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Hydrodynamics is arguably one of the most successful theories of physics. Although
it is extremely old, it is still nowadays as relevant as it was at its inception. With the
20th-century atomistic understanding of heath phenomena via statistical physics, hydro-
dynamics is now most fruitfully seen as a theory for emergent dynamical behaviours of
interacting many-body systems. Much like thermodynamics, it is a set of laws for a
reduced number of degrees of freedom that are relevant for describing observations at
large scales of space-time, transcending the high-dimensional space of trajectories or
wave functions into a lower-dimensional space of aggregated, coarse-grained quantities.
Hydrodynamics has been applied to a wide variety of systems, classical and quantum.
Perhaps in the view of explicitly implementing Boltzmann’s idea of ‘molecular chaos’,
which is at the basis of irreversibility, many applications of hydrodynamics have suc-
cessfully concentrated on stochastic systems [1–3]. It is, however, generally accepted
that stochasticity is not necessary. Instead, either classical ergodicity, or the build-up
of quantum entanglement and the resulting local decoherence, are phenomena that are
believed to generate some sort of molecular chaos.

While providing full proofs of these expectations remains undoubtedly an important
challenge, the ideas expressed here—molecular chaos, stochasticity, ergodicity, local
decoherence—nevertheless suggest, naively, that any many-body system which pos-
sesses a hydrodynamic description must be of ‘generic enough’ type: perhaps, if it is
deterministic, it must be chaotic.

The development of the theory of generalised hydrodynamics (GHD), the subject of
this Special Issue, is based on an important realisation: chaos is, in fact, not necessary
for the emergence of a predictive hydrodynamic theory. A sufficient condition is exten-
sivity—namely, the interaction should be short-range enough, and distributed over the
whole volume of the system so that conserved charges are extensive. As a consequence,
there is also a hydrodynamic theory for systems that are integrable and thus, according
to usual classifications, non-chaotic.

In order to understand how this can be true, it is useful to start with a more fun-
damental concept: the ‘ergodic principle’—somewhat related to, but different from, the
eigenstate thermalisation hypothesis [4–7]. Suppose that a state 〈· · ·〉 is both space-time
translation invariant, and clustering at large spatial separations; states with such prop-
erties are sometimes referred to as ‘ergodic states’ [8, 9]. The ergodic principle says that
if a state is ergodic, then it must be of the Gibbs form for the evolution Hamiltonian
H, i.e.

〈A〉 = Tr
(
e−βHA

)
Tr (e−βH)

. (1)
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Here, we adopted a quantum mechanical language, where, for classical systems, the
trace is replaced by an integral over an invariant measure, such as the standard phase-
space measure. More formally: the state is a Kubo–Martin–Schwinger state for the
evolution generated by H. If the particle number or momentum are conserved, then
the Gibbs state is accordingly modified, with associated chemical potentials. These
are referred to as thermodynamic equilibrium states: within the co-moving frame,
where the momentum chemical potential vanishes, the state is time-reversal symmetric
(if H is) and thus at ‘equilibrium’. Ergodic states are supposed to be the relevant states
occurring after relaxation. The basic physical principle of hydrodynamics is that locally,
in mesoscopic ‘fluid cells’, the system can be assumed to be in, or near to, ergodic states,
as a result of local relaxation: this is the local thermodynamic equilibrium assumption.

This simple principle naturally breaks down in integrable systems. Indeed, in infi-
nite volume integrable systems admit an infinity of short-range conserved quantities
H1,H2,H3, . . . of the type of the Hamiltonian H. Therefore, in order to describe ergodic
states, we must include chemical potentials, or ‘inverse temperatures’, for all such
conserved quantities:

〈A〉 =
Tr

(
e−

∑
i β

iHiA
)

Tr
(
e−

∑
i β

iHi
) , (2)

where βi are an infinite set of independent parameters. These are the so-called gen-
eralised Gibbs ensembles (GGEs) [10–12], which have been extremely successful at
determining the result of relaxation in integrable systems, or ‘generalised thermalisation’
[13–17]. In fact, relaxation in integrable models was the main focus of the 2016 JSTAT
Special Issue [18], which can be seen as the predecessor of the current one.

One may wonder if this generalised ergodic principle is of use at all. It is easy to
accept that states of the form (2) be admissible, but, besides describing the relaxation
from very special initial conditions in certain quench protocols, one might naively expect
such states to be extremely rare and of little use in real physical systems. Compelling
experimental evidence suggests that the situation is not that simple and that thermal
states are not enough to describe the relaxation of certain real physical systems, such
as cold atom gases confined in one dimension. Most famously, the quantum Newton’s
cradle experiment [19] exhibited a one-dimensional cold-atom cloud displaying very slow
thermalisation and strong memory of the initial condition. A quantitative description
of this phenomenon, however, remained missing for almost a decade. One of the most
important achievements of GHD has been to provide such a quantitative description,
showing that (2) are exactly the states needed to describe the emergent hydrodynam-
ics of integrable systems. Effectively, GHD simply arises as the application of basic
hydrodynamic principles—local thermodynamic relaxation and conservation laws—to
systems whose thermalisation properties are generalised as such. Real isolated physi-
cal systems, with generic and realistic inhomogeneous initial conditions, locally relax,
under reversible time evolution, to GGEs and not to thermal states on experimentally
accessible timescales.

We note that the (generalised) ergodic principle is conceptually a powerful tool. One
may in fact conjecture that in order to develop the hydrodynamic theory of a given
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extensive system, the required information is the manifold of ergodic states. There is no
need to impose any strong notion of ergodicity or chaos: the same set of fundamental
ideas applies equally well to chaotic and integrable systems; although, naturally, very
different phenomenologies emerge. This puts in stark relief the difficulty in deriving con-
ventional hydrodynamic equations for generic, realistic models: any rigorous derivation
will have to grapple with the difficult issue of showing that the system is not integrable,
and that the manifold of ergodic states is finite-dimensional. But it also suggests a new,
potentially fruitful path, where in a first step universal equations are proven based on the
abstract manifold of ergodic states, and the particularities of the manifold are analysed
in a second step.

With this universal understanding of hydrodynamics, the development of GHD
necessitated two technical ingredients. The first is an efficient characterisation of the
space of ergodic states for integrable systems (the GGEs). Crucially, this had recently
become available: results from studies of quantum quenches [20, 21] showed that one can
describe stationary states by Bethe ansatz [22–24]. In fact, it was realised that the notion
of an ‘asymptotic state’ of many-body systems plays a pivotal role. In integrable sys-
tems, every scattering event is purely elastic (preserving all momenta), and further can
be factorised into a product of two-body scattering events (leading to the Yang–Baxter
equation). These two facts have two important consequences. Consider a many-body
state where energy is concentrated on a large but finite volume, and its associated
asymptotic momenta from scattering theory. Then, not only is the (coarse-grained)
density of asymptotic momenta conserved,

Qθ,Δθ =
1

(Δθ)
Nθ,Δθ, (3)

where Nθ,Δθ is the number of asymptotic particles with momenta within [θ −Δθ/2,
θ +Δθ/2], but also it is an extensive quantity. That is, Qθ,Δθ is extensive for all L �
1/Δθ (it is like a Hamiltonian with an interaction range 1/Δθ). GGEs in infinite volumes
may then be described using the ‘continuous basis’ Qθ = limΔθ→0 Qθ,Δθ [25, 26]

〈A〉 =
Tr

(
e−

∫
dθβθQθA

)
Tr

(
e−

∫
dθβθQθ

) . (4)

Thus, the manifold of ergodic states is a manifold of functions θ �→ βθ. Such states
are completely characterised by the average phase-space density of asymptotic states
(density per unit momentum and length)

ρp(θ) = lim
L�1/Δθ→∞

1

L
〈Qθ,Δθ〉L. (5)

In specific applications, the density of asymptotic states takes special meanings: in the
Bethe ansatz formulation, this is the density of Bethe roots [22, 23], while in the classical
Toda chain, this is related to the spectral density of the Lax matrix [27–29].
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In order to obtain the hydrodynamic equations, one needs to further consider the
continuity equations associated with the conserved quantities Qθ. Namely, writing

Qθ,Δθ =

∫ L

0

dx qθ,Δθ(x), (6)

we find

∂tqθ,Δθ + ∂xjθ,Δθ = 0. (7)

This equation illustrates what is the second ingredient needed in the development of
GHD, i.e. the average currents 〈jθ,Δθ〉, in infinite volumes. Although explicit expressions
for currents jθ,Δθ are still unknown, the averages could be evaluated. In particular, their
expression, proposed in [30, 31], reads as

lim
L�1/Δθ→∞

〈jθ,Δθ〉 = veff(θ)ρp(θ). (8)

The effective velocity veff(θ) encodes the modification of the group velocity v(θ) of
the asymptotic particle θ due to the interaction. It represents the velocity effectively
emerging on large scales as a test ‘quasi-particle’, where intuitively a tracer of a given
asymptotic momentum θ, travels through the gas and interacts with it. It is a function of
the state and, in fact, a nonlinear functional of ρp(θ). Specifically, it solves the following
linear integral equation

veff(θ) = v(θ) +

∫
dθ′ ρp(θ

′)ϕ̃(θ, θ′)(veff(θ′)− veff(θ)). (9)

This equation encodes the interaction specific to the model, within the differential
scattering phase iϕ̃(θ, θ′) = dS(θ, θ′)/dp(θ), where S(θ, θ′) is the two-body scattering
amplitude, and p(θ) is the momentum of the asymptotic particle θ. Note that this type
of effective velocity first appeared in studies of classical systems such as soliton gases
[32–34] and one-dimensional hard rods [1, 35], and has a simple interpretation in terms
of accumulated (Wigner) time delays due to scattering phase shifts.

The most basic GHD equation is then obtained by considering a space-time depen-
dent ρp, which represents an ergodic state in every cell of space-time. Plugging (5) and
(8) into (7), we then have

∂tρp + ∂x(v
effρp) = 0. (10)

This equation, together with some appropriate initial conditions, gives a complete
characterisation of the space-time dependent ergodic state.

Making the connection between integrability and hydrodynamics has turned out to
be extremely fruitful. In essence, this is because it combined the exact descriptions of
the former with the simplicity and versatility of the latter. This led to a vast number of
surprising new developments in integrability, fluid theory, and statistical mechanics. In
this Special Issue, we aim at giving a comprehensive and self-contained account of these
developments: the nine contributions presented here discuss all of the main different
research directions that stemmed out of GHD. Specifically
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• Alba et al [36] introduce the GHD formalism for quantum many-body systems and
show how it can be applied to describe the asymptotic dynamics of entanglement
and correlations after inhomogeneous quenches in quantum integrable models.

• De Nardis et al [37] discuss the applications of GHD to the calculation of dynamical
correlations and the related transport coefficients in both quantum and classical
integrable systems.

• Bulchandani et al [38] review several recent advances, triggered by the introduction
of GHD, in the study of anomalous transport in spin chains.

• Bouchoule and Dubail [39] discuss theoretical and experimental developments
occurring in the research on 1D Bose gas since the inception of GHD.

• Bastianello et al [40] give an overview of the applications of GHD to the study of
nearly integrable models, i.e. systems in which integrability is weakly broken.

• Cubero et al [41] and Borsi et al [42] are instead concerned with the microscopic
foundation of GHD, especially with the proof of the ‘current formula’ (8). In par-
ticular, Cubero, Yoshimura, and Spohn present two complementary approaches, one
based on a form factor expansion and the other on a collision rate ansatz, while
Borsi, Pristyák, and Pozsgay discuss three different proofs of (8) via Bethe ansatz
techniques.

• Finally, El [43] and Buča et al [44] discuss two examples of classical systems where
the emergence of GHD can be proven with a higher level of mathematical rigor.
Specifically, El presents a comprehensive discussion of soliton gases in integrable dis-
persive hydrodynamic systems, while Buča, Klobas, and Prosen review recent results
on the out-of-equilibrium dynamics of the classical reversible cellular automaton ‘rule
54’.

This Special Issue provides a comprehensive portrait of the current research direc-
tions related to GHD, but we certainly do not expect it to remain up to date for long.
Indeed, several interesting new directions are currently being developed. Arguably, the
key missing link in our current comprehension of integrable systems out-of-equilibrium
is how and when the hydrodynamic description emerges from the full (quantum or
classical) many-body dynamics. Moreover, we also expect further developments in the
understanding of the general structure of hydrodynamics (in particular higher-order
gradient corrections needed to capture low-frequency transport) and its universality.
Finally, the role of the inevitable integrability-breaking perturbations present in any
experiment is still poorly understood.
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