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Abstract	
The	stochastic	dynamics	of	the	inositol-1,4,5-trisphosphate	(IP3)	receptor	(IP3R)	
is	key	to	understanding	a	wide	range	of	observed	calcium	(Ca2+)	signals	(Falcke	
2004).	The	stochastic	nature	results	from	the	constant	binding	and	unbinding	of	
Ca2+	 and	 IP3	 to	 and	 from	 their	 respective	 binding	 sites	 and	 is	 especially	
important	in	the	initiation	of	a	Ca2+	puff,	i.e.	the	release	of	Ca2+	through	a	cluster	
of	 IP3Rs.	 Once	 the	 first	 IP3R	 opens,	 the	 Ca2+	 concentration	 rises	 significantly	
around	the	ion	channel	and	hence	increases	the	open	probability	for	neighboring	
IP3Rs.	In	turn	this	may	trigger	the	activation	of	further	receptors	giving	rise	to	a	
Ca2+	puff	 (Thul	et	al.	2009;	Thurley	et	al.	2012).	 In	 this	protocol,	we	determine	
the	time	that	it	takes	for	a	single	IP3R	to	open	from	rest.	We	explicitly	take	into	
account	the	tetrameric	structure	of	the	IP3R	and	the	fact	that	multiple	subunits	
need	to	be	active	before	the	channel	opens	(Bezprozvanny	et	al.	1991;	Watras	et	
al.	1991).	We	develop	code	for	a	stochastic	simulation	of	the	IP3R	and	simulate	it	
using	the	software	package	Matlab	(Attaway	2011).	This	protocol	demonstrates	
the	basic	 form	of	a	stochastic	simulation	algorithm	and	may	serve	as	a	starting	
point	to	investigate	more	complex	gating	dynamics.	

Materials	
• Matlab	(http://www.mathworks.com/products/matlab/)	

Method	
1. Derive	 the	 transition	 scheme	 for	 the	 stochastic	 dynamics.	 Suppose	 that	

each	of	the	four	subunits	of	the	IP3R	exists	in	only	two	states	(as	e.g.	in	the	
Li-Rinzel	model	(Li	and	Rinzel	1994)),	viz.	active	and	inactive.	Then	there	
are	 five	 states	 for	 the	 entire	 IP3R	when	we	assume	 that	 all	 subunits	 act	
independently:	4	inactive	subunits	(C4)	to	no	inactive	subunit	(C0).	When	
the	 transition	 rate	 between	 the	 active	 and	 the	 inactive	 state	 is	𝑎	and	
between	 the	 inactive	 and	 active	 state	 is	𝑏	we	 arrive	 at	 the	 transition	
scheme	depicted	in	Figure	1.	

	
Figure	1:	Gating	scheme.	The	state	space	of	an	IP3R	with	four	independent	subunits	and	two	
states	 per	 subunit	 can	 be	 represented	 by	 the	 five	 states	 C4	 to	 C0,	 where	 the	 subscript	
indicates	 the	 number	 of	 inactive	 subunits.	 The	 arrows	 present	 transitions	 between	 the	
states	along	with	the	corresponding	transition	rates.	
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2. Write	down	the	stochastic	 transition	step.	Suppose	e.g.	 the	channel	 is	 in	
the	state	C3,	then	there	is	a	probability	of	3𝑏𝑑𝑡	of	making	a	transition	to	C2,	
a	 probability	 of	𝑎𝑑𝑡	of	 making	 a	 transition	 to	 C4	 and	 a	 probability	 of	
1− 3𝑏 + 𝑎 𝑑𝑡	of	remaining	in	the	state	C3	during	a	small	time	interval	𝑑𝑡.	
When	we	draw	a	random	number	𝑟	that	is	uniformly	distributed	between	
0	and	1,	if	
• 0 ≤ 𝑟 < 3𝑏𝑑𝑡	then	make	transition	to	C2,	
• 3𝑏𝑑𝑡 ≤ 𝑟 < 3𝑏 + 𝑎 𝑑𝑡	then	make	transition	to	C4,	
• 3𝑏 + 𝑎 𝑑𝑡 ≤ 𝑟	stay	in	C3.	

3. Code	up	the	ideas	from	step	1	and	2	in	Matlab	as	shown	below.	Save	the	
code	as	stochastic2state.m. 
function stochastic2state() 
Nr=50000; 
a=0.4; 
b=0.6; 
dt=0.1; 
openarr=zeros(Nr,1); 
for m=1:Nr 
    open=0; 
    k=0; 
    while open<4 
        k=k+1; 
     rn=rand; 
        tmp=(4-open)*dt*b; 
        if rn<tmp 
            open=open+1; 
        elseif tmp<=rn<tmp+open*a*dt 
            open=open-1; 
        end 
    end 
    openarr(m)=k*dt; 
end 
[yy,tt]=hist(openarr,100); 
figure(1); 
bar(tt,yy); 

4. Run	the	code	by	either	typing		stochastic2state at	the	command	line	or	
by	pressing	the	run-button	(green	triangle)	in	the	Matlab	editor.	

5. The	 code	 shown	 in	 step	 3	 simulates	 50000	 (Nr)	 channel	 openings	 and	
saves	the	time	it	takes	for	each	individual	opening	in	the	array	openarr.	
As	suggested	by	experiments,	it	is	assumed	that	the	channel	opens	when	
three	 subunits	 are	 in	 the	 active	 state	 (while open<4).	 Every	 channel	
opening	 starts	 from	 the	 configuration	when	 all	 four	 subunits	 are	 in	 the	
closed	 state	 (open=0).	 The	 if	 statement	 represents	 the	 stochastic	
transitions	that	are	illustrated	in	step	2.	The	last	three	lines	produce	the	
plot	shown	in	Figure	2.	



	
Figure	2:	The	histogram	shows	the	distribution	of	times	for	a	single	IP3R	to	open.	Note	the	delay	and	
the	sharp	rise	of	the	blip	initiation	times.	

	

		

Troubleshooting	
Problem	(Steps	1,2):	The	distribution	of	open	times	appears	unphysiological.	
Solution:	Check	the	combinatorial	factors,	which	here	are	the	numbers	1	to	4	in	
the	transition	probabilities.	Make	sure	that	the	time	step	𝑑𝑡	is	small	enough.	The	
sum	of	all	transition	probabilities	needs	to	be	smaller	than	1.	

Problem	(Step	3):	The	produced	figure	differs	from	Figure	2.	
Solution:	Since	we	here	study	stochastic	simulations,	no	two	simulations	are	the	
same.	 To	 generate	 reproducible	 stochastic	 simulations,	we	 need	 to	 initiate	 the	
random	 number	 generator	 with	 the	 same	 seed	 every	 time	 we	 run	
stochastic2state.m	(see	the	rng	command	in	Matlab).	

Problem	(Step	4):	The	code	does	not	run	from	the	command	line.	
Solution:	Make	sure	that	the	path	in	the	command	line	is	the	same	as	the	one	to	
where	stochastic2state was	saved.		

Discussion	
Figure	2	demonstrates	that	there	is	a	time	lag	before	IP3Rs	open	from	rest.	The	
most	likely	delay	corresponds	to	the	peak	of	the	distribution.	The	exact	shape	of	
the	blip	distribution	depends	on	the	gating	scheme	used	and	parameter	values.	
For	 this	 protocol,	 we	 have	 chosen	 the	 simplest	 IP3R	 model.	 For	 more	
sophisticated	 models,	 there	 are	 further	 considerations.	 Firstly,	 the	 transition	
scheme	becomes	more	 involved	and	often	cannot	be	represented	for	the	entire	
ion	 channel,	 but	 instead	 for	 a	 single	 subunit.	 Secondly,	 we	 have	 to	 use	 more	
sophisticated	 numerical	 methods	 such	 as	 developed	 in	 (Gillespie	 1977).	 The	
method	used	here	presents	an	approximation	of	(Gillespie	1977)	and	works	well	
for	small	time	steps	and	a	limited	number	of	states.	For	more	detail,	 I	refer	the	
reader	to	(Thul	and	Falcke	2006;	2007;	Higgins	et	al.	2009)		
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