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1 Introduction

Obstfeld and Rogo® (2009) cite the weak relationship between the exchange rate and

the rest of the economy as one of the major puzzles in international macroeconomics:

the so called \exchange rate disconnect puzzle".1 Engel et al. (2008) provide a useful

framework which considers the exchange rate to depend on fundamental drivers and

expected future rates and which highlights some of the sources of the disconnect. The

framework accommodates any model incorporating Uncovered Interest Parity where,

in this case, the drivers are the set of variables chosen to account for the behaviour of

the interest rate di®erential. In practice, if the focus of attention is on the short-term,

the set of variables chosen to account for interest rate movements are those best able

to capture the e®ects of policy responses or ¯nancial market responses to news. When

attention is on the macroeconomy's longer-term adjustment to its steady-state level,

variables that capture broader equilibrating pressures on interest rates are considered

more appropriate.2 Of course, in reality, both sets of in°uences on the exchange rate

could play a role at any one time, with their relative importance likely to change over

time depending on the extent of business cycle shocks and turbulence in the ¯nancial

markets and the scale and speed of changes in countries' longer term macroeconomic

1The disconnect lies behind the di±culties involved in forecasting exchange rates which have

been well-rehearsed since Meese and Rogo®'s seminal (1983) paper where point predictions from a

driftless random walk model were no worse than those from more sophisticated models. See Rossi

(2013) for a review on the literature on exchange rate predictability.
2On the basis of a survey of US foreign exchange traders, Cheung and Chinn (2001) report that

conventional macroeconomic pressures are thought to be important for exchange rate movements

by 1% of traders at the intraday horizon, but by 59% of traders in the medium run (i.e. up to 6

months) and by 88% of traders in the long run (i.e. over six months). Comparisons with the results

of earlier surveys also lead them to conclude that these rankings of variables change substantially

over time.
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outlook. As Engel et al. point out, the forward-looking nature of exchange rate

determination compounds these di±culties, shifting the in°uence from the current

value of the interest rate fundamentals to their expected future paths. This means the

relative weight of the di®erent sets of in°uences can change in anticipation of changes

in future policy or macroeconomic outlook as well as in response to contemporaneous

changes.

This inherent instability poses di±culties in applied work and is an explanation

for why no single exchange rate model performs well in explaining or forecasting dif-

ferent currencies over di®erent samples. Researchers have attempted to accommodate

structural instability in exchange rate models through single-equation time-varying

parameter models (see Wol® (1987) or Schinasi and Swamy (1989), for example) and

through Markov-switching models (as in Engel (1994) for example). Model averaging,

in which a variety of models are estimated - recursively or with a rolling window -

and then combined with time-varying weights has also been employed. This can be

approached as a full Bayesian exercise - as in Wright (2008) or Byrne et al. (2017)

for example - with the weights de¯ned by an estimated posterior probability that

the model holds true, or following a more standard forecast-combination approach in

which, at each time, all models are given equal weight or a weight based on `out-of-

sample' performance in a recent training period (see, for example, Sarno and Valente

(2009)).

In this paper, we adopt a model averaging approach to deal with the inherent

structural instability in exchange rate determination but we emphasise the `regime

uncertainty' surrounding the length of time for which a set of fundamentals exerts its

in°uence as well as the `model instability' surrounding the choice of fundamentals.

This follows the suggestion of Pesaran and Timmermann (2007) to apply model aver-

aging techniques to alternative models of the same type but estimated over di®erent
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estimation windows. We allow for uncertainty across model fundamentals as in the

literature then, but we also pay explicit attention to the duration of the period over

which the di®erent fundamentals are relevant. This distinguishes the approach from

those exchange rate papers where the time-variation is introduced implicitly through

the recursive nature of the modelling or through the application of a simple rolling

window. The more implicit approach may be reasonable in forecasting exercises but it

could obscure important regime shifts when the model averaging exercise is conducted

to make economically-meaningful inferences. We use the term `meta modelling' to

°ag our emphasis on regime instability when compared to more usual model averaging

methods.3

We also introduce a novel approach to constructing the time-varying weights in

our model averages by adopting non-nested hypothesis-testing methods. Here, a

characterisation of the data generating process based on a particular combination of

fundamentals continues until there is evidence to reject it in favour of a new char-

acterisation. Non-nested testing methods are involved as the new characterisation

could be based on a very di®erent combination of fundamentals. The approach has

the advantage that, to the extent that it is warranted by the data, it builds in a de-

gree of stability in the characterisation over time by taking the current model as the

maintained hypothesis. Given the volatility of exchange rates, this is a feature that

is often missing from models driven purely by Bayesian updating or weights based on

forecast performance over the recent past and this undermines those models' ability

to provide an economic narrative to explain the changes over time.4

3Lee et al. (2013, 2015) provide descriptions of the conduct of monetary policy in the UK and

US based on estimated \meta-Taylor rules" for the two countries, obtained using similar methods to

those of this paper, where the duration of di®erent policy regimes is an important focus of interest.
4See Timmermann (2006) and Aiol¯ et al. (2011) for discussion of the approaches taken to model

averaging in the forecasting context.
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In the next section, we brie°y comment on some traditional models of exchange

rate determination to motivate the use of di®erent fundamentals in di®erent models

and our characterisation of these as re°ecting policy or ¯nancial market responses to

news or equilibrating macroeconomic pressures. Section 3 elaborates on the model

averaging approach that we adopt to construct our meta model. The methods are

applied to monthly data for the exchange rates of ¯ve currencies against the US dollar

spanning over the last forty or ¯fty years in Section 4. Exchange rate determination

in the countries is characterised here according to a series of phases in which there is

an ebb and °ow between the pressures on the exchange rate from policy and ¯nancial

market responses to news and those from longer-term macroeconomic adjustments.

Section 5 provides concluding remarks.

2 Exchange Rate Fundamentals and Structural Uncertainty

There are four structural models of exchange rate determination frequently found in

the literature which we characterise as being more or less relevant during periods

of economic turbulence or stability.5 Exchange rate movements during periods ex-

periencing extreme policy responses or ¯nancial market responses to news - `news'

pressures - might be best characterised by models based on the Uncovered Interest

Rate Parity ( ) relationship

 = +1 ¡ ( ¡ ¤ ) (2.1)

where  is the nominal exchange rate at , de¯ned as a home price of a unit of foreign

currency,  and ¤ are the nominal interest rates paid on domestic and foreign

assets during period  respectively, the `' superscript indicates expectations (formed

at time t) and lower case variables denote logarithms. These include models based

5Rossi (2013) provides detailed descriptions of these models and the evidence relating to them.

[4]



on interest rate parity fundamentals in which, iterating forwards, taking expectations

and assuming that the expected future interest rate di®erential follows a simple ()

speci¯cation, we can write

 ¡ ¡1 = +
X

=0

(¡ ¡ ¤¡) +  (2.2)

where the 's are parameters and  represent stationary innovations. Alterna-

tively, working with the determinants of the interest rate as expressed in the Taylor

rule (i.e. in°ation ¢ and the output gap ) and assuming these in°uences e®ect

domestic and foreign interest rates, a model based on Taylor rule fundamentals would

be written as

 ¡ ¡1 =  +  ¡1 ¡ ¤ 
¤
¡1 + ¢ ¢ ¡ ¢¤ ¢

¤
 +   ¡ ¤ 

¤
 +   + 

(2.3)

where  = +¤ ¡ is the log of the real exchange rate, the 's are parameters and

 again represent stationary innovations.

In less turbulent times, the future path of interest rates will re°ect broader macro-

economic conditions and might be better captured by Mark's (1995) approach to

modelling the exchange rate in which deviations of the nominal exchange rate from

its equilibrium are gradually eliminated over time according to

 ¡ ¡1 =  (¡1 ¡ ¡1) (2.4)

where  ¡  is the deviation of the time- equilibrium exchange rate, , from the

actual rate. The Purchasing Power Parity (PPP) hypothesis provides a candidate for

the equilibrium level of the exchange rate based on the `law of one price' so we can

write

 ¡ ¡1 = + (¡1 ¡ ¤¡1 ¡ ¡1) +  (2.5)
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where  again re°ects stationary innovations. Alternatively, the monetary model

of the exchange rate characterises the equilibrium exchange rate as depending on

relative money supplies, relative income levels and the interest rate di®erential and

can motivate a model of the form

 ¡ ¡1 = 0 + 

" X

=0

(¡1¡ ¡ ¤
¡1¡) +

X

=0

(¡1¡ ¡ ¤¡1¡)¡ ¡1

#

+ 

(2.6)

Modelling structural uncertainty The four models outlined in (2.2), (2.3), (2.5)

and (2.6) are all relatively standard in the literature. Our discussion emphasises that

any one of them, or a combination of them, could be more or less relevant in di®erent

circumstances and over di®erent sample windows. In what follows then, at time  ,

there are £ models that can be used to characterise recent changes in the exchange

rate, described by

 :  ¡ ¡1 = ®X +    = 1   ;  = min  max;  =  ¡   

(2.7)

where  = max¡min+1 and the complexity of the subscripts re°ects the °exibility of

the modelling framework. Here, model  is assumed to explain the change in the

exchange rate over the period ¡   , and allowing  to vary means we contemplate

models that might be relevant only for the most recent past or back to max periods

in the past. The model involves X which is the  set of  alternative sets of

explanatory variables driving the exchange rate; these represent the fundamentals

proposed by interest rate parity, the Taylor rule, PPP and the monetary models

respectively in the case of the models in (2.2)-(2.6) and, for models of the form in

(2.4), the lagged exchange rate level also.
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3 Meta Modelling

The uncertainty surrounding the determination of exchange rates is re°ected by the

idea that the change in the exchange rate observed at any particular time  could be

explained by any one of£ di®erent models according to (2.7). The meta modelling

approach accommodates this uncertainty by using a weighted average of the alterna-

tive models in (2.7). The approach starts from a Bayesian Model Averaging (BMA)

formula but is classical in nature avoiding the (often problematic) Bayesian assump-

tion that the model includes the true data generating process (dgp) and avoiding the

need to specify prior probabilities for the unknown parameters in the models or for

the models themselves. Indeed, the estimated meta model simply aims to characterise

exchange rate movements taking account of the possibility of changes in the relative

importance of the fundamentals at di®erent times. As we shall see, the model weights

in our preferred meta model are updated in each period on the basis of non-nested

hypothesis tests, accommodating the possibility of a structural break by switching

to an alternative structural model if there is evidence to reject the previously-held

null. The meta model could re°ect the true dgp if we know one of the fundamental

models under consideration holds true at all times or if, for example, exchange rate

decisions are made by di®erent groups - each focused on di®erent fundamentals - and

the weights capture the proportions of individuals in the respective groups as these

change over time. But the meta modelling approach is also consistent with the true

dgp being distinct from all of the underlying structural models considered. Here the

weights simply convey the real-time adequacy of the underlying structural models in

characterising recent exchange rate movements, and a reduction of the weight on a

model because of its rejection does not imply acceptance of its alternative but simply

re°ects the shortcomings of the previously-held null.
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3.1 Model Averaging

The basis of the meta modelling approach is the BMA formula:

Pr(µ j Z ) =
X

=1

maxX

=min

Pr(µ j Z ,  )£ Pr( j Z ) (3.8)

where Z = (z1 z ) represents the data available at  , with z = ( , X 8 ), and

µ = ( 8  ) represents the unknown parameters capturing the in°uence of all

the fundamentals under consideration. The Pr(µ j Z ) describes our understanding

of the parameters of interest and represent the various models described at (2.7).

The BMA formula decomposes the uncertainties accommodated within Pr(µ j Z )

into a weighted average of the conditional distributions, Pr(µ j  , Z ), using

as weights the model probabilities Pr( j Z ). A strict Bayesian requires a prior

distribution for the unknown parameters of all the models to evaluate the conditional

distributions. Alternatively, if no meaningful prior distribution is available, one can

make the more classical assumption that

µ j Z 

» (bµ cV )

for Pr (µ j Z  ), where bµ is the familiar maximum likelihood estimate of the

parameters under  , and cV is the asymptotic covariance matrix of bµ . This

assumption treats µ as a random variable at the inference stage so that Pr(µ j Z ,

 ) in (3.8) is approximated by (bµ cV ) and standard inference can be carried

out for each model in turn.

3.2 The Model Weights

Turning to the model weights Pr( j Z ), we note that in the context of exchange

rate determination, where the models under consideration are unlikely to be exhaus-

tive even allowing for structural breaks, the strict Bayesian requirement to assign prior
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probabilities to all models at each point seems unrealistic, or at least very demanding.

The alternative `frequentist' model averaging approaches found in the literature are

reviewed in Steel (2020) noting that here weights are chosen to deliver parameters

with desirable properties under repeated sampling. The relative advantages of the

di®erent frequentist approaches considered in the review make little or no reference

to models of di®erent sample lengths though (and, indeed, the desirable properties

are typically related to the asymptotic properties of the estimators). This reinforces

our use of the term `meta modelling', with its focus on regime uncertainty and the

choice of sampling window, to distinguish it from the more usual context for model

averaging.

The Meta (Non-Nested Testing) Approach A pragmatic approach to deriving

model weights in these circumstances is to allow these to evolve over time, updating

the weights in each period to re°ect new evidence on whether the previously-held view

continues to be valid or whether an alternative new-born model is now appropriate.

Since the new-born model could involve an entirely di®erent set of fundamentals

to those of the previously-held model, the evidence involves non-nested hypothesis-

testing (NNT) methods which are relevant when one model cannot be obtained from

the other by imposition of parameter restrictions or through a limiting process.

The meta-NNT approach can be formalised by writing, for any  and for all

 = 1  and  = min  max ¡ 1,

Pr(¡1 j Z¡1) !

8
>>>>>>>><

>>>>>>>>:

Pr(+1 j Z )
if the null +1 is not rejected in favour of 

for  = min,..., and  = 1 

Pr( j Z )
if the null +1 is rejected in favour of 

for  = min,..., and  = 1 

so that the weight assigned at time ¡1 to the model containing the  fundamentals
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and based on data  ¡ 1 ¡  to  ¡ 1 is either transferred to the model with the

same fundamentals based on one additional observation - i.e. data  ¡ 1¡  to  -

or to a new model based on the shorter sample of data  ¡  to  containing any

one of the alternative sets of fundamentals based on a non-nested test. If a model is

rejected in favour of more than one alternative, the weight can be split equally among

the alternative models.6

In transferring weights, our interest is whether the most recent observation con-

¯rms or °ags shortcomings on our currently-held characterisation of the data. A nat-

ural statistic on which to base the test between the models is the ratio of the squared

residuals obtained for the ¯nal observation of the two competing models, denoted

 say. Here, a large (absolute) value of the residual from the null model casts

doubt on its continued relevance, but this is judged relative to the performance of the

realistic alternative models. In the case where the alternative is the same behavioural

model but with changed parameters based on a shorter sample period, the alterna-

tive is nested within the null and the statistic provides a standard F-test of structural

instability, itself a likelihood ratio test under the assumption of normally-distributed

errors. But, more generally, neither model is nested within the other and non-nested

testing procedures are required. The `Cox test' of two competing non-nested models

involves modifying the likelihood ratio test statistic to obtain a statistic with known

asymptotic distribution. The modi¯cation is required because, taking one model as

the null, the alternative is misspeci¯ed and its estimated likelihood will depend on

the parameters of the null model.7 In most cases, the required modi¯cation renders

6Alternatively, as illustrated in the empirical exercise below, the weights could be reallocated

according to the strength of the rejection (denoted the `meta-NNTp' approach).
7Pesaran (1974) describes the modi¯cation required to take into account the misspeci¯cation in

the case of two non-nested linear regression models estimated over a common sample and derives a

statistic which is asymptotically normally distributed with zero mean and calculable ¯nite variance.
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the distribution of the statistic analytically intractable so that simulation methods

are required.

The simulation exercise involved here is computationally demanding but relatively

straightforward. Here the previously-held model has a clear status as the null and so

can be used to simulate  arti¯cial samples of the exchange rate, 
()
 ,  = 1  , for

 =  ¡    using the estimated parameters of model  and making random

draws from a Normal distribution with mean zero and variance equal to that estimated

under . For each arti¯cial sample, the models and can be estimated

and the ratio of the squared residuals obtained for the ¯nal observation of the two

competing models, 
()
 , can be calculated. The set of simulated 

()
 statistics

provides the appropriate distribution against which to compare the observed 

under the null that model  is true. Finding that this value lies in the upper 5%,

say, of the simulated distribution provides signi¯cant evidence to reject the model

in favour of the new alternative. Carrying out this exercise at each point in time,

holding in turn each model with non-zero probability as the null and comparing it to

all realistic alternative models, provides the means to update the weights over time.

Alternative Frequentist Model Averaging Approaches The meta-NNT ap-

proach is related to Hansen et al.'s (2011) idea of a Model Con¯dence Set (MCS) in

which a test is applied to a set of competing models and models are eliminated if

they perform poorly by some user-speci¯ed criterion. The MCS is the set of (equally

weighted) models which are not rejected as statistically inferior. In the meta-NNT

approach, as we move through the sample, the weight from each model characterising

exchange rate determination in one period is e®ectively transferred to the models in

See Pesaran and Weeks (2003) for a review of the non-nested testing literature.
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its MCS in the next period.

The use of NNT in allocating weights has the advantage of building in a degree of

stability in the weights over time through the `protection' provided to the null. Lee et

al's (2015) approach to de¯ning the `meta' weights also builds in a degree of stability

by updating time- weights at +1 according to the probability of observing the time

 + 1 outcome based on the time- model, where this latter probability is assumed

proportional to the squared estimated residual at the end of the sample.8 Compared

to the meta-NNT approach, the updating criterion in this meta model is more closely

related to the approach to de¯ning weights found in the forecast combination litera-

ture. Here, weights depend on the historical forecasting performance of the di®erent

models, sometimes discounting into the past or focusing on the "most recent best"

(MRB) forecasts; see, for example, Diebold and Pauly (2007) or Sarno and Valente

(2009) for discussion.

Comparison of the meta-NNT and meta-MRB approaches will provide insights on

the role of the updating criterion. Comparison with a more standard model averaging

approach in which weights are updated as above but based on the MRB performance

of models estimated in a rolling window of ¯xed-sample-length would further isolate

the `meta' contribution of accommodating regime change. And an exercise in which

weights are based only on MRB performance of a rolling model average, with no

updating, would reveal the role of the smoothing. These exercises are considered in

the empirical work below.

The Meta-NNT Model The meta-NNT model characterising exchange rate de-

termination over the whole sample  =   consists of the set of individual

8The weights also accommodate the possibility of new regimes being born with a ¯xed probability;

see Lee at al (2015) for details.
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estimated models of the form given by (2.7) plus the associated weights obtained

using the non-nested testing procedure described above. Denoting the weights by

 = Pr( j Z ), the meta-NNT model can be written as

 ¢¢¢ = f ,  ,  = 1    = min  max,  =    g

(3.10)

which attaches weights to all the possible models in (2.7) de¯ned according to the

de¯nition of exchange rate fundamentals and to the di®erent regime lengths.9

Changes in the size of the weights over time provide useful information on how ex-

change rate determination has evolved therefore. For example, the duration statistic,

 =
X



P
  £  provides a time- indication of the duration of the exchange

rate regime in place at that time (whatever the nature of the regime). Similarly, the

behavioural model weight statistic,  =
X



   = 1   , provides a time-

summary of the usefulness of the  of the alternative exchange rate models.10

4 Characterising Exchange Rate Determination for Five Currencies

We now apply the modelling approach to the analysis of the determination of ¯ve

exchange rates over the last forty or ¯fty years; namely, the U.S. dollar (USD) ex-

change rates for the Canadian dollar, Danish krone, Japanese yen, Swedish krona

and British pound. The data are measured monthly and are as provided in Rossi

(2013), with the start dates for the analysis varying across countries to accommodate

the di®erences in the dates at which the currency prices are considered to be °oating

9The meta-MRB model takes the form of (3.10) but with weights determined according to the

most-recent-best performance as described above and might be denoted f¢¢¢, say. The correspond-

ing rolling window model average would then be denoted f¢¢ with window size .
10The Shannon entropy statistic  = ¡

P


P
 log( ) £ , as used in information theory,

provides a useful summary measure of the extent of model uncertainty experienced at  .

[13]



- as described in column (1) of Table 1 - but all running to 2010:06.11 These data

are derived originally from Datastream but were collated by Rossi to provide a set

of variables that are reasonably comparable across countries. The choice of our ¯ve

rates was based on the availability of a long run of data, and the results for these

rates presented by Rossi provide a useful setting from which to judge our own results.

To be clear on de¯nitions, the data for nominal exchange rates  are the end-of-

month observations of the rate expressed as the price of one US dollar. Interest rates

 are three-month Treasury Bill rates, output  is measured by monthly industrial

production ¯gures and the output gap  is calculated as the percentage deviations

of actual industrial production from the trend de¯ned by applying a simple moving

average to a forecast-augmented industrial output series.12 Prices  are measured by

CPI and we use relatively liquid measures of the money supply  in each country

(e.g. M1 data for the US). Series are seasonally-adjusted using one-sided moving

averages with equal weights over the previous twelve months.

A plot of the (logarithm of the) ¯ve exchange rates, and corresponding price

and interest rate di®erentials, are provided in the on-line Appendix and show rea-

sonably clear similarities in the movements of each country's exchange rate and its

prices relative to those of US over the forty or ¯fty years of the data sample. For

instance, broadly speaking, the Canadian dollar rate  rises to the mid-eighties,

falls through to the early nineties, rises again through to early 2000's, drops sharply

11The early years of data in some countries include observations during regimes of highly managed

exchange rates. But these early observations provides a convenient way to initiate the modelling

and, of course, the modelling strategy is speci¯cally designed to disregard these observations in later

years - by moving to shorter samples - as dictated by the data.
12Speci¯cally, at each period  , an AR(2) model was estimated for the output series and used to

produce forecasts for  +1   +12. Trend output at  was identi¯ed as the value of the 24-month

moving average centred at  applied to the extended series.

[14]



to 2007/8, rises brie°y and then falls again at the end of the sample. Exactly the

same description applies to Canadian relative prices  ¡  . In contrast, and

again broadly speaking, the Japanese Yen falls gradually throughout the sample. But

so too do Japanese relative prices. As shown in column (2) of Table 1, the simple

correlations between each country's exchange rate and its relative prices is high in all

¯ve countries, averaging 077, showing the importance of broad price pressures for ex-

change rate determination. On the other hand, these relationships are not one-for-one

and divergencies in the movements between the two series appear to persist. Simple

ADF tests applied to the entire sample of data show, for all ¯ve currencies, that the

nominal exchange rate and relative price series are both I(1) and, importantly, that

the real exchange rate  =  +  ¡  is also I(1). In short, price pressures do

appear to impact on the exchange rate but, given the periodic and permanent shifts

in the series, it seems unlikely that exchange rate determination will be fully captured

by a stable PPP or monetary model.

Despite these broad patterns, each country's relative price movements are much

smoother over time than those of its exchange rate. Column (4) of Table 1 shows the

variance of the change in the exchange rates relative to the variance of the change in

relative prices is very large in every country, averaging 67 time larger across these ¯ve

countries. The volatility of exchange rates is much more in line with the volatility of

the interest rate di®erentials, with the ratio of these variances averaging 16 across

our ¯ve respective countries. This suggests that the asset market pressures captured

by the IRP and Taylor Rule models could provide a more important in°uence on

exchange rates over short horizons. On the other hand, the simple correlations in

each country between exchange rate changes and the interest rate di®erential over

the whole sample, as reported in column (2) of Table 1, have an average of just ¡009

making it very unlikely that the IRP and Taylor rule models could provide the basis

[15]



for explaining exchange rate movements over the sample in all the countries.

An intuitive account that is consistent with these statistics is that there are equi-

librating macroeconomic pressures to move exchange rates towards establishing PPP.

But there are also factors that change the relationship between exchange rates and rel-

ative prices permanently, and there are jumps and volatile movements in the exchange

rates arising in response to news from global markets that are best represented by

an IRP or Taylor Rule relationship. The relative strengths of these various pressures

varies over time and the meta model allows them all to have an e®ect, with individual

models having non-zero weight while their in°uence is apparent in the data.

4.1 The Meta-NNT Models

Our modelling work began by estimating, for each country, 12 versions of our four

fundamental models based on three years of available data running up to the beginning

of the period of analysis reported in column (1) of Table 1; e.g. up to 1965 : 5 for

Canada. The di®erent versions used data ranging between 24 months and 36 months

prior to the beginning of the period of analysis, providing estimates of  for

 =   , for  = 24  36. In this ¯rst iteration of the modelling,

equal weights was given to all 4 £ 12 = 48 models obtained for each country. The

data window was then extended by one month and 52 models were estimated for

each country but in this case the weights were assigned to each model following the

procedure in (3.9). This iterated procedure then continued for every  up to the

end of the period of analysis in 20106. The estimated models and model weights

obtained in this way provided the estimated `meta-NNT model' for each country.

Figure 1 provides graphical representations of the key features of the meta-NNT

models obtained for Canada; the equivalent ¯gures for the other countries are provided

in the online Appendix. The ¯gure shows the weighted average of the sample length

[16]



- i.e. the duration statistic described earlier - as it evolves over time. The ¯gure

demonstrates clearly the extent of the regime instability that has to be captured by

exchange rate models: there are runs of data during which the average sample length

grows by one month each month, implying no breaks are occurring and weights are

simply passed on to the corresponding models which are one month longer; but these

runs rarely last for more than two years with the average sample length frequently

dropping below 30 months. For Canada between 1968:4-2010:6, the average sample

length falls below 30 months on 28 occasions - and often remains there for some time

- meaning that there is a distinct break every 19 months or so. Similar instabilities

are observed in the other countries and, as documented in column (5) of Table 1, the

intervals between distinct breaks is very similar (17-19 months) in Denmark, Japan

and Sweden although they are a little less frequent in the UK (with intervals between

breaks averaging around 28 months).

The ¯gure also provides some insights on the nature of the breaks in the Canadian

case by plotting smoothed measures of the joint weights of the models driven by

macroeconomic pressures (i.e. the PPP and Monetary models) and of the models

driven by the response to news (i.e. IRP and Taylor rule models), where the smoothing

averages over the previous 24 months.13 While the smoothing obscures the impact of

some very short-lived episodes, it provides a clear picture of the broad patterns in the

weights and re°ects the timing of substantial shifts in behaviour. Broadly speaking, it

appears that the PPP and (less frequently) the Monetary model dominate during the

sixties and seventies and then again between the mid-1990's and mid-2000's, while the

IRP and Taylor Rule models dominate from the mid-80's to the mid-90's. The ¯gure

also de¯nes some `phases' during which macroeconomic pressures succumb to the

`news' pressures and vice versa. A phase in which the response to news dominates is

13Detailed plots of the underlying weights are provided in the on-line Appendix.
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de¯ned to end when there is a peak in the weights assigned to the IRP and Taylor Rule

models. The phase of growing macroeconomic pressures that follows corresponds to

a period when the weight on the PPP and Monetary models is increasing, and it ends

when the weight on these models peaks.14 The outcome for Canada is presented as

shading in Figure 1 and divides the sample into thirteen phases, each lasting 42 months

on average and con¯rming the earlier broad characterisation of growing in°uence of

news responses in the early 80's and early parts of the 2000's, and the long period

between the mid-80's and mid-90's when equilibrating macroeconomic pressures grew

to dominate. A similar phasing can be obtained for the other countries, and the

summary statistics in column (6) of Table 1 show that these countries experienced

similar episodes (albeit with rather shorter phases in Japan and Sweden). However,

the timing and nature of the phases are country-speci¯c and re°ect the particular

circumstances of each country.

4.2 Comparison with Alternative Frequentist Model Averages

The meta-NNT models build in stability in the weights over time through the pro-

tection of the null hypothesis that any model with non-zero weights remains relevant,

with the same weight, next period. Columns (a) and (b) of Table 2 provides statistics

to compare the meta-NNT model with two alternative models that consider the same

range of models as the meta-NNT model but with alternative ways of accommodating

this stability. Speci¯cally, the meta-NNTp model applied the same modelling strat-

egy as meta-NNT but, when the null is rejected, the weights are reassigned according

to the strength of the rejection.15 And, as discussed earlier, the meta-MRB model

14Some judgement is exercised in the de¯nition when a change in direction is very short-lived.
15Here, rather than reallocating weights equally to all models against which the null is rejected

at the 1% level, weights are reallocated among these models in (inverse) proportion to the rejection
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focuses on the most-recent-best performance of the models and updates the previous

period's weights according to the likelihood of observing the most recent observation

as in Lee et al. (2015).

Table 2 column (a) reports, for each currency, the simple correlation between the

weights assigned over the sample to the PPP+Monetary models by the meta-NNT

model and the meta-NNTp model, and also the degree of agreement over the phases

identi¯ed by the two models as captured in a 2 £ 2 contingency table. The average

correlation over the ¯ve currencies is 0.82, while the average Kuipers Score is 0.59 and

both the static and dynamic versions of the Pesaran-Timmerman (2009) tests show

signi¯cantly in every case. These statistics re°ect a relatively high degree of consis-

tency across the two approaches then, so that the use of the rejection probability in

reallocating weights has an e®ect but does not substantially alter the results. Column

(b) compares the meta-NNT and meta-MRB models and shows an average correlation

of 0.44 and average Kuipers score of 0.59. The correlations are reasonably high then

and there is some consistency in the timing of phases, although this is statistically

signi¯cant in only three cases according to the static PT test and only for the GBP

according to the more powerful dynamic PT statistic.

Columns (c) and (d) compare the meta-NNT models with models obtained follow-

ing the more usual rolling model averaging (RMA) approach in which all the estimated

models are based on a rolling ¯xed sample length (of 66 observations in this case).

Column (c) reports on the model in which the weights are updated at  + 1 on the

basis of the probability of observing the time  + 1 outcome as in meta-MRB, while

column (d) assigns weights purely on the basis of this time  + 1 probability with-

out reference to the previous period's weights. The correlations and Kuipers scores

probability, with a model rejecting at 0.2% level gaining ¯ve times more weight than a model rejecting

at 1%, for example.

[19]



of these columns show that these models have a quite di®erent characterisation of

exchange rates to those of the meta models. The average correlations across the ¯ve

currencies are -0.18 and 0.12 in columns (c) and (d) respectively, while the Kuipers

scores are close to zero or negative with no statistical signi¯cance for any currency.

Underlying these results is the observation that, at any time, none of the sub-set

of models considered by the RMA (all of which are restricted to have the same sample

length) performs especially well relative to the others in explaining the most recent

outcome. This is as would be expected if there are frequent structural breaks. In

the case of the dynamic RMA model of column (c) involving updated weights, this

means that the models are typically unable to disrupt the weighting pro¯le from the

previous period and, if the weights become concentrated on one model, it remains

unchanged over time (so that, as it turns out, the number of phases observed during

our data period is fewer than seven in all ¯ve of our currencies). This is in contrast

to the meta models where, after a break, a model estimated on a short sample can

substantially outperform those based on longer samples. For the static RMA model

of column (d) where weights are based only on the most recent performance with no

updating, the fact that none of the models performs especially well relative to the

others means that none of the structural models dominates for any length of time,

the sum of weights on the PPP+Monetary models changes rapidly over time, and it

is di±cult to distinguish any particular phases in the data. Clearly then, while the

use of NNTp or MRB in updating weights has some impact on the characterisation of

exchange rate determination in the meta models, it is the ability of the meta models

to accommodate structural breaks that dominates the nature of this characterisation.
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5 Conclusion

There is inherent instability over time in the process determining exchange rates and

it is not surprising that explaining exchange rate movements and forecasting them is

di±cult in these circumstances. The model averaging underlying the meta model of

this paper provides a very °exible approach to dealing with this inherent instability

in real time. The approach accommodates regime uncertainty as well as model uncer-

tainty, doing this in a way that can account for periods of stability, periods in which

policy evolves gradually and episodes of abrupt changes in regime. The results of the

paper show that, for the ¯ve currencies considered, the meta-NNT models provide

sensible characterisations of exchange rate movements over the last 40-50 years, re-

°ecting the ebb and °ow of macroeconomic and `news' pressures on exchange rates.

The timing of the phases of the di®erent pressures are country-speci¯c, re°ecting

countries' individual experiences. But there is a striking similarity in the frequency

of structural breaks (occurring every 17-28 months on average) and the duration of the

phases in which macroeconomic or `news' pressures dominate (lasting 29-42 months

on average). Comparison with alternative model averaging approaches shows that it

is the meta model's ability to accommodate structural change that is central to its

success in characterising the data, although the use of non-nested testing - as opposed

to updating using most-recent-best criteria - is also important in building some useful

stability in the evolution of model weights over time.
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Figure 1: Weighted Average Sample Size and Smoothed Weights for PPP and Monetary Models
for Canada: 1968m4 - 2010m6

Weighted Average Sample Size Smoothed Sum of Weights for the PPP and Monetary Models



Table 1: Exchange Rate Summary Statistics

(1)

Period of Analysis
(n)

(2)

( st, pt
US-pt)

( st, rt-rt
US)

(3)

ADF(st)

ADF(st-pt
US-pt)

(4)

(௧ݏ∆)ܸ
−௧݌)∆)ܸ ௧݌

௎ௌ)
൘

(௧ݏ∆)ܸ
−௧ݎ)∆)ܸ ௧ݎ

௎ௌ)
൘

(5)

No. breaks
(av. duration)

(6)

No. phases
(av. Duration)

Canada 1968:4-2016:6
(518)

0.89(**)

0.00
0.31
0.20

27.52
1.28

28
(18 months)

13
(14 months)

Denmark 1979:3-2016:6
(387)

0.76(**)

-0.11
0.40
0.17

90.14
1.82

24
(16 months)

10
(39 months)

Japan 1969:3-2016:6
(507)

0.86(**)

-0.16
0.47
0.32

82.10
2.11

28
(18 months)

18
(28 months)

Sweden 1980:2-2016:6
(376)

0.84(**)

-0.05
0.28
0.34

62.51
1.03

23
(16 months)

14
(27 months)

UK 1978:7-2016:6
(393)

0.48(**)

-0.11
0.09
0.06

70.79
1.92

15
(26 months)

10
(39 months)

Notes: (. , .) refers to the correlation between two variables; ADF(.) refers to the p-value of the ADF test applied to the variable (with a constant in the

underlying ADF regression and extent of augmentation chosen by AIC with max lag =12). In tests, superscripts * and ** indicate significance at the 5% and
1% level respectively. V(.) refers to the variance of the variable; ‘No. breaks’ refers to number of occasions in which average sample length drops below 30
months (see text for details); ‘No. phases’ refers to phases defined by the occurrence of peaks/troughs (see text for details).



Table 2: The Relationship between the Meta-NNT and Alternative Models

(1)

Meta-NNTp

(2)

Meta-MRB

(3)

RMA - dynamic

(4)

RMA - static

Canada Meta-
NNT

ρ = 0.936(**)

KS = 0.298(**,**)

ρ = 0.713(**)

KS = 0.117(*,-)

ρ = -0.299 

KS = -0.024

ρ = 0.487(**)

KS = 0.419(**,-)

Denmark
Meta-NNT

ρ =  0.828(**)

KS = 0.835(**,**)

ρ =  0.483(**)

KS = 0.262(*,-)

ρ =  -0.391 

KS = -0.343

ρ =  -0.213 

KS = -0.128

Japan Meta-
NNT

 ρ =  0.883(**)

KS = 0.538(**,**)

ρ =  0.341(**)

KS = -0.024

ρ =  -0.121 

KS = -0.150

ρ =  0.071 

KS = -0.010

Sweden Meta-
NNT

ρ =   0.557(**)

KS = 0.626(**,**)

ρ =  0.122(**)

KS = 0.090

ρ =  0.134(**)

KS = -0.060

ρ =  0.185(**)

KS = -0.002

UK Meta-
NNT

ρ =  0.891(**)

KS = 0.763(**,**)

ρ =  0.452(**)

KS = 0.343(**,-)

ρ =  -0.202 

KS = 0.043

ρ =  0.100 

KS = 0.064

Notes: Alternative models are ‘meta’ or ‘rolling model average’ (RMA) and are based on non-nested
tests (NNT) or most-recent-best (MRB) performance. See text for details.

 refers to the correlation between the probability of PPP and Monetary models according to the

meta-NNT model and the same probability according to the alternative models. Superscripts ( )

indicate significance in a one-tailed test of zero correlation.

KS refers to the Kuipers Score measuring the alignment of phases according to the meta-NNT model
and the alternative models. Superscripts (a,b) indicate significance in a test of zero association using the
(a) static and (b) dynamic PT tests respectively. In all cases, ‘*’ and ‘**’ show significance at the 5%
and 1% levels respectively. See text for details.
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