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Abstract
We propose a scheme involving a Cooper pair transistor (CPT) embedded in a
superconducting microwave cavity, where the CPT serves as a charge tunable
quantum inductor to facilitate ultra-strong coupling between photons in the
cavity and a nano- to meso-scale mechanical resonator. The mechanical reso-
nator is capacitively coupled to the CPT, such that mechanical displacements of
the resonator cause a shift in the CPT inductance and hence the cavityʼs resonant
frequency. The amplification provided by the CPT is sufficient for the zero point
motion of the mechanical resonator alone to cause a significant change in the
cavity resonance. Conversely, a single photon in the cavity causes a shift in the
mechanical resonator position on the order of its zero point motion. As a result,
the cavity-Cooper pair transistor coupled to a mechanical resonator will be able
to access a regime in which single photons can affect single phonons and
vice versa. Realizing this ultra-strong coupling regime will facilitate the creation
of non-classical states of the mechanical resonator, as well as the means to
accurately characterize such states by measuring the cavity photon field.

Keywords: cavity optomechanics, Cooper pair transistor, nanoelectromechanical
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1. Introduction

There is presently intense worldwide interest in the application of quantum mechanical
phenomena to communications, information processing, and precision measurement. At the
level of atoms, photons and even molecules the laws of quantum mechanics clearly hold sway.
In contrast, macroscopic objects are just as clearly described by Newtonian mechanics.
Practitioners of the above fields are therefore keenly interested in the boundary between
quantum mechanical and classical behavior, and in the ways in which quantum behavior can be
extended into regimes that at first glance might seem to lie in the province of classical
mechanics [1, 2].

One field centered around the connection between the quantum and classical worlds is that
of cavity optomechanics [2, 3]. Motivated by a desire to observe and control quantum
phenomena in mechanical structures, many researchers have focussed on the idea of coupling a
mechanical resonator to an optical or microwave cavity. If motion of the mechanical resonator
shifts the cavityʼs resonant frequency (by changing the cavity length, for instance), then phase
sensitive optical measurements of the cavity can be used to measure the resonator position.
There has been a wealth of recent results in this area [4–11], including cooling mechanical
resonators to their quantum ground state [4, 5], observation of radiation pressure shot noise [6],
production of squeezed light by a mechanical resonator [7] and the optomechanics of cold
atoms [8, 9].

The quantum dynamics of cavity optomechanical systems are usually described by the
Hamiltonian

ω ω= + + +† † † †    ( )a a b b g a a b b , (1)mOM 0 0

where ω0 is the cavity mode frequency, ωm is the frequency of the mechanical resonator, a and
†a are the cavity photon annihilation and creation operators, and b and †b are the associated

phonon annihilation and creation operators. The first two terms of OM describe harmonic
motion of the cavity and mechanical resonator, while the last term describes a dispersive shift in
the cavity frequency due to mechanical motion. The parameter g

0
is the vacuum optomechanical

coupling strength, and expresses the shift in cavity frequency due to displacement of the

mechanical resonator by its zero point length ω= x m2 mzp . Essentially, g
0
describes the

strength of interaction between a single photon and a single phonon.
An exciting experimental challenge facing the cavity optomechanics community is

reaching the ultra-strong optomechanical quantum regime, for which the coupling term in OM

becomes important at the scale of individual quanta [12–15]. There are two main requirements
to reach this regime. First, the shift in cavity frequency due to a single phonon must be larger
than the linewidth κ ω= Q0 , where Q is the cavity mode quality factor; this is equivalent to
requiring that the ratio κg

0
, called the granularity parameter, be greater than one [8]. Second,

the displacement of the mechanical resonator due to the force of a single photon must be greater
than the zero point displacement xzp; equivalently, the ratio ωg2 m0

must also be greater than one

[2, 13]. In terms of a single parameter, it is convenient to consider the product κω( )g m0
2 ; if this

parameter is greater than one, then we are in the single-photon strong-coupling regime [14, 15].
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In table 1 we show a range of values for these parameters that have been realized in recent
optomechanics experiments.

In the present work, we describe an optomechanical scheme involving a Cooper pair
transistor (CPT) that is embedded in a superconducting microwave cavity, where a
mechanically compliant, biased gate electrode couples mechanical motion to the cavity via
the CPT. The basic scheme for the cavity-CPT-mechanical resonator (cCPT-MR) system is
given in figures 1 and 2. In particular, we will show that the cCPT-MR device is capable of
attaining the ultra-strong coupling regime, with relevant achievable parameters given in table 1.
Note that [16] discusses a very similar scheme. There was also an earlier proposal to enhance
effective optomechanical coupling strengths in the microwave regime by mediating the
coupling through a SQUID [17].

This paper is organized as follows. In section 2 we describe the cCPT-MR device and give
a physical derivation of the effective optomechanical coupling strength g

0
of the device. Next in

section 3 we give a more systematic derivation of the optomechanical Hamiltonian (1), starting
with a circuit model of the cCPT-MR device. Finally, in section 4, we conclude with a discussion
of our results and future work. The appendix contains the derivation of the circuit model.
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Figure 1. (a) Schematic illustration of a shorted λ 4, microwave resonator coupled to a
feedline. (b) Detail of the CPT location and the method of coupling to a mechanical
resonator. (c) Simplified circuit diagram of the device.

Table 1. The sideband ratio ω κm , the granularity parameter κg
0

, the backaction
parameter ωg m0

and the combined quantum nonlinearity parameter κωg m0
2 , for certain

demonstrated opto- and electromechanical systems, where N is the estimated number of
atoms making up the mechanical resonator. Also shown for comparison are the esti-
mated parameters of the cCPT-mechanical resonator scheme discussed in the present
work.

System N ω
κ
m

κ
g0

ω
g

m

0

κω
g

m

0
2

Superconducting LC oscillator [4] 1e11 60 3e–3 4e–5 1e–7
Si optomechanical crystal [5] 6e9 7 2e–3 2.5e–4 5e–7
Cold atomic gas [8] 4e4 0.06 22 340 7,500
cCPT-mechanical resonator 5e9 20 8 0.4 3



2. The cCPT-MR device

Referring to figures 1 and 2, the cCPT comprises two discrete components. One, the CPT,
consists of a small superconducting island in the Coulomb blockade regime that is coupled via
two Josephson junctions to macroscopic superconducting leads. The CPT has been extensively
studied [18–22], and its properties are now well understood. The second component of the
cCPT is a shorted quarter-wave, superconducting high-Q microwave cavity, which is flux
biased to allow control over the total dc cCPT phase. The microwave cavity, made from a
transmission line of impedance Z0, is based on the circuit QED architecture [23, 24] that has led
to significant advances in the coherence and control of quantum superconducting circuits. The
cCPT is created by embedding the CPT at the open end of the center conductor (a voltage
antinode), so that it connects the central conductor of the cavity to the ground plane.

For our purposes, the CPT is well described by considering two charge states, 0 and 1 ,
corresponding to zero and one excess Cooper pairs on the island. These charge states are

separated by an electrostatic energy difference ε = −( )E n2 4 1c g depending on the CPT

charging energy Ec and gate charge ng, and are coupled to each other via the Josephson energy

EJ . Introducing cavity photon annihilation and creation operators a and †a , the Hamiltonian of
the cCPT can be expressed as (see appendix):

ω εσ σ Δ πΦ Φ= + − + +† †⎡⎣ ⎤⎦  ( )a a E a acos , (2)z J xcCPT 0 0 ext 0

where σx and σz are the Pauli matrices, ω0 is the cavity frequency, Φext is an external flux bias, and
Φ0 is the flux quantum. The first two terms in equation (2) describe the cavity photons and the
CPT charge. The third term describes the coupling between the CPT charge states and the cavity
photons. In a standard CPT, this term would read σ φE cos 2J x where φ, the total
superconducting phase difference between the source and drain, can be treated as a classical
variable [21, 22]. In the cCPT, however, quantum fluctuations of the cavity photon field must be

accounted for via the identification φ Δˆ = + †( )a a2 0 , which is proportional to the electric field

in the cavity at the location of the CPT. The dimensionless parameter Δ = ≪Z R 1K0 0 ,

where Ω= =R h e 25.8 kK
2 is the resistance quantum, describes the strength of the quantum
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Figure 2. Schematic diagram of a cCPT coupled to a mechanical resonator, with
amplifier stages for measuring the cavity photon field. A flux bias is applied to the cCPT
to control the total CPT phase; a separate gate line (not shown) controls the island
charge.



phase fluctuations of the cavity field, which can be important for large cavity photon numbers
[25, 26]. Experimental study [26, 27] indicates that equation (2) accurately models the cCPT.

The above-described cCPT functions as a sensor by capacitively coupling the CPT island to
a system of interest, in our case a mechanical resonator (MR) consisting of a doubly clamped
beam (made for example of SiN and coated with Al [28, 29]) as in figure 1(b). An important
property of the CPT is that it acts as a charge-tunable quantum inductor LCPT when biased on its
supercurrent branch; LCPT is the kinetic inductance associated with the CPTʼs gate charge
dependent supercurrent [19] (see figures 3(a) and (b)). When the CPT is embedded in a
microwave cavity, LCPT appears in parallel with the cavityʼs effective inductance L0 at resonance,
as in figure 1(c), and can therefore cause a dispersive shift of the cavity resonant frequency. When
the CPT island is capacitively coupled to a charged mechanical resonator, motion of the resonator
can modulate LCPT and therefore shift the cavity frequency ω0. This dispersive measurement
scheme is closely related to that demonstrated in the inductive single electron transistor [30, 31].
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Figure 3. (a) Schematic illustration of the CPT supercurrent versus gate charge,
showing a peak at charge degeneracy. (b) Quantum inductance LCPT versus gate charge
showing a sharp dip at the supercurrent maximum. (c) Potential dispersive shift of
cavity resonance for different phonon numbers. (d) Power spectrum of reflected light
showing both red and blue detuned resonances associated with mechanical quanta.



The key question is how large a shift in ω0 will result from motion of the MR. It is
straightforward to estimate

ω ω ω∂
∂

=
∂

∂
∂
∂

= −
n L

L

n

L

L
g

2g g

0 0

CPT

CPT 0 0

CPT
CPT

where = ∂
∂g

L

L

nCPT
1

gCPT

CPT is the effective gain of the CPT [31] and we have assumed ≫L LCPT 0.

Using realistic numbers for the CPT and cavity (ω π= ×2 5 GHz0 , =L 2 nH0 , =L 50 nHCPT ,
and =g 3

CPT
), we estimate that a frequency sensitivity of

ω
π

∂
∂

= ×
n

2 300 MHz/electron
g

0

should be readily achievable.
To determine the optomechanical coupling strength g

0
, we must consider a particular

mechanical resonator. Here we envisage using a small doubly clamped beam about μ10 m long
with a mass =m 0.2 pg and a mechanical resonant frequency ω π≈ ×2 10 MHzm . Such
resonators are relatively easy to fabricate out of high-stress SiN film [32–34], have been
successfully coupled to SETs [28, 29], and possess a relatively large zero point motion; for the
dimensions above, =x 60 fmzp . The resonator is metallized so that a large applied dc voltage

VMR couples its motion to the CPT gate charge. If x is the resonator position,

∂
∂

=
∂
∂

n

x

V

e

C

x
.

g mMR

Here Cm is the coupling capacitance between the CPT and the MR; ∂ ∂ ≈C x 2aF nmm , and
≈V 15VMR are achievable numbers [35]. We then estimate a CPT/nanoresonator coupling of

∂
∂

≈ −n

x
200 electrons nm .

g 1

Combining the above, we estimate that for the cCPT-MR system the optomechanical coupling
strength is given by

ω
π=

∂
∂

∂
∂

≈ ×g
n

n

x
x 2 4 MHz. (3)

g

g

0
0

zp

For the cCPT, we expect a cavity ≈Q 104, giving κ π= ×2 500 kHz. In table 1 we show

our resulting estimates for κg
0

, ωg m0
and κωg m0

2 . All are of order unity or above, indicating
that the cCPT-MR should be well within the single-photon quantum regime. To put these
results into context, we also show in table 1 the same three parameters for similar solid state
optomechanical systems [4, 5], as well as for an atomic system [8]. Comparing the combined
quantum nonlinearity parameter κωg m0

2 , we see that the expected value of 3 for the cCPT-MR
is roughly seven orders of magnitude greater than that of the nearest solid state systems.
Although κωg m0

2 can be even larger in a cold atomic gas [8], the number of atoms N in such a
gas is some five orders of magnitude smaller; in contrast, our focus is on far more macroscopic
resonators.
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Direct capacitive coupling between a nano- to meso-scale mechanical resonator and a
superconducting cavity typically gives much lower values for the coupling strength g

0
. One is

relying on changes in the geometric capacitance Cm between the resonator and cavity to induce
changes in the cavity resonant frequency. For small resonators such as the one we propose,Cm is

typically a factor of 103 smaller than the total resonator capacitance C0. This limits the resulting

shift in the cavity resonant frequency ω∂ ∂x0 with resonator position to ω∂ ∂ < −x 100 kHz nm0
1

[35]. For ≈x 60 fmzp , the resulting coupling strength is limited to π< ×g 2 6 Hz
0

. An

alternative approach is to use a larger nanomechanical resonator that itself forms one plate of a
lumped element cavity capacitor C0 [4, 36]. In this case, the shift in cavity frequency with

resonator position is improved by a factor of 103 to ω∂ ∂ < −x 100 MHz nm0
1, at the cost of a

reduction of by a factor of ten in the zero point motion to ≈x 6 fmzp [36]. The resulting coupling

strength is then limited to π< ×g 2 600 Hz
0

, still far below the strong coupling limit.
The cCPT-MR scheme offers two advantages over direct capacitive coupling approaches.

First, it relies on modulation of the cCPT quantum inductance rather than on variation in a
geometrical capacitance. By its very nature, the quantum inductance responds responds very
strongly to shifts in the cCPT island charge, as indicated by the sharp dip in figure 3(b). Second,
the coupling between the mechanical resonator and the cCPT island is enhanced by application
of a large dc voltage VMR to the resonator. Both effects contribute to the strong coupling
described here.

As a first step towards demonstrating that we have entered the single-photon quantum
regime, we can measure the power spectrum of light reflected from the cavity when driven at its
bare resonance frequency, as in figure 3(d). A clear signature of strong coupling would be the
appearance of multiple mechanical sidebands in the power spectrum of reflected light,
corresponding to absorption or emission of multiple phonons [13]. Note that, in the single-
photon ultra-strong coupling regime, it is also possible to read out the cavity photon number
using a quantum non-demolition (QND), mechanical displacement measurement scheme [37].
Such a QND measurement approach necessarily requires both κ ≳g 1

0
and ω ≳g 1m0

, which
are satisfied in this cCPT-MR device.

Quantum state tomography on the microwave photons will provide information about the
MR state. We can, in particular, employ recently developed tomographic techniques based on
quadrature measurements of the cavity output using linear amplifiers [38, 39]. In combination
with quantum state reconstruction [40] using maximum likelihood estimation (MLE) techniques
[41, 42], we expect to be able to reconstruct the density matrix of the cavity field. A basic
experimental difficulty to overcome when using phase-preserving linear amplifiers such as the
high-electron-mobility transistor (HEMT) is that such amplifiers always add noise [43].
Locating a near-quantum limited superconducting amplifier, e.g., based on the SLUG
(superconducting lumped-element galvanometer—a device closely related to the SQUID)
[44, 45] prior to the HEMT (see figure 2), should reduce the number of added noise photons to
∼1. There should then be significantly less blurring of the measured quadrature histograms, and
comparable improvement in the MLE reconstructions of the cavity photon density matrix as
compared with using just a HEMT alone. In addition to low noise, the SLUG has a large
dynamic range (estimated at up to 130 dB or more [44]), allowing it to accommodate cavity
fields containing from only a few to up to a few hundred photons.
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3. Derivation of the optomechanical Hamiltonian

In the appendix, we show that the cCPT-MR device can be described by an approximate circuit
model with Hamiltonian

ω ω εσ

σ Δ πΦ Φ σ

= + +

− + + + +

−
† †

† †⎡⎣ ⎤⎦
  

 ( )( )
a a b b

E a a g b bcos , (4)

m z

J x m z

cCPT MR 0

zp ext 0

where ε = −( )E n2 1c g , and where the CPT-MR coupling is

=
∂
∂

=
∂
∂

g e

C
x

n

x
eV

x

C

C

x
. (5)

m
J

g

J

m
2

zp MR
zp

Following the method of [46], we group the terms in the Hamiltonian −cCPT MR as follows

= + +− H V H , (6)cCPT MR 0 res

where

εσ πΦ Φ σ= − [ ]H E cos (7)z J x0 ext 0

is the so-called CPT ‘auxiliary’ system Hamiltonian,

Δ πΦ Φ πΦ Φ σ σ= − + + − + +† †⎡⎣ ⎤⎦  ( )( )( ) [ ]V E a a g b bcos cos (8)J x m z0 ext 0 ext 0

is viewed as a perturbation to the Hamiltonian H0, and

ω ω= +† † H a a b b (9)mres 0

is the resonator Hamiltonian. Since the resonator operator terms + †a a and + †b b appearing in
V commute with the auxiliary H0, we can use standard time-independent perturbation theory to
diagonalize = +H H Vaux 0 and in particular approximately determine its energy eigenvalues En.
Assuming that the auxiliary system is in its lowest energy eigenstate, with eigenvalue E1, yields
an approximate, ‘engineered’ Hamiltonian describing the interacting microwave and mechanical
resonator resonators: = +H H Eeng res 1. Solving for E1 to second order in V, we obtain:

ω ω

πΦ Φ Δ πΦ Φ πΦ Φ

ε
Δ πΦ Φ πΦ Φ

ε πΦ Φ
ε

πΦ Φ

Δ πΦ Φ πΦ Φ

= +

− + + −

− + + −

− + − + +

× + + − +

† †

†

†

† †

† †

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦

 

  

( )

( )

( )

( )

( )

( )

( )

( )

( )

[ ]

[ ]

[ ]

( )

( )

( ) ( )

H a a b b

E

E
a a

E

E
a a

E
g b b

E

E
g b b

E

E
g

a a b b

cos cos cos

2
cos cos

2
cos cos

cos cos , (10)

m

J

J

m
J

m
J

m

eng 0

2

0
ext 0 0 ext 0 ext 0

2

0
3 0 ext 0 ext 0

2

0

2

0
3

2 2
ext 0

2
2

0
3 ext 0

zp ext 0 ext 0

where ε πΦ Φ= + ( )E E cosJ0
2 2 2

ext 0 , such that E2 0 gives the energy level splitting for the

unperturbed CPT Hamiltonian H0. Comparing the first and second order contributions to E1 in
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(10), the perturbative approximation is valid provided the cavity photon number = †n a a is
sufficiently small to ensure that Δ ≪n 10 , and provided ≪g E

m 0. Furthermore, the auxiliary
system remains in its lowest energy eigenstate (i.e., the CPT dynamics is effectively frozen out)
to a good approximation provided the CPT level splitting is sufficiently detuned from the cavity
frequency. These conditions are validated below for example experimental parameter values.

From equation (10), we see that the CPT effects a gate voltage and flux tunable interaction
between the microwave and mechanical oscillators, as well as self-interactions for the two
oscillators; the interactions take a variety of different forms depending on the external flux. The
usual optomechanical interaction is recovered if we set Φ = 0ext and, assuming sufficiently small

n, we expand the cosine terms in (10) keeping terms up to second order in Δ + †( )a a0 overall.

Applying a rotating wave approximation to the terms of the form + †( )a a
2
(an approach which

will be valid provided any external drives applied are close to the cavity frequency), we obtain

ω Δ ω
ε

Δ

ε

= − + + +

− + − +

† † † †

† †

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝⎜

⎞
⎠⎟

  

 ( ) ( )

H
E

E
a a b b

E

E
g a a b b

E
g b b

E

E
g b b

2
, (11)

J
m

J
m

m
J

m

eng 0

2

0
0
2

2

0
3 0

2

0

2

0
3

2 2

where now ε= +E EJ0
2 2 . This Hamiltonian can be simplified further by noting that terms of

the form + †( )b b simply lead to a displacement of the mechanical resonator whilst the term in

+ †( )b b
2
renormalizes its frequency a little; there is also a slight renormalization of the cavity

frequency. Thus we finally obtain the standard optomechanical Hamiltonian, equation (1). An

expansion of the cosine factors in (10) that retained terms of order Δ + †( )a a0
4 4

overall would

also lead to a Kerr nonlinearity in the cavity [1], but of course this would be a small correction
in the regime of low photon numbers in which we are working.

The vacuum optomechanical coupling strength is

ε
Δ=g

E

E
g . (12)J

m0

2

0
3 0

2

The factor εE EJ
2

0
3 varies with ng in a way that matches the gradient of LCPT shown in figure 3

and reaches a maximum magnitude of 4 27 (independent of Ec and EJ) when

= ± ( )n E E1 2 2g J c . Using the parameters in section 2, along with a cavity impedance

Ω=Z 1200 and junction capacitance =C 0.32 fFJ , we get π= ×g 2 1.4 GHz
m

and Δ ≈ 0.070 .

For the optimal choice of ng one then obtains an ultra-strong coupling π= ×g 2 2.6 MHz
0

.

Therefore, the relevant parameters have the values κ ∼g 5
0

, ω ∼g 0.3m0
, and κω ∼g 1.3m0

2 ,
which are consistent with the physical estimates obtained in section 2.

Returning to the approximations made in the derivation of the engineered Hamiltonian
(10), for the above considered parameter values and a Josephson junction energy μ=E 60 eVJ ,
we have ≈g E 0.08

m 0 , validating the second order perturbative approximation, and
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ω ≈ ( )E2 0.10 0 (i.e., the CPT level splitting is sufficiently detuned from the cavity frequency),
validating the assumption that the CPT remains in its ground state to a good approximation.

4. Discussion

While the standard optomechanical Hamiltonian (1) can be recovered by approximation from
the CPT-engineered, microwave-mechanical oscillator Hamiltonian (10), it is important to note
that, by tuning the flux, one can access a broader class of strong optomechanical interactions. In

particular, for non-zero Φext (e.g., Φ Φ= 4ext 0 ), a bilinear interaction term + +† †( )( )a a b b is

also present. Such tunable interactions may facilitate the generation and detection of a
correspondingly broad class of mechanical resonator quantum states.

One of our main goals in future work is to determine if it is possible to generate steady-
state quantum behavior in the mechanical resonator under ‘warm’ conditions, i.e., ω < k Tm B ,
by taking advantage of the ultra-strong optomechanical coupling scheme described in the
present work. Several recent studies [13–15, 47, 48] indicate that steady-state mechanical
quantum behavior may well be possible, provided the thermal excitations are minimal.
However, at the base temperature of a dilution refrigerator, a mesoscale ∼10 MHz mechanical
resonator will be occupied by some one hundred or so phonons on average. When the
mechanical frequency ωm is greater than the cavity linewidth κ (the resolved sideband regime,
for which ω κ > 1m ) it is possible to drive the cavity with a red-detuned signal so as to absorb
phonons from the resonator [49, 50]. This technique has been used in both the optical and
microwave multi-photon regimes to cool mechanical resonators to their ground state [4, 5]. A
possible first experimental step would be to extend this approach to the single-photon, ultra-
strong coupling regime [51].

Once ground state cooling is achieved, we can then investigate the question of how to
drive the mechanical resonator into a steady quantum state. Two approaches suggest
themselves. The first is to apply alternating red-detuned cooling pulses and blue detuned driving
pulses. After application of a pulse sequence, the cavity photons are monitored so as to read out
the mechanical resonator dynamics. Here, performing state tomography on cavity photons is
expected to be of great benefit. The second approach is to simultaneously apply cooling and
driving pulses; such a technique has been proposed for generating steady quantum states in a
non linear mechanical resonator [48], and has been used for back-action evading measurements
in the multiphoton regime [34].

The understanding gained from such an investigation will help towards the goal to
demonstrate quantum behavior in progressively more massive, low frequency mechanical
resonators [52], where it may be essential to employ ultra-strong optomechanical or
alternatively electromechanical coupling schemes to counteract the strongly decohering effects
of the macroscopic mechanical resonatorʼs thermal environment.
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Appendix. Derivation of the cCPT-MR circuit model

In this appendix, we give a derivation of the circuit model of the cCPT-MR device. Referring to
figure 4, we approximate the microwave cavity for the lowest modes as a one-dimensional strip
of length L. Kirchhoffʼs laws yield the following equations in terms of the CPT phases

γ φ φ= ±± ( )( ) ( ) ( )t t t 2
1 2

(with φ
1
, φ

2
the gauge invariant phases across the Josephson

junctions), and the cavity phase field ϕ ( )x t,
c

:

Φ
π

γ
γ γ

Φ
π

ϕ
+ − − = −

∂
∂

+
+ − C

d

dt
I C

V

t
C

V

t x
2

2
2 sin cos

d

d

d

d
, (A.1)J c g

g
m

c

c

L

0

2

2
MR 0

Φ
π

γ
γ γ+ + + =−

+ −C
d

dt
I C

V

t
C

V

t
2

2
2 cos sin

d

d

d

d
0, (A.2)J c g

g
m

0
2

2
MR

ϕ ϕ∂
∂

=
∂
∂

< <− ( )
t x

x L, 0 , (A.3)c
c c

c
2

2

1
2

2

where we neglect the coupling to the probe line, since we are concerned here only with deriving
the closed system circuit model Hamiltonian (4). The boundary condition at x = 0 can be written
as

ϕ =( )t0, 0, (A.4)
c

while the junction condition at x = L is

γ ϕ π πΦ Φ− = ++ ( ) ( )t L t n2 , 2 2 , (A.5)
c 0

where n is an integer and Φ is the flux threading the superconducting loop formed out of the
center conductor, ground plane, and the CPT. In the following, we will approximate the flux as
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Figure 4. Simplified model of the cCPT-MR system, where the cavity center conductor
has length L, and the Josephson junctions are assumed to have equal capacitances CJ

and critical currents Ic. The cavity inductance and capacitance per unit length are
denoted c, c, respectively. Note that the center conductor is shorted to ground at the
x = 0 end and is weakly coupled via a capacitor to a probe/transmission line at the x = L
end.



Φ Φ≈ ext, i.e., assume that the induced flux in the loop due to the circulating super current can be
neglected. We also ‘freeze’ out the MR motion, so that Cm is fixed and non-dynamical; the
mechanical component is straightforwardly introduced once we have obtained the cCPT
Hamiltonian (2).

We now use equation (A.5) to eliminate γ+ from the dynamical equations; equations (A.2)

and (A.1) become respectively

Φ
π

γ
ϕ πΦ Φ γ+ +

+ + =

−
−

⎡⎣ ⎤⎦( )C
t

I L t

C
V

t
C

V

t

2
2

d

d
2 cos , 2 sin

d

d

d

d
0 (A.6)

J c c

g
g

m

0
2

2 ext 0

MR

and

ϕ ϕ
π
Φ

ϕ πΦ Φ γ

π
Φ

+ = − +

+ ˙ + ˙

′ ″
−

⎡⎣ ⎤⎦


 ( )

( ) ( ) ( )L t
C

L t
I

L t

C V C V

,
2

,
2

sin , 2 cos

, (A.7)

c
J

c
c

c c
c

c
g g m

0
ext 0

0
MR

where have set n = 0 since it does not affect the observable dynamics and we have used the
cavity wave equation (A.3) to replace ϕ̈

c
with ϕ″

c
. Equation (A.7) is interpreted as a (rather

nontrivial) boundary condition on the cavity field ϕ ( )x t,
c

at the x = L end that couples the cavity
to the CPT.

We now formally solve the cCPT equations (A.3) and (A.6) subject to the boundary
conditions (A.4) and (A.7), using the approximate eigenfunction expansion method, with
equation (A.7) replaced by the following simpler boundary condition at x = L:

ϕ ϕ ϕ+ ≈ =′ ″ ′
= + ( ) ( ) ( )L t

C
L t x t,

2
, , 0, (A.8)

( )c
J

c
c c x L C 2J c

expressed approximately as a Neumann boundary condition evaluated at the slightly shifted
endpoint = + ( )x L C 2J c , with ≪( )C L2 1J c . We can now apply the method of separation
of variables to the cavity wave equation (A.3), since the homogeneous boundary conditions
(A.4) and (A.8) define a Sturm–Liouville problem. Neglecting the small endpoint shift

≪( )C L2J c (see justification later below), the orthogonal eigenfunctions are approximately

ϕ = ( )( )x k xsin (A.9)
n n

and the approximate associated wavenumber eigenvalues are

π
=

+
=

( )
k

n

L
n

2 1

2
, 0, 1, 2, ... (A.10)n

Note that for the lowest, n = 0 mode, the mode wavelength is λ = L4 : hence the name ‘λ 4
resonator’.

Proceeding with the eigenfunction expansion method, we assume that solutions ϕ ( )x t,
c

to

the wave equation (A.3) for < <x L0 with the full boundary conditions (A.4) and (A.7) at
x = 0 and x = L, respectively, can be expressed as a series expansion in terms of the
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eigenfunctions ϕ ( )x
n

:

∑ϕ ϕ=( ) ( ) ( )x t q t x, . (A.11)
c

n
n n

From equation (A.11) and the orthogonality condition on the ϕ
n
ʼs, the to be determined time-

dependent coefficients ( )q t
n

are given as

∫ ϕ ϕ=( ) ( ) ( )q t
L

x x t x
2

d , . (A.12)
n

L

c n
0

Differentiating (A.12) twice with respect to time and applying the cavity wave equation (A.3),
we have:

∫ ϕ ϕ¨ = ″ ( ) ( ) ( )q t
L

x x t x
2

d , . (A.13)
n

c c

L

c n
0

Integrating (A.13) by parts twice, applying the boundary conditions (A.4) and (A.7) on ϕ ( )x t,
c

(with shift term ( )C 2J c neglected), the eigenvalue equation ϕ ϕ= −″( ) ( )x k x
n n n

2 and also
equation (A.12), we obtain

∑ω
π

Φ
γ πΦ Φ

π
Φ

¨ = − − +

+ ˙ + ˙

−
′

′

⎡
⎣⎢

⎤
⎦⎥

 ( )

( ) ( ) ( ) /q t q t
I

L
q t

L
C V C V

4
cos sin

1
2

2
, (A.14)

n n n
c

c n
n

c
g g m

2

0
ext 0

0
MR

where the free cavity mode oscillator frequencies are

ω =  
k

. (A.15)n
n

c c

2
2

In terms of the cavity mode phase coordinates ( )q t
n

, the γ− equation (A.6) becomes

∑Φ
π

γ
γ πΦ Φ+ +

+ + =

−
−

⎡
⎣⎢

⎤
⎦⎥( ) /C

t
I q t

C
V

t
C

V

t

2
2

d

d
2 sin cos

1
2

d

d

d

d
0. (A.16)

J c
n

n

g
g

m

0
2

2 ext 0

MR

The closed cCPT system equations of motion (A.14) and (A.16) follow from the
Hamiltonian

∑ ∑

∑

π
Φ

Φ
π

Φ
π

γ πΦ Φ

= + +

+ − − +−

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥( ) /

H
C

p en
q

L

E N n E q

2 1
2 4 2 2

4 2 2 cos cos
1
2

, (A.17)

n n
n g

n

n

n

c g J
n

n

0

2

0
2

0
2 2

2

ext 0

where = − N p is minus the number of excess Cooper pairs on the island,

= +( )n C V C V eg g g m MR is the polarization charge induced by the applied gate voltage biases

Vg and VMR, = ( )E e C2c J
2 is the approximate CPT charging energy (neglecting Cg), and
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Φ π= ( )E I 2J c 0 is the Josephson energy of a single JJ. The lumped capacitance and inductance

elements are defined as = C L 2n c and ω= ( )L C1n n n
2 , respectively. With the example cavity

inductance value =L 2 nH0 , cavity frequency ω π= ×2 5 GHz0 , and junction capacitance

=C 0.32 fFJ (see sections 2 and 3), we have ≈ −( )C CL2 10J c
4, hence justifying the neglection

of the endpoint shift term ( )C CL2J c above.
Hamiltonian (A.17) describes the closed cCPT system, approximate discrete mode

classical dynamics. In modeling the experiment, the various circuit lumped element parameters
appearing in (A.17) can be selected so as to provide the best fit to the device characteristics. In
this way, Hamiltonian (A.17) is assumed to be more versatile than the original starting
equations at the beginning of this section, which are tied to a particular model of the cavity
geometry.

In terms of the Cooper pair island number eigenbasis, the quantum Hamiltonian
corresponding to equation (A.17) can be written as

∑ ∑

∑

∑

ω

Δ πΦ Φ

= + −

− + + −

· + +

†

=−∞

+∞

=−∞

+∞

†
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

  ( )

( )

/

a a E N n N N

E N N N N

a a

4 2

1 1

cos , (A.18)

n
n n n c

N
g

J
N

n
n n n

2

ext 0

where we have neglected the gate voltage dependent term in the cavity mode coordinate part of
the Hamiltonian and where Δn is the zero-point uncertainty of the cavity mode phase coordinate
q

n
:

Δ
π

= =
L C

R

Z

R
, (A.19)n

n n

K

n

K

with Zn the cavity mode impedance and Ω= ≈R h e 25.8 kK
2 the von Klitzing constant.

Restricting to the lowest, n = 0 cavity mode and truncating to a two-dimensional subspace
involving linear combinations of only zero (0 ) and one (1 ) excess Cooper pairs on the island
then yields the cCPT Hamiltonian (2) given in the main text. The cCPT-MR Hamiltonian (4)
then follows from (2) by inserting the MR free Hamiltonian ω † b bm and Taylor expanding the
bias voltageVMR, and in turn ng, to first order in the MR displacement to give the optomechanical

coupling.
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