13, 14]. The authors propose the use of a magnetic oscillator in-place of a fixed magnet

with experimental results indicating a 100% improvement in bandwidth and a 42%

improvement in peak power at an acceleration level of 2 ms−2 over both fixed magnet

and linear harvester designs [13]. The piezoelectric energy harvester-magnetic oscillator

design is realised through the inclusion of an additional cantilever with a magnetic proof

mass, above the conventional energy harvester cantilever. Readers are directed to [14]

for detailed information, through experimental work, on the use of magnets in improving

the functionality of energy harvesters through monostable/bistable device designs and
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also designs targeted at frequency-up-conversion for use in low frequency applications.

An alternate method for intentionally inducing non-linearity is through the use of a

static axial pre-load. Masana and Daqaq [15] accurately modelled and experimentally

validated such a scenario for piezoelectric energy harvesters. Findings indicated that

axial pre-load can be beneficial in the improvement of both device bandwidth, by

introducing non-linearity, and peak power, by increasing the electrical damping.

Non-linearity naturally exists in vibrating systems undergoing large deflections

(geometric non-linearity), and when certain materials are involved in harvester

composition – particularly associated with the piezoelectric layer. As shown by

Joshi in [16], non-linear constitutive equations can be used to define material non-

linear behaviour, with Crespo da Silva and Glynn [17] providing fundamental work on

geometric non-linearity in beams. Few works can be found which attempt to incorporate

these effects in relation to the modelling of energy harvesters, e.g. [18, 19, 20], with

experimental validation providing confidence in the developed models. Stanton et al .

provide ground work for the modelling of inherent piezoelectric material non-linearities

in energy harvesters [19]. Model validation is also provided through experimental testing

on an off-the-shelf bimorph device. The model is restricted to the analysis of uniform

samples, with symmetry through the thickness, where harvesters are comprised of layers

being identical in length. The effects of substrate material non-linearity and geometric

non-linearity are not considered in [19]. The representation of such factors is seen to be

important in the modelling of certain types of energy harvester, namely thin film flexible

energy harvesters. Mutsuda et al . [21] have proposed an ocean power generator which

comprises of underwater hanging flexible harvesters attached to an elastic floating unit.

The floating unit can generate electric power from wave oscillations and wave breaking

whilst hanging units utilise vibrations created by underwater currents, vortices and

oscillation. Naturally, as a result of low oscillatory frequencies occurring in an ocean

environment (≈0.8-1.2 Hz), the harvester must be manufactured from flexible material.

Silicone rubber for the substrate layer(s) and polyvinylidene flouride (PVDF) for the

piezoelectric layer(s) are the materials of choice. The usage of such flexible devices is not

only limited to the ocean environment and can be utilised in, for example, wind flutter

applications – exacting energy on/near bridges. The materials used in the manufacture

of such devices, and the large deflections which they undertake, indicate the requirement

for an improved analytical non-linear model. Our study is heavily motivated by these

devices. It is important to be able to predict how non-linear behaviour affects the

frequency response of the harvester (the extent of resonance shift and peak magnitude

reduction) in order to ensure the harvester is designed to operate most efficiently at the

dominant excitation frequency.

In this paper a versatile non-linear model will be developed which has the ability to

accurately predict piezoelectric energy harvester performance. The model will include

a transfer matrix sub-model to determine the dynamic behaviour of segmented beams

which are generated when altering the coverage of the piezoelectric layer. Coupling with

energy expressions for segmented harvester structures will allow for the optimisation of
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devices in terms of their piezoelectric layer coverage. This was not considered before,

e.g. in [18] or [19], but is seen to be essential when designing performance/cost efficient

devices. Substrate material non-linearity will also be included in model development.

This factor is highly important as the model is expected to be used on thin film flexible

devices in the near future. Additionally, the curvature of the beam which is required

to incorporate geometric non-linearity, will be obtained through differential geometry.

The paper is laid out in the following manner. Section 2 will disclose information on

the modelling approach and the embodiment of material and geometric non-linearities.

Hamilton Extended Principle along with the calculus of variations will be used to obtain

the final two equations of the motion (transverse displacement and voltage). This will

be followed by a substantial section on model validation through experimental work,

Section 3. Results obtained from four different samples manufactured ‘in-house’, with

various lengths of piezoelectric material, will be presented here. Section 4 illustrates

the importance of using the non-linear model during device optimisation over a linear

model in certain operating conditions. Finally, the paper will end with closing remarks

and suggestions for future work.

2. Modelling a piezoelectric harvester system including various

non-linearities

In this section details behind the theoretical modelling of energy harvesters are

presented, including both geometric and material non-linearities. To increase model

versatility by allowing for alternations to piezoelectric layer coverage, a component of

the model will utilise the transfer matrix method [22]. The accurate prediction of natural

frequencies and mode shapes will result from such an approach. Electrical aspects of

the system will comprise solely of a load resistor with previous work on more realistic

circuitry, for example, storing generated energy in a capacitor, provided previously in

[8].

2.1. Energy harvester

The general methodology behind model development is similar to that undertaken by

several other researchers, i.e. [1, 23]. Material non-linearity is introduced in the form of

additional terms found in constitutive equations, and geometric non-linearity will result

from an inextensible beam assumption. Extended Hamilton’s principle, along with the

calculus of variations, is used to obtain equations of motion in the time domain.

A schematic of the structure is provided in Figure 1. The considered harvester

consists of a composite two-layer Euler-Bernoulli beam, with piezoelectric material

perfectly bonded to a substrate layer. x1 represents the distance of the piezoelectric

layer from the clamped end, and x2 is the length of the piezoelectric layer. The current

Euler-Bernoulli beam assumption, in which shear deformation and rotary effects are

neglected, is reasonable for the vast majority of expected harvester geometries, and
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Figure 1: A schematic on the notation and displacements used during non-linear model

development.

justified by Dietl et al . in [24]. Other notation in Figure 1 is taken in conjunction with

[23], with the Newtonian inertial co-ordinate system represented by (x, y, z) and the

local co-ordinate system represented by (ξ, θ, ζ).

2.1.1. Constitutive equations The constitutive equation of a material is used to relate

axial stress, σ11, to axial strain, ε11, and, in addition for the piezoelectric material, the

electric displacement, D3, to axial strain. Herein, index 3 refers to the y-direction, i.e.

through the thickness of the material, and index 1 refers to the x-direction, i.e. parallel

to the beam length. For the piezoelectric material [23] one has

σp
11 = Epε

p
11 +

µ1

2
(εp11)2 − Epd31Efield − µ2ε

p
11Efield , (1)

D3 = Epd31ε
p
11 +

µ2

2
(εp11)2 + ε33Efield , (2)

where superscript p refers to the piezoelectric layer, Ep is the piezoelectric material

Young’s modulus, and Efield the electric field strength. d31 is a piezoelectric material

constant, and ε33 is the material permittivity. The difference between the above

equations (Equations (1) and (2)), and linear relationships used in for example [7],

is the inclusion of higher order terms with constants µ1 and µ2. These terms represent

non-linearity, and are both specific and unique to each ‘batch’ of piezoelectric material.

For the substrate material one has

σs
11 = Esε

s
11 +

µs1

2
(εs11)2 , (3)

where superscript s refers to the substrate layer and Es is the substrate material Young’s

modulus. Note how a coefficient of material non-linearity, µs1, has also been included

for the substrate layer. As a result of experimental setup uncertainties, the importance

of this term is realised in Section 3.1. However, as alluded to in the Introduction,

its inclusion is paramount for the modelling and performance predictions of certain

harvester compositions, work which is not presented here.
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Equations governing system response will be determined through application of the

Hamilton Extended Principle. This requires both the Lagrangian of the system and

work done on the system, where the Lagrangian refers to the difference between kinetic

energy, T , and potential energy, U . An expression for each of these terms is obtained

in the following subsections.

2.1.2. Potential energy The potential energy present in the system can be expressed

as follows. Note how different segments of the beam are considered individually due to

variations in material composition.

U =
1

2

∫ x1

0

∫∫
As

(σs
11ε

s
11)dAds+

1

2

∫ x1+x2

x1

∫∫
As

(σs
11ε

s
11)dAds+

1

2

∫ x1+x2

x1

∫∫
Ap

(σp
11ε

p
11)dAds

+
1

2

∫ L

x1+x2

∫∫
As

(σs
11ε

s
11)dAds+

1

2

∫ L

0

EA(s)(u′(s, t) +
1

2
(v′(s, t))2)2ds

− 1

2

∫ x1+x2

x1

∫∫
Ap

Efield(t)D3dAds , (4)

where L is the length of the substrate layer, or x1+x2+x3, ds is the small element length,

and As and Ap are cross-sectional areas for the substrate and piezoelectric material

respectively. Terms v(s, t) and u(s, t) refer to the transverse and longitudinal deflection

respectively, see Figure 1, while (′) donates the derivative with respect to arc length,

s. Note how, herein, for the deflection terms, the independent variables s and t are

excluded for ease in reading. The expression for EA(s) must take into account non-

uniform material distribution, realised through the use of Heaviside functions:

EA(s) =
(
H(s− 0)−H(s− L)

)
Esbsts

+
(
H(s− x1)−H(s− x1 − x2)

)
Epbptp . (5)

Strain in the beam can be expressed in terms of the distance from the neutral axis,

y, and beam curvature, ρ, viz.:

ε11 = yρ , (6)

where ρ is obtained using differential geometry, see for example [25], and given by:

ρ = v′′ + v′′u′ − v′u′′ , (7)

with higher powers approximated as:

ρ2 ≈ (v′′)2 + 2(v′′)2u′ − 2v′′v′u′′ , (8)

ρ3 ≈ (v′′)3 . (9)

Utilising Equations (1)-(3) and Equations (6)-(8), in addition to the assumption

that electric field is uniform throughout the piezoelectric thickness, tp, i.e. Efield(t) =
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−V (t)/tp, transforms Equation (4) to:

U =
1

2

∫ L

0

{
(K1(s)−K2(s)V (t))((v′′)2 + 2(v′′)2u′ − 2v′′v′u′′)

+K3(s)((v′′)3)−K4(s)(v′′ + v′′u′ − v′u′′)V (t)

+EA(s)(u′ +
1

2
(v′)2)2 −K5(s)V 2(t)

}
ds , (10)

where the terms K1 through K5 are given by:

K1(s) =
(
H(s− 0)−H(s− x1)

)
EsIs +

(
H(s− x1)−H(s− x1 − x2)

)
EsIs1

+
(
H(s− x1)−H(s− x1 − x2)

)
EpIp1

+
(
H(s− x1 − x2)−H(s− L)

)
EsIs , (11a)

K2(s) =
3

2

(
H(s− x1)−H(s− x1 − x2)

)(µ2Ip1

tp

)
, (11b)

K3(s) =
µs1

2

(
H(s− 0)−H(s− L)

)
Is2 +

µ1

2

(
H(s− x1)−H(s− x1 − x2)

)
Ip2 , (11c)

K4(s) =
(
H(s− x1)−H(s− x1 − x2)

)
(2Epd31bp)

(
ts +

tp
2
− y
)
, (11d)

K5(s) =
(
H(s− x1)−H(s− x1 − x2)

)(bpε33

tp

)
. (11e)

where y is the location of the neutral axis from the bottom of the substrate layer. Is,

Is1, Ip1 and Ip2 are provided by

Is =
bst

3
s

12
, (12a)

Is1 = bs

[
(ts)y

2 − (t2s)y +
1

3
t3s

]
, (12b)

Ip1 = bp

[
(tp)y

2 + (−2tpts − t2p)y +

(
1

3
t3p + t2pts + tpt

2
s

)]
, (12c)

Is2 = bs

[
(ts − y)4

4
− (−y)4

4

]
(12d)

Ip2 = bp

[
(ts + tp − y)4

4
− (ts − y)4

4

]
. (12e)

where ts is the substrate thickness, and bs and bp refer to the substrate and piezoelectric

layer width, respectively.

The in-extensibility condition is used to eliminate independent longitudinal

vibrations, u, in Equation (10), by relating them to transverse vibrations, v. For the

in-extensibility condition to be satisfied, the strain along the neutral axis [23], ε0, must

equate to zero, where ε0 is given by:

ε0 =
√

(1 + u′)2 + (v′)2 − 1 . (13)

Expansion, rearrangement and utilisation of Taylor’s expansion leads to the following
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relationship:

u′ ≈ −1

2
(v′)2 . (14)

Using the above relationship in Equation (10) results in a two-degree-of-freedom system,

one dependant coordinate for displacement and the other for voltage. The next step is

to obtain the system Lagrangian which requires an expression for the kinetic energy,

2.1.3. Kinetic energy and system Lagrangian The kinetic energy of such a system can

be represented as:

T =
1

2

∫ L

0

m(s)

[(
−
∫ s

0

v′v̇′
)2

+ v̇2

]
ds . (15)

Note that the transverse-longitudinal relationship has been used to eliminate u̇. m(s)

is the mass per unit length and can be defined as:

m(s) = ρsAs +
(
H(s− x1)−H(s− x1 − x2)

)
ρpAp , (16)

where in turn ρs and ρp are the substrate and piezoelectric material density respectively.

The Lagrangian of the system can be defined as usual

L = T − U , (17)

which upon substitution of Equations (10) and (15) leads to:

L =
1

2

∫ L

0

m(s)

[(
−
∫ s

0

v′v̇′
)2

+ v̇2

]

− (K1(s)−K2(s)V (t))((v′′)2 + (v′′v′)2)−K3(s)((v′′)3)

+K4(s)(v′′ +
1

2
v′′(v′)2)V (t) +K5(s)V 2(t)

 ds , (18)

In the following subsection, extended Hamilton’s principle is utilised in-order to

obtain the two equations of motion.

2.1.4. Governing equations of motion Before the calculus of variations can be used,

an expression for external work done on the system, W , requires formulation, and is a

combination of base excitation, ẅb(t), and the electric potential energy:

W =

∫∫∫
Vs

ρsvdVtotal +

∫∫∫
Vp

ρpvdVtotal

 ẅb(t)− V (t)q(t) , (19)

where q(t) is the electric charge generated by the energy harvester. Applying the

extended Hamilton’s principle, i.e.∫ t2

t1

δ(L+W)dt = 0 , (20)
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and utilising the calculus of variations leads to the following equations of motion:

m(s)v̈ +
[
v′
∫ s

L

m(s)

∫ s

0

(v̈′′v′ + (v̇′)2)dsds
]′

+
[
(K1(s)−K2(s)V (t))v′′

]′′
+
[(

(K1(s)−K2(s)V (t))v′′v′
)′
v′
]′

+
[3

2
K3(s)(v′′)2

]′′
−
[1

2
K4(s)V (t)

]′′
+
[1

2
K4(s)v′′v′V (t)

]′
−
[1

4
K4(s)(v′)2V (t)

]′′
=
[ ∫∫∫

Vs

ρsdVtotal +

∫∫∫
Vp

ρpdVtotal

]
ẅb(t) , (21)

and∫ L

0

{1

2
K2(s)((v′′)2 + (v′′v′)2) +

1

2
K4(s)

(
v′′ +

1

2
v′′(v′)2

)
+K5(s)V (t)

}
ds− q = 0 , (22)

with the following associated boundary conditions:

v(0, t) = v′(0, t) = v′′(L, t) = v′′′(L, t) = 0 . (23)

A classical modal analysis technique, namely Bubnov-Galerkin method, is used to

obtain simplified ordinary differential equations from the existing partial differential

equations previously shown. Using this approach the beam deflection, v(s, t), is

expressed as an infinite sum of products of normalised eigenvectors, Wr(s), see

Section 2.2, and time dependant generalised co-ordinates, ηr(t), viz.:

v(s, t) =
∞∑
r=1

Wr(s)ηr(t) , (24)

where ‘r’ refers the mode number. Substituting this relationship into Equation (21) and

(22) in addition to using orthonormality conditions, yields the following two governing

equations of motions:

η̈r(t) + 2γrωrη̇r(t) + ω2
rηr(t) + Cr

n1η
2
r(t) + Cr

n2η
3
r(t) + Cr

n3η̈r(t)η
2
r(t)

+ Cr
n4η̇

2
r(t)ηr(t)− Cr

n5V (t)− Cr
n6ηr(t)V (t)

+ Cr
n7η

2
r(t)V (t)− Cr

n8η
3
r(t)V (t) = Cr

n9ẅb(t) (25)

and

Cr
n10ηr(t)η̇r(t) + Cr

n11η
3
r(t)η̇r(t) + Cr

n12η̇r(t) + Cr
n13η

2
r(t)η̇r(t)

+ Cr
n14V̇ (t) +

V (t)

Rload

= 0 . (26)

Note how proportional damping, γr, has been introduced in Equation (25), to

accommodate for energy dissipation from the system. ωr refers to the natural frequency

of the rth mode and is obtained using the transfer matrix method, see Section 2.2.

In obtaining Equation (26), the rate of change in charge, q̇(t), i.e. current, has been

expressed as −V (t)/Rload. This formulation is acceptable as these works will simulate
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and present results from energy harvesters connected directly to a load resistance. Cr
n1

to Cr
n14 are resulting constants independent of time, provided in Appendix 1.

Equations (25) and (26) represent the behaviour of unimorph vibrational

piezoelectric energy harvesters under non-linearity inducing conditions. They can be

solved simultaneously to determine transverse vibrations along the structure and voltage

generated by the energy harvester. Numerical solving of the equations is achieved using

ode solvers in Matlabr, through the Simulinkr interface [26], with data recorded

once steady-state response has been achieved.

2.2. Transfer matrix model for segmented structures

The model presented in Section 2.1 requires knowledge of the natural frequencies and

mode shapes of the harvester. In this section the transfer matrix method [22] is used

to obtain this information for a segmented cantilever beam, by taking into account the

length and position of the piezoelectric layer. As shown in Figure 2 the beam is split into

three sections. The substrate material alone makes up sections 1 and 3, while section 2

comprises both piezoelectric and substrate materials. The notation used to define the

mechanical forces and deformations at the modes of each element is shown in Figure 2

and 3.

Figure 2: Element properties for beam sections. Each nodal joint has an associated

displacement (W ), rotation (θ), moment (M) and shear force (F ).

Figure 3: Notation adopted for information at nodal points of the ith beam element.

The exact beam function for the transverse motion of the ith section of a segmented

beam is given by:

Wi(x) = a sin

(
βix

li

)
+ b cos

(
βix

li

)
+ c sinh

(
βix

li

)
+ d cosh

(
βix

li

)
, (27)
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where a, b, c and d are constants which are ordinarily determined using boundary

conditions, x is the distance from the left side of the beam segment and li is the beam

segment length. βi can be defined by:

βi = ω0.5li

(
ρiAi

EiIi

)0.25

, (28)

where Ei is the element Young’s modulus, Ii is the element area moment of inertia, ρi is

the element mass density and Ai is the element cross-sectional area. The middle section

is a composite piezoelectric/substrate beam and the properties of this element can be

calculated using the equivalent flexural rigidity, viz.:

(EI)composite = EsIys + EpIyp , (29)

where the parallel axis theorem can be used to obtain Iys and Iyp, such that:

Iys =
bsts

3

12
+ bsts

(
y − ts

2

)2

, (30)

Iyp =
bptp

3

12
+ bptp

(
tp
2

+ ts − y
)2

. (31)

The mechanical forces and deformations at the right-hand side of any beam element,

zRi, can be related to the left-hand side, zLi, through the use of a transfer matrix, Ui(li)

[22], where, 
WRi

θRi

MRi

FRi

 = Ui(li)


WLi

θLi
MLi

FLi

 , (32)

and Ui(li) is defined by:

Ui(li) =



C0 −liC1 − l
2
iC2

EiIi
− l

3
iC3

EiIi

−βi
4C3

li
C0

liC1

EiIi

l2iC2

EiIi

−EiIiβi
4C2

l2i

EiIiβi
4C3

li
C0 liC1

−EiIiβi
4C1

l3i

EiIiβi
4C2

l2i

βi
4C3

li
C0


. (33)

Constants C0 to C3 are defined by:

C0 =
cosh(βi) + cos(βi)

2
, (34a)

C1 =
sinh(βi) + sin(βi)

2βi
, (34b)

C2 =
cosh(βi)− cos(βi)

2βi
2 , (34c)
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C3 =
sinh(βi)− sin(βi)

2βi
3 . (34d)

Full details on how the transfer matrix and related constants are derived is provided

in [22]. For the general case, where piezoelectric material (of length shorter than the

substrate layer) is centrally located on the beam, the overall transfer matrix of the

system, Uoverall, is obtained from:

Uoverall = U3(x3)U2(x2)U1(x1) , (35)

where U1, U2 and U3 are the transfer matrices for each section. In some configurations

certain sections are not present, i.e. for a conventional energy harvester the piezoelectric

layer covers the full length of the beam and sections 1 and 3 are not present. In

such cases, the corresponding transfer matrices can be removed from Equation (35).

Since Uoverall relates the clamped end of the structure to the free end, known boundary

conditions (in a free vibration situation), wclamped = θclamped = Mfree = Ffree = 0 can be

used to obtain a matrix those determinant yields the natural frequencies of the system.

The 2×2 matrix of interest is extracted from the bottom right corner of the Uoverall

matrix. Values of ω which produce determinant values of zero provide the natural

frequencies of the system. Since mode shapes can be arbitrarily scaled, once natural

frequencies are known the corresponding mode shapes are readily obtained by assuming

one of the variables, i.e. clamped end shear force F , is unity. Following this the mode

shapes are scaled as required, i.e. to the mass of the structure, allowing for the validity

of orthonormality conditions used in Section 2.1.4.

3. Validation through experimental testing

In this section validation of the theoretical model presented in Section 2 is provided

through the experimental testing of uniform and non-uniform samples. The energy

harvesters, manufactured ‘in-house’ and of unimorph type, are comprised of an

aluminium substrate layer and a lead zirconate titanate (PZT) piezoelectric layer.

Adhesion is realised through a combination of DP460 epoxy and a small amount of

silver conductive epoxy, with complete details behind the consistent manufacturing

procedure found in [27]. In terms of the testing procedure, samples are mounted in

a clamp attached to a Data Physics GW-V4 electromagnetic shaker providing base

excitation. A Stanford Research Systems SR785 dynamic signal analyser is used to

output a harmonic signal to the shaker via a standard amplifier. In addition to this, the

analyser has the capability to record two unique signal inputs. One channel was always

used to monitor base acceleration, in order to keep it fixed during frequency sweeping,

while the second channel provided measurement for either voltage across a resistor or tip

velocity. The base acceleration was measured using a PCB Piezotronic accelerometer,

model number – 352C23, and the tip velocity measured with a PolyTec OFV-055 laser

vibrometer, with velocity readings readily converted to displacement.

The coefficients of material non-linearity, i.e. µ1 and µ2, are unique to each

‘batch’ of piezoelectric material, and are not provided on the data sheets of material
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manufacturers. Such coefficients, along with µs1, are estimated using curve fitting

techniques, as is standard practice in the field. Note, since all testing is performed

close to fundamental frequencies, during theoretical simulation, the inclusion of solely

the first vibrational mode, in Equations (25) and (26), is necessary, i.e. r = 1. The fixed

dimensions, i.e. layer widths and thickness, along with relevant material properties are

provided in Table 1. Each sample in this section will be subjected to four increasing

levels of base excitation – 0.5 ms−2, 2.5 ms−2, 5 ms−2 and 7.5 ms−2. The validation of

the model is provided by estimating the coefficients from one sample alone and using

the obtained magnitudes in the theoretical model to predict and compare results for

other samples. Sample 1 (and a sample of only Al) was used to obtained 1, 2 and

s1. The obtained magnitudes were then used to predict the behaviour of non-uniform

samples 2 and 3. The predicated behaviour will be shown to be in good agreement with

experimental trends, indicting the model is valid for a range of piezoelectric material

coverage.

Table 1: Structural dimensions and material properties of harvesters used throughout

the paper.

Parameter Magnitude

Al width (mm) 7

Al thickness (mm) 0.87

PZT width (mm) 7

PZT thickness (mm) 0.5

Young’s modulus of Al (GPa) 69

Density of Al (kg.m−3) 2700

Young’s modulus of PZT (GPa) 62.1

Density of PZT (kg.m−3) 7800

Piezoelectric constant, d31 (m.V−1) -180×10−12

Permittivity, εS33 (F.m−1) 1.549×10−8

3.1. Solely a substrate layer

Firstly the testing of only a substrate layer in the experiential setup was undertaken, i.e.

a device comprising of no piezoelectric material. The results from this test are provided

in Figure 4, superimposed with data from theoretical simulations. The sample used had

an extended length of 43±1 mm. Where extended length refers to the overhang length

from the clamp face.

Experimental data in Figure 4 indicates a shift in the resonance from 295.9 Hz to

294.1 Hz when subjecting the sample to a base acceleration of 0.5 ms−2 and 7.5 ms−2

respectively. The magnitude of this shift can be accommodated for by setting µs1 to
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Figure 4: Experimental frequency responses of an aluminium beam at varying base

acceleration levels with the inclusion of substrate material non-linearity.

-2×1013 Pa; found through curve fitting in Matlabr [26]. The importance of including

an additional form of non-linearity in conjunction to geometric and piezoelectric material

non-linearity is evident from the example presented here. The softening phenomena

would not have been reproducible had substrate material non-linearity been excluded

from theoretical model formulation. The observed non-linearity could have resulted

from other sources, such as boundary condition non-linearity or inertial non-linearity

(see [28] for a detailed review on non-linearities in vibrating systems). However, the

inclusion of substrate material non-linearity, albeit in a crude manner, will be shown

in Section 3.2 to provide excellent experimental-theoretical agreement across a range of

harvester samples.

As has been observed by previous researchers [29], the magnitude of mechanical

damping experienced by the structure is dependant on the magnitude of acceleration,

and found to be approximately linear across the tested range. Note that this is not

in agreement with the non-linear damping assumption made by Stanton et al . in [19].

Damping magnitudes corresponding to theoretical plots in Figure 4 were extracted from

experimental data using the half-power points method [31] and are shown in Figure 5.

In depth model development incorporating the variation in mechanical damping are

beyond the scope of these works. However, briefly, for the experimental setup utilised,

one can include, air flow damping, stick-slip at the clamped end, and material damping,

to be the most likely causes of observed variations. Further details on variation in

mechanical damping can be found in [30].

3.2. Uniform and non-uniform energy harvesters in closed circuit conditions

Following on, in this section the outcome of testing three energy harvester samples

is presented, each comprising of differing piezoelectric layer lengths. Substrate and
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Figure 5: Dependency of mechanical damping on base acceleration for aluminium beam.

piezoelectric layer lengths for each sample are provided in Table 2. Note that for the

non-uniform samples, the piezoelectric material length is reduced from the free end, i.e.

clamping occurs on both piezoelectric and substrate layers, or x1 = 0 in the theoretical

model.

Table 2: Substrate and piezoelectric layer extended length for samples tested in this

section.

Sample Al extended length (mm) PZT extended length (mm)

Uniform 43.82±1 43.82±1

Non-uniform 1 45.95±1 18.15±1

Non-uniform 2 45.49±1 9.77±1

Results in this section are from three different samples tested in closed-circuit

electrical conditions, i.e. Rload = 0. This eliminates one of the piezoelectric coefficients of

non-linearity, namely µ2, facilitating the curve-fitting process. Note that the magnitude

of the substrate material coefficient of non-linearity, µs1 previously found in Section 3.1,

is used herein when generating theoretical results. Experimental data for the uniform

conventional sample, superimposed with theoretical results, is provided in Figure 6.

Figure 6 shows that substantial non-linearity does exist in real situations and a

softening phenomenon is witnessed once again. This observation will be a continual

theme indicating that material non-linearity dominates over geometric non-linearity

for this type of cantilever piezoelectric energy harvester. Numerically, the maximum

deflection equates to 0.0017 the overhang length which reinforces reasoning behind why

geometric non-linearity is negligible for this particular device. The resonant frequency

of the structure was found to be 360.4 Hz at 0.5 ms−2, shifting to 355.3 Hz at 7.5 ms−2.

Curve-fitting of data resulted in the coefficient µ1 requiring a magnitude of -7×1014 Pa

(35 times than that for the substrate material) in order to replicate this 4.9 Hz shift. The
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Figure 6: Comparison between theoretical and experimental tip displacement responses,

for a conventionally designed energy harvester, in closed circuit conditions, subjected to

various acceleration levels. Substrate non-linearity also included.

percentage difference between experimental and theoretical resonant frequencies, when

subjecting the sample to a base acceleration of 7.5 ms−2, is 0.48%. Note how, although

peak magnitude is well predicted by the model, off-resonant behaviour is not. This is

possibly due to imperfections in bonding during sample manufacture, with results from

samples with shorter piezoelectric layers (Figures 8 and 9) showing better off-resonance

matching. The variation in mechanical damping is again seen to resemble a quasi-linear

increase with base acceleration, with data provided in Figure 7 for completeness.

Figure 7: Dependency of mechanical damping on base acceleration for the three samples

analysed in this section.

Results from samples comprising of shorter piezoelectric layers will now be shown

in-order to demonstrate the versatility of the model. Figures 8 and 9 show results from

the experimental testing and theoretical simulation of non-uniform samples 1 and 2,
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respectively. It is important to note that no more curve fitting for non-linearity terms

is undertaken here. The theoretical data in each case is obtained using the previously

found µ1 and µs1 magnitudes of -7×1014 Pa and -2×1013 Pa, respectively.

Figure 8: Comparison between theoretical and experimental tip displacement responses,

for first non-uniform energy harvester, in closed circuit conditions, subjected to various

acceleration levels. Substrate non-linearity also included.

Figure 9: Comparison between theoretical and experimental tip displacement responses,

for second non-uniform energy harvester, in closed circuit conditions, subjected to

various acceleration levels. Substrate non-linearity also included.

Figures 8 and 9 show that good experimental-theoretical agreement is also

obtainable for non-uniform samples using previously determined magnitudes for material

non-linearity coefficients. The shift in resonant frequency between the two excitation
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extremes, in each case, is found to be 4 Hz and 1.6 Hz, increasing with piezoelectric

material length. Prediction of the resonant frequency by the theoretical model, at an

acceleration of 7.5 ms−2, results in percentage errors of 0.06% and 0.29%. This highlights

the accuracy and versatility of the model present in Section 2 in predicting the behaviour

of piezoelectric harvesters subjected to non-linear inducing excitation conditions. The

mechanical damping was again found to increase in a quasi-linear manner with results

presented in Figure 7. The occurrence of differing rates of increase in damping ratio with

base acceleration (26%, 70% and 94% for the uniform sample and non-uniform samples

1 and 2, respectively) emphasises the difficulties in predicting damping magnitudes. In

the following section, the energy harvester will be connected to a load resistor in order

to determine the magnitude of the remaining non-linear coefficient, µ2.

3.3. Energy harvester connected to electrical load

The magnitudes of µ1 and µs1 found from previous closed circuit testing are still valid

as the sample tested here was manufactured from the same ‘batch’ of sheet piezoelectric

material. The two variables which require estimation are µ2, found in Equation (2),

and γr (r = 1), found in Equation (25). Dimensions for the sample under consideration

are provided in Table 1 with a 45.02 mm±1 mm extended length. The magnitude of

mechanical damping (0.0062, 0.0085, 0.0108 and 0.0125), corresponding to the results

in Figure 10 at the 4 excitation levels, was obtained through closed circuit testing and

curve fitting as previously demonstrated. Figure 10 provides results obtained when a

150 kΩ resistor is introduced to the system. The first observation to note is that good

agreement between experimental and theoretical voltage responses is achievable without

necessity of the non-linear coefficient µ2. Following this observation, the effects of µ2

on theoretical results are investigated, with realisation that µ2 has little influence on

theoretical frequency responses. This is another difference when comparing the proposed

theoretical model with that developed by Stanton et al. in [19], where the electro-elastic

non-linear constant is utilised. It is believed that this coefficient can be assumed zero

in the majority of energy harvesting scenarios due to the inherently low voltage levels.

Applications utilising piezoelectric material for actuation are subjected to higher voltage

levels and in these situations the non-linear coefficient, µ2, would have a more significant

impact on theoretical results. As a final note, in terms of energy harvesting, the vision

for the devices being proposed by Mutsuda et al . [21] is to generate power on the

kilowatt scale and so analysis on these device would eventually require the predictions

and utilisation of µ2.

From comparing the frequency shift for cases with and without a resistor, as one

would expect, the level of experienced non-linearity reduces when energy is extracted

from the system by the addition of an electrical load. The frequency shift (from an

excitation of 0.5 ms−2 to 7.5 ms−2) reduces to 3.5 Hz from a 6.5 Hz shift obtained when

the load resistor is excluded. Around 390 Hz, there is noise in the experimental data in

Figure 10. This is due to a resonant frequency from the clamp and shaker arrangement
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Figure 10: Comparison between theoretical and experimental voltage responses, for a

conventionally designed energy harvester, connected to a 150 kΩ resistor, subjected to

various acceleration levels. Substrate non-linearity also included.

interfering with vibrations of the energy harvesting device.

The non-linear constants obtained in this paper are only valid for this particular

‘batch’ of substrate and piezoelectric material. For each new ‘batch’ of material,

experimental testing must be undertaken to determine the magnitudes of the three

material non-linearity coefficients. It is advised that the following be undertaken to

achieve this:

• A frequency sweep around the resonant frequency of the sample under investigation

should be performed for at least 4 different base accelerations.

• It is advisable that testing of only substrate cantilevers be performed initially. This

will eliminate all but one material non-linear coefficient, µs1, improving the fitting

process. Tip displacement FRFs should be used here.

• Following this, it is suggested that a complete energy harvester sample (either

uniform or non-uniform) be tested in closed circuit conditions. The fitting process

should now be performed to obtain µ1, using the already determined µs1 magnitude.

Again tip displacement FRFs should be used here. The fitting process can also be

used here to obtain variations in mechanical damping with base acceleration.

• Finally, the testing of a complete energy harvester connected to load resistor can

be undertaken. Voltage FRFs can be used in this case, with curve fitting used to

provide the user with only remaining non-linear coefficient, µ2.

4. Linear and non-linear model comparisons during device optimisation

In this section, device optimisation is performed in relation to coverage of the

piezoelectric layer. Theoretical results from both a linear and non-linear model will
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be provided and comparisons made. The width of both layers is taken to be 5 mm and

the thickness of the substrate and piezoelectric layer taken to be 0.67 mm and 0.5 mm

respectively. The material properties assigned to the device are given in Table 1. The

length of the substrate layer will remain fixed at 50 mm with the piezoelectric layer

length varying from 50 mm to 1 mm. Length reductions are made from the free end,

i.e. x1 remains 0 in Figure 1. Note how the Euler-Bernoulli assumptions made during

the modelling procedure hold true as the overall beam length remains at 50 mm and

only the length of the piezoelectric material is being reduced.

4.1. Creating devices with identical fundamental frequency

Before performing the study on piezoelectric coverage, a discussion on why a constant

fundamental frequency approach is essential. Altering one geometric parameter alone

is not advisable as this creates devices with differing fundamental frequencies. Say, the

conventional device (both layers being the same length) is designed for an application to

operate most effectively at F Hz, the dominant excitation frequency. Any changes to the

piezoelectric layer length, whilst keeping all other geometric parameters constant, will

alter the fundamental frequency creating an ineffective device. To avoid this mismatch

between fundamental and dominant excitation frequencies across all designs, in this

work the thickness of the substrate layer is used as a control parameter. Through

this simple procedure, unbiased design comparisons can be made. Figure 11 shows the

substrate thickness required for each piezoelectric layer length to create configurations

with identical fundamental frequencies.

Figure 11: Plot indicating the substrate thickness required for designs with various

piezoelectric layer lengths. All configurations have identical natural frequencies.

The data plotted in Figure 11 is obtained by sweeping through a range of

substrate thickness for each design, plotting fundamental frequency vs. thickness,

and interpolating to find an accurate value. The trend is as one would expect. As

material is reduced from the free end, the mass of the device reduces at a greater rate

than its stiffness. This causes an increase in fundamental frequency which must be
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countered by reducing substrate layer thickness. After a critical point, which depends

on materials/initial size/inclusion of a tip mass, etc., the stiffness begins to reduce at a

higher rate than device mass and so increases in substrate thickness are required.

4.2. Piezoelectric length optimisation

In this section the devices generated in Section 4.1 are subjected to an acceleration

level of 7.5 ms−2 connected to a 1 MΩ resistor. The results obtained for the peak

voltage, using both a linear and non-linear model, are shown in Figure 13-15. The

linear results are obtained by setting the following time-independent constants, found

in Equations (25) and (26), to zero – Cr
n1-Cr

n4, Cr
n6-Cr

n8, Cr
n10, Cr

n11 and Cr
n13. For the

non-linear model, non-linear constants, µs1, µ1 and µ2 obtained in Section 3.2 are used

during the study.

The effect of variations in mechanical damping during optimisation studies is highly

important and cannot be ignored. Detailed work on changes in mechanical damping, and

predictions during piezoelectric coverage optimisation using a linear theoretical model,

can be found in [27]. For the purpose of this work three scenarios will be considered:

• The damping magnitude will remain constant across all configurations.

• Damping data from both the uniform and 2nd non-uniform sample (PZT coverage

of 100% and 21% respectively) is used to obtain a power relationship between

device volume and damping ratio. Therefore in this scenario it is assumed that the

magnitude of mechanical damping depends on device volume where reducing the

volume by approximately 25% reduces the damping by 50%. see the dash line in

Figure 12 for numerical values.

• Experiments in [27] showed that predicting trends between mechanical damping

and PZT length is extremely difficult. The author found that, overlying the general

trend, large variations in damping occurred between samples; variations which were

predominantly due to mounting and inconsistent clamping force. One observed

trend between PZT length and mechanical damping showed a linear increase in

damping with length until approximately 66% coverage, thereafter plateauing off

for longer PZT lengths. By assuming the major contributor to damping magnitude

to be the amount of adhesive, a similar trend can be used in this work by scaling

according to data from the uniform sample in Figure 7. The final trend between

damping ratio and length of PZT which will be used in the optimisation study is

shown in Figure 12.

Figure 13 clearly shows differences in the performance trend obtained whilst using

either a linear or non-linear model when a constant damping assumption is made. The

linear model suggests that maximum voltage is generated when the piezoelectric material

covers the entire beam, whereas the non-linear model suggests maximum voltage is

generated for a device with a ≈5 mm long piezoelectric layer. For cases where the

piezoelectric layer is short the difference between model outputs is minimal and a
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Figure 12: Two possible trends between mechanical damping ratio and piezoelectric

material coverage (note substrate thickness is also changing in accordance with

Figure 11). The first trend, represented by the dashed line, assumes a power relationship

between damping and volume. The second, represented by the solid line, is obtained by

scaling the findings found in [27].

Figure 13: Trends between piezoelectric layer length and voltage across a 1 MΩ resistor

for linear and non-linear models. Constant damping assumptions.

linear model would suffice. Due to the volume of piezoelectric material the effects

from material non-linearity, which is the dominant effect, are reduced. However, as

the material length increases, so too does the extent of non-linearity. This is the cause

of observed discrepancies for devices with longer piezoelectric coverage. Note how for

devices with the thinnest substrate layers, i.e. piezoelectric lengths of approximately

30 mm from Figure 11, large differences between model predictions exist. Naturally, the

deflections experienced by these devices will be greatly increased which induces non-

linear behaviour thereby resulting in the relatively low voltage levels seen in Figure 13.

In Figure 14 results from both linear and non-linear models, while assuming

damping varies through a power relationship with volume, are presented. The general

trend is clearly very different from that obtained in Figure 13 where damping was

assumed constant. Peak performance is seen to occur for devices with PZT coverage of
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Figure 14: Trends between piezoelectric layer length and voltage across a 1 MΩ resistor

for linear and non-linear models. Damping assumed to vary through power relationship

with device volume, shown in Figure 12.

Figure 15: Trends between piezoelectric layer length and voltage across a 1 MΩ resistor

for linear and non-linear models. Damping assumed to vary according to extrapolated

data taken from [27], shown in Figure 12.

approximately 68% when utilising the linear model, and 100% coverage whilst utilising

the non-linear model. For devices which exhibit low mechanical damping there is large

divergence between the two model as a result of increased non-linearity in devices. In

this case, devices with reduced PZT coverage are showing poor levels of performance due

to the presence of large mechanical damping. Information on damping ratio magnitudes

utilise here can be found in Figure 12.

When the damping magnitude is assumed to partly vary with adhesive length, in the

manner shown in Figure 12, both models predict the same optimum configuration, see

Figure 15. In this scenario, the samples with increased PZT coverage experience higher

mechanical damping suppressing motion, thereby reducing the effects of non-linearity

on peak performance. For this reason the differences between results from a linear

model and a non-linear model are much smaller than those obtained when assuming a

low constant damping ratio, Figure 13. The low mechanical damping for samples with
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reduced lengths of PZT is responsible for the observed spike in peak voltage. Similar

trends, i.e. high performance from devices with short PZT layers, have previously been

reported through experimental work in [27].

This brief study highlights the importance of using both a non-linear model with

detailed knowledge on mechanical damping variations, during device optimisation in

befitting excitation conditions. Although for the last tested case both models predicted

the same optimum PZT coverage, the non-linear model is essential in predicting the

resonant frequency at which peak performance occurs, see Figure 16. The device

performance would have suffered by 5% if this shift was unknown to the energy harvester

designer. In this example the shift, and detriment in performance, is small because the

optimum configuration only has a 10% piezoelectric coverage, however, this will not

always be the case.

Figure 16: Frequency response functions obtained from linear and non-linear model for

the optimum configuration in Figure 15.

5. Conclusion

A robust non-linear model to predict the dynamic response of piezoelectric cantilever

energy harvesters has been developed and presented. Since piezoelectric material is

known to behave in a non-linear fashion, even at moderate excitation levels, the inclusion

of piezoelectric material non-linearity is seen as essential. Material non-linearity was

also included for the substrate layer in addition to geometric non-linearity for the beam.

The inclusion of substrate material non-linearity was important in terms of extending

the applicability of the model and accounting for effects observed during experimental

testing. Geometric non-linearity is realised by applying an in-extensibility condition,

and material non-linearity is incorporated through the addition of higher order terms

in constitutive equations. In order to ensure piezoelectric layer coverage can still be

optimised, a transfer matrix model was developed allowing for accurate predictions in

the eigenvalues and eigenvectors of segmented structures. Detailed model validation is

provided through the use of harvesters manufactured in-house. This is then followed by
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comparing results from the non-linear model with a linear model while predicting the

performance of energy harvesters.

Closed-circuit testing was initially undertaken which allowed for simplification of

the fitting process when obtaining the magnitude of the non-linear material constants.

For this ‘batch’ of piezoelectric material a µ1 magnitude of -7×1014 Pa was found to

provide adequate matching between experimental and theoretical data. This was seen

to be the case across a range of samples each comprising of a different piezoelectric layer

length. The devices were then attached to a load resistor in order to determine the

magnitude of the second non-linear constant, µ2. It was concluded that the inclusion of

this non-linear constant is not required when modelling harvester devices, possibly due

to the low voltage levels associated with energy harvesting in comparison to when using

piezoelectric material for actuation.

To determine the magnitude of the material non-linearity constant for the substrate

layer, tests were performed in the absence of piezoelectric material. The magnitude of

µs1 was found to be -2×1013 Pa, which, as one would expect, is lower than that of

the piezoelectric material. Another important finding was that mechanical damping

increases in a quasi-linear manner with the base acceleration. This means that simple

scaling, i.e. double the excitation to double the performance, does not strictly apply.

Harvesters must be simulated in realistic operating conditions in order to accurately

predict how they will perform.

A case study on device optimisation has also been presented here. Three different

assumptions were made in regards to the mechanical damping variations with PZT

length; (i) a constant damping ratio for all devices, (ii) a power relationship between

damping and device volume, and (iii) a relationship obtained from a similar experiment

undertaken in [27], extrapolated for this scenario. The results indicate that trends

between piezoelectric layer coverage and performance are highly dependant on damping

variations. The use of a non-linear model for estimating the optimum configuration in

terms of peak power is debatable due to uncertainty in mechanical damping prediction.

However, the model is essential for acquiring knowledge on the extent of changes in

resonant frequency for the optimum configuration.

In terms of future work, experimental testing on harvesters with other material

compositions is recommended. This will assist in gauging the applicability and

limitations of the developed non-linear model. Testing on highly flexible devices such

as those designed to be used in ocean applications, proposed by Mutsuda et al . [21],

is currently in progress. Silicone rubber and PVDF materials make these devices more

sensitive to geometric and substrate material non-linearities, which will reinforce the

usefulness of the developed model.

Acknowledgements

This research was supported by the International Exchanges Scheme by the Royal

Society of London, U.K..



Optimisation of energy harvesters 26

References

[1] Mak K H 2011 Vibration Modelling and Analysis of Piezoelectric Energy Harvesters (University

of Nottingham, UK) PhD Thesis

[2] Roundy S, Leland E S, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey J M, Wright P K

and Sundararajan V 2005 IEEE Pervas. Comput. 4 28-36

[3] Elvin N and Erturk A 2012 Advances in Energy Harvesting Methods (New York, USA: Springer

Science & Business Media)

[4] Erturk A and Inman D J 2011 Piezoelectric Energy Harvesting (Chichester, UK: John Wiley &

Sons Ltd.)

[5] Sodano H A, Park G and Inman D J 2004 Strain 40 49-58

[6] Erturk A and Inman D J 2008 J. Vib. Acoust. 130 041002 (15 pp)

[7] Erturk A and Inman D J 2009 Smart Mater. Struct. 18 025009 (18 pp)

[8] Patel R, McWilliam S and Popov A A 2011 Smart Mater. Struct. 18 025009 (18 pp)

[9] Tang L, Yang Y and Soh C K 2010 J. Intel. Mat. Syst. Str. 21 1867-189

[10] Ramlan R, Brennan M J and Mace B R 2008 ISMA Sep. 2008 (Leuven, Belgium)

[11] Daqaq M F 2010 J. Sound Vib. 329 3621-3631
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Appendix A. Time-independent constants, Cn1 through to Cn14

Cr
n1 =

[ ∫ L

0

Wq(s)
[3

2
K3(s)W ′′2

r (s)
]′′

ds

]
(1.1a)

Cr
n2 =

[ ∫ L

0

Wq(s)
[(
K1(s)W ′′

r (s)W ′
r(s)

)′
W ′

r(s)
]′

ds

]
(1.1b)

Cr
n3 =

[ ∫ L

0

Wq(s)
[
W ′

r(s)

∫ s

L

m(s)

∫ s

0

(W ′′
r (s)W ′

r(s))dsds
]′

ds

]
(1.1c)

Cr
n4 =

[ ∫ L

0

Wq(s)
[
W ′

r(s)

∫ s

L

m(s)

∫ s

0

(W ′2
r (s))dsds

]′
ds

]
(1.1d)

Cr
n5 =

[ ∫ L

0

Wq(s)
[1

2
K4(s)

]′′
ds

]
V (t) (1.1e)

Cr
n6 =

[ ∫ L

0

Wq(s)
[
(K2(s))W ′′

r (s)
]′′

ds

]
(1.1f)

Cr
n7 =

[ ∫ L

0

Wq(s)
[1

2
K4(s)W ′′

r (s)W ′
r(s)

]′
ds

]
−
[ ∫ L

0

Wq(s)
[1

4
K4(s)W ′2

r (s)
]′′

ds

]
(1.1g)

Cr
n8 =

[ ∫ L

0

Wq(s)
[(

(K2(s))W ′′
r (s)W ′

r(s)
)′
W ′

r(s)
]′

ds

]
(1.1h)

Cr
n9 =

[ ∫∫∫
Vs

ρsWq(s)dV +

∫∫∫
Vp

ρpWq(s)dV

]
(1.1i)

Cr
n10 =

[ ∫ L

0

K2(s)W ′′2
r (s)ds

]
(1.1j)

Cr
n11 =

[ ∫ L

0

2K2(s)(W ′′2
r (s)W ′2

r (s))ds

]
(1.1k)

Cr
n12 =

[ ∫ L

0

1

2
K4(s)W ′′

r (s)ds

]
(1.1l)

Cr
n13 =

[ ∫ L

0

3

2
K4(s)

(1

2
W ′′

r (s)W ′2
r (s)

)
ds

]
(1.1m)

Cr
n14 =

[ ∫ L

0

K5(s)ds

]
(1.1n)


