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Abstract: Experimental results of liquid film thickness distribution of an air–water mixture 

flowing through a vertical 180° return bend are reported. Measurements of liquid film 

thickness were achieved using flush mounted pin and parallel wire probes.  The bend has a 

diameter of 127 mm and a curvature ratio (R/D) of 3. The superficial velocities of air ranged 

from 3.5 to 16.1 m/s and those for water from 0.02 to 0.2 m/s. At these superficial velocity 

ranges, the flow pattern investigated in this work focused on churn and annular flows. It was 

found that at liquid and gas superficial velocities of 0.02 m/s and 6.2 m/s, respectively, the 

averaged liquid film thickness peak at 90o. At gas superficial velocity of 16.1 m/s, the 

relationship between them is linear due to the shear forces overcoming gravity. Additionally, 

it was found that deposition of entrained droplets keeps the liquid film on the outside of the 

bend. The results of polar plots of average liquid film thickness in the bend showed that the 

distribution of the liquid film is not symmetrical with thicker films on the inside of the bend 

due to the action of gravity. Experimental results on average liquid film thickness showed 

good agreement with the simulation data reported in the literature.  

Keywords:  churn and annular flows, liquid film thickness, 180° bend, large diameter, pin 

probes, wire probes.  
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1. Introduction 

Two-phase gas–liquid flow in bends is widely encountered in industrial equipment ranging 

from steam generators in nuclear power reactor, fired reboilers in oil refining and 

hydrocarbon processing plant, fossil fuelled boilers and pipework in oil/gas production, 

refinery and chemical plants.  Though notionally a simple geometry, their use with gas liquid 

flow is made complex because of the effect of gravity which tends to stratify the phases.  This 

means that several parameters must be quantified to ensure that the correct effect of the bend 

is realised and understood.  The first, and most obvious, parameter is the angle between the 

inlet and outlet pipes.  This tends to come in certain prescribed values such as 90° or 180°.  

The second parameter is the orientation of the inlet and outlet pipes.  Even confining 

ourselves to 180° bends there are U bends, inverted U bends and C bends.  The first two have 

vertical pipes, the last horizontal pipes.  However, for C bends there needs to be a 

specification of what is the orientation of the plane of the bend relative to gravity, taking into 

account the direction of flow.  The extent of the differences for vertical upwards, 45°, and 

horizontal versions are illustrated by Sakamoto et al. (2004).  Here, we focus on inverted U 

bends for which papers have been written by Golan and Stenning (1969), Hills (1973), 

Anderson and Hills (1974), Usui et al. (1983), Hoang and Davies (1984), Takemura et al. 

(1986).  Golan and Stenning (1969) and Takemura et al. (1986) who noted that they act as 

phase separators because of the combined effect of centrifugal forces and gravity. In a U bend 

the two forces act in the same direction, usually sending the liquid to the outside of the bend 

and gas to the inside. In the inverted U-bend case the forces can act in opposite directions at 

lower liquid flow rates. However, at higher liquid flow rates, the centrifugal forces dominate 

and the liquid goes to the outside of the bend. Takemura et al. (1986) confirmed these trends 

from wall temperature excursions in electrically heated experiments. Golan and Stenning 

(1969) reported that the effect of the bend on phase distribution disappeared by 10 pipe 
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diameters downstream of the end of the bend for the inverted U-bend case and 4 pipe 

diameter for the U-bend.  The two major applications of inverted U bends are steam 

generators (typical pipe diameter ~25 mm) and fired reboilers (typical pipe diameter 100-200 

mm).  It is noted that the work referred to above employed pipe diameters between 18 and 51 

mm.  Here, the focus is on the latter equipment.  Fired reboilers are designed in two parts, the 

flame side and the process side.  The former uses standard furnace models.  The main thrust 

in the latter is about the selection of tube dimensions using sensible and standard sizes so that 

the required area is fitted around the flames into a reasonable volume.  Tube diameters are 

chosen to keep process side pressure drops low.  There is a recognition that coking, the 

breaking down of the hydrocarbons to produce a form of carbon, can be a problem which will 

occur if there are unsaturated hydrocarbons present and the wall temperatures rise above 

critical values.  These higher temperatures are associated with dryout of the film of liquid 

flowing on the walls of the tubes.  The term dryout is often associated with the physical 

mechanism of the drying out of the liquid phase in the process side of the equipment due to 

evaporation and entrainment that occurs in the annular flow pattern. Current design practice 

uses a simple rule of thumb–the process mass flux (mass flow rate per unit cross-section of 

tube must be greater than 1000 kg/m2s.  Observation during plant operation had shown that 

dryout, as witnessed by coking occurred just before bends.  Indeed, the bend and part of the 

pipe upstream are sometimes lagged to prevent coking.  Chong et al. (2005) modelled the 

mainly annular flow which occurs in these systems.  They allowed for evaporation of the 

film, its depletion by entrainment into drops and its augmentation by drop deposition.  They 

also allowed for the effect of the bends by assuming that all drops are deposited as they pass 

through the bend.  Their results showed that dryout usually occurs just before the bend.  They 

also found that there was a boundary on a heat flux versus mass flux plot which identified 

when dryout would occur.  For heat fluxes which are typically employed, the corresponding 
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mass flux is 1000 kg/m2s confirming the rule of thumb mentioned above. Predictions of the 

occurrences of dryout are hence vital for the design optimization, in terms of safety, cost and 

efficiency of industrial equipment.  

 

1.1 Two-phase film thickness distribution in 180o bends 

Alves (1954) studied air–water and air–oil flow in a four pass one inch bore horizontal 

pipeline contactor. Between each pass there was a return bend in a vertical plane, the 

direction of flow being upwards. The curvature ratio R/D was equal to 14. He observed that 

annular flow, which occurred in the horizontal passes for a superficial gas Reynolds number 

greater than 40000, was stable in the bend. Visual observation suggested that the liquid film 

was thicker on the inside of the bend than on the outside.                

 

Hills (1973) and Anderson and Hills (1974), reported data on liquid film thickness, axial 

pressure profiles, gas velocity distribution, and droplet entrainment in the annular flow 

regimes in an inverted 180o return bend. The diameter and radius of curvature of the bend are 

25 and 305 mm, respectively. They reported that an increase in film thickness on the inside of 

the bend can be attributed to the action of gravity and to the secondary flow existing in the 

gas phase. They observed a change in flow pattern from annular to stratified flow in the bend 

at low liquid flow rates. On the other hand, for the high liquid flow rates, a local maximum in 

the film thickness was seen on the inside and outside of the bend. 

 

The distributions of water films and entrained droplets in air–water annular flows in 180o 

horizontal bend were investigated by Balfour and Pearce (1978) using sampling probes. The 

diameter and radius of curvature of the bend are 25 and 48.5 mm, respectively. They took a 
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series of measurements with the probes positioned at 45o intervals around the tube exit and at 

varying radii. They concluded that in those annular flows where the air speed is high, many 

of the entrained droplets are thrown very rapidly to the wall and that the entrained fraction 

tends to be negligible for high quality annular flows where the films are thin.  

 

Usui et al (1980, 1981, and 1983) measured the average void fraction over the bend using 

quick closing valves. Whilst the horizontal and vertical up-flow cases could be reasonably 

represented by the correlation of Smith (1971) - except at the lowest quality - the down-flow 

data was significantly under predicted. In the latter case, they proposed a correlation in terms 

of a modified Froude number, Fr. Fr, is given by equation (1). 
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Where, Rb is the radius of the bend, g is the acceleration due to gravity, gs the value in the 

straight pipe, USL and USG represent liquid and gas superficial velocities, respectively, and 

L and G represent liquid and gas densities, respectively. 

Tingkuan et al. (1986) conducted experimental work involving flow pattern transitions over 

wide velocity ranges during co-current air–water flow in a 21.5 mm internal diameter vertical 

U-shaped tube with a bend of radii 694, 500 and 320 mm, respectively. They determined the 

flow patterns using visual observation and electrical conductance probe. They then compared 

their transition data to those reported by Mandhane et al. (1974) and Weisman et al. (1981). 

Mandhane et al. (1974) carried out experimental work in a 50 mm internal diameter 

horizontal pipe using air–water as the model fluid while on the other hand Weisman et al. 

(1981) conducted experimental work in a 12 mm, 25 mm and 51 mm internal diameter 
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vertical and upwardly inclined pipes using air–water. Tingkuan et al. (1986) concluded that 

their data fitted both the Mandhane et al. (1974) and Weisman et al. (1981) transition criteria 

well and that the major effect of the bend on the flow patterns is the considerable expansion 

of the stratified flow regime. This conclusion confirmed the earlier work of Hills (1973).  

 

Yu et al (1989) measured void fraction using a fibre optic probe over cross sections at 

different angles around the bend. They found that the equations proposed by Usui (1992) 

over-predict in upward flow and under-predict in downward flow. For the cross-sectionally 

averaged void fraction they found an initial decrease in up flow followed by an increase. For 

downward flow, the behaviour was much more complex. As Yu et al. (1989) were working in 

the bubbly and slug flow regions, the observed decrease in void fraction probably 

corresponds to the observed flow reversal, an occurrence that would increase the liquid 

holdup. 

 

Poulson (1991) studied mass transfer and erosion at bends with annular flow through an 180o 

bend with up-flow. He employed an electrochemical technique and determined the spatial 

variation of mass transfer. His results showed a strong increase on the outside of the bend just 

beyond the line of sight position. The mass transfer remained high for the rest of the bend. He 

concluded that the level of enhancement is a strong function of the gas velocity but did not 

show much dependence on liquid flow rate. From hydrodynamic studies of annular flow, 

Usui (1992) noted that the behaviour of the liquid film was greatly affected by the secondary 

flows caused by the centrifugal forces. This result was confirmed by Chakrabati (1976) in a 

horizontal 180° bend, Anderson and Hills (1974) in an inverted U, Kooijman and Lacey 

(1968) and Maddock et al (1974) in 60o to 90o bends at the top of a vertical pipe. 
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Sakamoto et al. (2004) carried out experimental work in a horizontal 180o bend using air–

water as the working fluid. The diameter and radius of curvature of the bend are 24 and 135 

mm, respectively. They employed the conductance type void probe to measure the liquid film 

thickness and an L-shaped stainless steel sampling tube to measure the local droplet flow 

rate. They reported the distributions of annular liquid film thickness and the local drop flow 

rate in the gas core in a straight pipe and at the end of three U-bends at horizontal to 

horizontal (upward), vertical upward, 45o upward to the horizontal. They claimed that the 

local flow rate of droplets in the gas core in horizontal pipe flow reaches a minimum near the 

lower wall of the pipe and a maximum near the upper wall. 

 

Recently, Abdulkadir et al. (2012) carried out an experimental investigation on the behaviour 

of film fraction in a vertical 180o bend using air and water as the model fluids. The diameter 

and radius of curvature of the bend are 127 and 381 mm, respectively. They carried out 

measurements of cross-sectional film fraction using conductance ring probes placed at 17 

pipe diameters upstream of the bend, 45o, 90o and 135o into the bends and 21 pipe diameters 

downstream of the bend. The probe was placed 17 D upstream as a compromise between 

being a well developed flow as far from the mixer as possible and not too close to the start of 

the bend. The same applies to the 21 D on the outlet. The choice of the measurement 

locations is justified by the conclusions drawn by Golan and Stenning (1969).  They reported 

that the effect of the bend on phase distribution disappeared by 10 D downstream of the end 

of the bend for the inverted U-bend case. Abdulkadir et al. (2012) concluded that the average 

film fraction is higher in straight pipes than in bends. And that the condition for which the 

liquid goes to the outside or inside of the bend can be identified based on a modified form of 

Froude number, a proposal first made by Oshinowo and Charles (1974). It is worth 
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mentioning that the averaging effect of the conductance rings can result in differences in the 

time-varying data, as some details of the asymmetric nature of the liquid film thickness 

profiles can be affected. In addition, the precise knowledge of the liquid film thickness is 

complicated by the fact that in many flows of practical interest, such as annular or churn 

flows, the interface of the film is disturbed by complex waves. Consequently, a probe 

designed to measure the instantaneous liquid film thickness must accurately measure 

localized, small-amplitude, high-speed disturbances. These cannot be accurately achieved 

using the conductance ring probes.  

 

A critical review of the literature, concerning liquid film thickness in bends has revealed that 

the present state of understanding of liquid film thickness distribution in return bends is 

limited to two-phase gas–liquid flow in small diameter pipes with air–water as the model 

fluids. On the matter of large diameter pipes, the only data that was reported is by Abdulkadir 

et al. (2012). In their work, it was the cross-sectional film fraction but not liquid film 

thickness around the bend being measured. However, obtaining an estimation of the liquid 

film thickness from the conductance ring probe will lead to an oversimplification of the 

results. This is because using the film fraction results to obtain liquid film thickness will be 

based on the assumption of an ideal annular flow in which the liquid flows as a smooth thin 

film on the pipe wall with the gas in the centre. However, in practice the liquid film is not 

smooth but covered by a complex system of waves. These waves according to Hewitt and 

Whalley (1989) and Azzopardi and Whalley (1980) are very important as the sources of the 

droplets that are entrained in the gas core. Azzopardi et al. (1983) reported that the waves in 

large diameter pipes are circumferentially localised instead of being coherent around the 

circumference as observed by Hewitt and Lovegrove (1969) for smaller pipes.  
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It is against these backgrounds that the present work will investigate the behaviour of liquid 

film thickness distribution in a bend with pipe diameter and bend radius of 127 mm and 381 

mm, respectively. The work focuses on churn and annular flows. 

2. Experimental apparatus  

2.1 Experimental rig and test procedure  

The facility used in the present study has been previously reported by Abdulkadir et al. 

(2012) where more details can be found. A brief description of the rig is presented here for 

the convenience of readers. A schematic diagram of the experimental facility is shown in 

Figure 1.  
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Figure 1: Schematic diagram of the experimental facility             

 

The water stored in the bottom of the separator was pumped to a gas–liquid mixer before it 

entered the riser, flowed into the bend, went down the downcomer and returned to the 

separator.  The separator is a cylindrical stainless steel vessel of 1 m in diameter and 4 m high 

filled with 1,600 litres of water. Air used as the gas phase was driven to the gas–liquid mixer 

by two liquid-ring-pump compressors powered by two 55 kW motors. The gas flow rates 

were regulated by varying the speed of the compressor motors (up to 1500 rpm) together with 
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the valves just below the gas flow meters. Before the start of the experiments, the flow loop 

was pressurised to 2 barg using compressed main air.  

 

Downstream of the mixer, the two-phase mixture travels for 11m along a 127 mm internal 

diameter vertical riser in which annular or churn flow is established. The test bend with the 

same internal diameter was mounted on top of the riser. The 180o return bend has a radius of 

curvature of 381 mm (R/D = 3) and consist of four modular blocks and one instrumentation 

section containing all the measuring sensors (parallel-ring probes, parallel-wire probes and 

flush-mounted pin probes). This modular construction enables the measuring section to be 

inserted every 45o along the bend as shown in Figure 1. Beyond the bend, the air–water flow 

mixture travels a further 9.6 m vertically downwards in a downcomer and 1.5 m horizontally 

to the separator where the gas and the liquid are separated and directed back to the 

compressors and the pump respectively, to create a double closed loop. Care has been taken 

to ensure that there are no discontinuities of diameter at each joint (Abdulkadir et al. (2012)).    

 

In all of these experiments, the temperature of the air and mains tap water was 25o C. The 

liquid and gas superficial velocities employed were in the ranges from 0.02 to 0.2 m/s and 3.5 

to 16.1 m/s, respectively. The experiments were carried out at a pressure of 2 barg.  

 

2.2 Instrumentation 

2.2.1 Liquid film thickness measurement  

For gas–liquid annular flows in which the liquid is electrically conducting, the conductance 

measurements are the most widely used technique to measure the liquid film thickness. The 

technique is based upon measurements of the electrical conductance between two electrodes 

in contact with the liquid film. Different types of electrodes such as needle probes, parallel 
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wire probes and flush mounted pin probes have been reported by researchers over the last 

decades, e.g., Koskie et al. (1989), Fossa (1998), Conte and Azzopardi (2003), Belt (2006) 

and Geraci et al. (2007). 

The types of probe employed in this study were chosen on the basis of the range of their 

operability. The liquid film in horizontal annular flow was observed to be asymmetrical with 

a thick pool at the bottom and a thin liquid film at the top. Liquid film thickness 

measurements were carried out using a conductance technique, which employed either flush 

mounted or parallel wire probes. The first type was used for the almost entire section of the 

pipe while the second type, suitable for higher liquid film thickness, was used only for the 

bottom section of the bend.  

(a) A parallel wire arrangement 

Wire probes were originally used by Miya (1970), Miya et al. (1971) and Tatterson (1975). 

According to Brown et al. (1978) these probes give a linear response versus liquid film 

thickness and allow more localised measurements of thicker films to be carried out. Possible 

objections come from the perturbation which may be induced in the flowing film by the wires 

and from modifications to the shape of the liquid surface due to the wetting of the wires by 

liquid. However, in a static film the meniscus which can be observed around thin platinum 

wires is very small if compared with the liquid film thickness to be measured. According to 

Brown et al. (1978), a more significant disturbance may occur when the probe has to work in 

a wavy film. When the liquid height decreases, a thin liquid layer sticks to the probe which 

might indicate a liquid level higher than the actual level, thus introducing a certain amount of 

lag in the dynamic response of the probe. This phenomenon has been experimentally 

investigated by Pearlman (1963) who reports these errors to be negligible and that the 

response of the probe is almost instantaneous. Finally, Brown et al. (1978) advised that the 
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disturbances in the flow caused by stationary wires can be minimised by the use of very thin 

wires. 

In this work, the parallel-wire probes used to measure liquid film thickness at the bottom of 

the bend are the same type employed by Rea and Azzopardi (2001), Conte (2000), Conte and 

Azzopardi (2003) and Geraci et al. (2007). The parallel wires shown in Figure 2 may also be 

referred to as a harp arrangement. In this methodology, five pairs of stainless steel wires are 

stretched along chords of the pipe cross-section and the resistance between pairs measured. 

According to Miya et al. (1971), Brown et al. (1978), Koskie et al. (1989) and Conte and 

Azzopardi (2003), the electrodes are two parallel thin wires stretched across a channel or 

along chords of the pipe or protrude from the wall supported only at one end.  

 

The dimensions of the parallel-wire probe used in this work are shown in Figure 2.  The 

spacing between the two wires of each pair is of 5 mm and the distance between pair is 20 

mm, with the central pair placed symmetrically about a vertical diameter. Thin wires based 

on the recommendations of Pearlman (1963) and Brown et al. (1978) were used as the wire 

probes. The wires have a diameter of 0.33 mm and are stretched across an acrylic resin ring 

of 25 mm thickness. To ensure proper tension of each wire, plastic screws are inserted in a 

threaded hole at each end to keep the wires taught. Particular care had to be taken to avoid the 

wires snapping on the sides of the metallic screw when they were fitted. Because the flow 

patterns investigated in this study were either annular or churn, precaution had to be taken to 

eliminate the route for current at the top of the main pipe, across the thin film. The top 15 mm 

of the wires were insulated with a synthetic waterproof coating to prevent errors being caused 

by the liquid film at the top of the bend. As the liquid height varies, the surface of active 

electrode increases and so the resistance decreases because of the larger area of passage for 

the electric current. The output depends on the geometrical dimensions and on the 
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conductivity of the medium (liquid). The liquid height (liquid film thickness)/output 

relationship is obtained by calibration. The response of this system is fairly linear and may be 

successfully used for thick films. The measurement accuracy of the wire probes according to 

Brown et al. (1978) is within 10 % error. However, for thin films according Conte and 

Azzopardi (2003), it is a less reliable method because of its intrusive nature, i.e., the 

formation of a meniscus due to surface tension effects. Also, the local character of 

measurement depends on the distance between the wires.   

The electronic circuit to apply voltage and filtering is the same as used by Rea and Azzopardi 

(2001), Conte (2000) and Conte and Azzopardi (2003). An a.c carrier voltage of 10 kHz 

frequency was applied across each pair of electrodes. In this frequency range, measures are 

strictly reproducible and stable. For details of the electronic circuits and calibration 

procedure, the reader is referred to Rea and Azzopardi (2001).  
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Figure 2: Sketch of the test section for liquid film thickness at the bottom of pipe. Measurements are in mm. 

 

(b) Flush mounted pin probes 

This method is used for very thin liquid films, typically up to 2.5 mm. In this case, each 

electrode is a pin mounted flush with the pipe surface and coupled to another electrode close 

to it as shown in Figures 1 and 3. If care is taken in the mounting of probes, the method is 

virtually non-intrusive. The electric field is very weak away from the pipe surface and has a 

negligible contribution to the passage of current. The response of the pin probe is initially 

linear to the thickness of the liquid film (typically up to 2 mm) and then asymptotically 

flattens to a uniform value to the thicker liquid film. This phenomenon is called probe 

“saturation”. When the probe is saturated, its output signal is not sensitive to the change of 

liquid film thickness. To enlarge the range of measurement, the diameter and separation of 

pins needs to be increased. However, the greater the spacing, the more averaged is the result 
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over space. To obtain an optimum measurement of the liquid film thickness therefore, a 

balance must be struck between range of operability and local character of the measurement 

(Abdulkadir (2011)). The measured liquid film thickness is assumed to be the value at the 

mid-point between the centres of the electrodes. 

 

 

                          

 

Figure 3: Cross-sectional view of the test section for liquid film thickness measurements at the top of the pipe. 

Dimensions are in mm. 

 

 

In the present study, Figure 3 shows the configuration for the test section to locally measure 

the liquid film thickness on the outside wall without disturbing the flow. The electrodes were 

spaced by every 10o from each other and 11.84o from the closest wire probe assembly. The 

probes were made from 1.5 mm diameter welding rods, made of stainless steel to avoid 

problems of corrosion. The probes were positioned onto the test section by inserting each pair 

of the electrodes through a cylindrical Perspex rod of 10 mm diameter to ensure accurate 

location of the probes without causing any damage to the test section. Particular consideration 

was paid to the different hardness of steel and Perspex so as to avoid jamming of the lathe 
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and disruption of the test section. This became necessary in order to ensure that the probes 

were perfectly flush with the inner diameter of the test section. On each side of the test 

section, 20 pairs of electrodes were located as shown in Figure 3. The sequence is shown on 

the figure, 1, 2, 3, 4, 5, 6 ... 20. The voltage was applied by an electronic box designed and 

previously used by Conte (2000) and Conte and Azzopardi (2003); the probes were driven by 

10 kHz current. According to Belt (2006), the flow of electrical current from a transmitter in 

one probe to the neighbour receivers and transmitters (cross–talk) will decrease the spatial 

resolution of the sensor and increase the measurement errors of the liquid film thickness. To 

reduce the effect of cross–talking, the 20 pin probes were categorized into 4 groups. The first 

group classified as A is made up of pins 1, 5, 9, 13 and 17 while pins 2, 6, 10, 14 and 18, as 

group B. On the other hand, group C is made up of pins 3, 7, 11, 15 and 19 and finally the 

fourth group classified as D is made up of pins 4, 8, 12, 16, and 20. Moreover all the probes 

from the four groups were calibrated simultaneously in the same position as they were 

located in the test section and with the same signal acquisition as has been used during the 

experiments. 

The pin probes were calibrated simultaneously as they were employed during measurements 

of liquid film thickness around the bend. It was not possible to calculate the response of the 

instrument. Calibration by simulating the exact geometry of the system was therefore 

necessary. For this purpose a non-conducting solid rod (PVC) with the same inside and 

outside diameter as the flow pipe was therefore used for the calibration procedure. Starting 

from one extremity, the diameter of the rod was reduced progressively by cutting 0.37, 0.62, 

1.5, 2, 2.43 and 2.78 mm off the original surface in the radial direction.  This was done to 

produce a static film of liquid on the wall of the test section by filling the annulus between 

the PVC rod and the pipe wall with a conductive liquid (water). The diameter of the rod was 

measured with an accuracy of better than 10 m  (Zangana (2011)). The rod was centred 
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correctly at the bottom and the top of the test section using a plastic insert made specifically 

for that purpose. The calibration was repeated several times and with different rotations as an 

extra check. The probes were calibrated using water with different conductivities (491, 564 

and 600 cmS / ). The output voltage as a function of liquid film thickness was recorded and 

as a result the calibration curve for each group of pin probes was obtained.  

 

Tap water, which was used in the experiments, was found to have conductivity between 491 

and 600 cmS / . If not replaced the water quickly became contaminated and mineral deposits 

began to show, mostly on the wires. To avoid large variations of conductivity within the same 

experimental run and to reduce fouling of the electrodes, fresh water was fed continuously to 

the separator/storage tank and discharged to drain. Calibrations were repeated periodically 

without cleaning of the electrodes. From the gradient of the signal/liquid film thickness curve 

and the accuracy of the signal measurement, the uncertainty in liquid film thickness at the top 

of the pipe is about 11 %. The value for thicker liquid films at the bottom of the bend is much 

lower. 

 

3. Results and discussion 

This work reports the results of a series of studies conducted to investigate the multiphase 

air–water flow experienced around a 180o return bend. The parameters which were measured 

are the local liquid film thickness distribution within the bend, including 45, 90 and 135o. The 

ranges of the independent variables, the gas and liquid flow rates, expressed as superficial 

velocities are given in Table 1. In total, 102 data points were obtained during the test runs for 

each of the 45, 90, and 135o bend conditions.  
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              Table 1: The range of variables 

ugs (m/s) uls (m/s) Regs Rels 

3.5–16.1 0.02–0.2 86413–402,000 2535–25350 

 

3.1 Time averaged cross-sectional liquid film thickness in the 180o bends: 

Figure 4 shows a plot of averaged liquid film thickness against bend angle for different liquid 

and gas superficial velocities. From the figure, the abscissa represents the bend angles 

considered in this study, 45, 90 and 135o while the averaged liquid film thickness is the 

ordinate. The averaged liquid film thickness used to plot Figure 4 was obtained by integrating 

over the cross-sectional area of the local film thickness according to equation 2. 
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Where  and  represent the average and local liquid film thickness, respectively and D is 

the internal diameter of the pipe. 

 

One interesting observation made in this work is that over the range of liquid flow rates 

studied, the liquid flow rate has a significant effect on the liquid film thickness distribution in 

the bend.  
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 Figure 4: Variation of averaged liquid film thickness with the bend angle at liquid superficial velocity of                          

(a) 0.02 m/s (b) 0.04 m/s and (c) 0.2 m/s 

 

At liquid and gas superficial velocities of 0.02 and 6.2 m/s, the averaged liquid film thickness 

can be observed to peak at 90o. This is due to the fact that at this location the effect of gravity 

is more pronounced and as such drains the liquid to the bottom of the pipe. There is a gradual 

shift in the location of the maximum average liquid film thickness in the bend, from 90o to 

the 135o bend position as the gas superficial velocity is increased to 14.0 m/s. This is as a 

consequence of shear forces overcoming gravity and as a result more droplets are deposited at 

the walls (45 and 135o bends) supplied with liquid. The end result is that the liquid film at 

these locations becomes thick. However, because there are more droplets deposited at the 

135o bend, the liquid film is thickest here. At 16.1 m/s gas superficial velocity, there is a 

linear relationship between the average liquid film thickness and the bend angle. Though, 

more experimental data are required to substantiate this argument. The 

entrainment/deposition theory also received some support from the experiments of Laurinat 
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et al. (1985) using two horizontal pipes with internal diameters of 95.3 mm and 25.4 mm 

using air–water as the model fluids. They concluded that for the large diameter pipe, 

entrainment/deposition is the mechanism that maintains the liquid film at the top of the pipe. 

In addition, they observed waves only at the bottom of the pipe. On the other hand, for the 

smaller pipe, they concluded that the entrainment/deposition is a dominant factor only for 

liquid superficial velocities lower than 0.015 m/s. 

When the liquid superficial velocity is doubled to 0.04 m/s, and at gas superficial velocity of 

6.4 m/s, the same trend that was observed for liquid and gas superficial velocities of 0.02 and 

6.2 m/s, respectively is also seen here. Again, the averaged liquid film thickness is observed 

to peak at 90o. Interestingly, the linear relationship between the average liquid film thickness 

and the bend angle took place much sooner than that at the lowest liquid superficial velocity. 

This is because at higher liquid flow rates, the entrainment phenomenon is stronger thereby 

provoking thickening of the film at the 45 and 135o bends positions.   

At liquid superficial velocity of 0.2 m/s and gas superficial velocity of 3.5 m/s, the averaged 

liquid film thickness can be seen to peak at 90o as indeed observed for the other liquid 

superficial velocities considered. As the gas superficial velocity is increased further, there is a 

gradual shift in the position of the film in the bend. At gas superficial velocity of 14.2 m/s, 

the relationship between the average liquid film thickness and the bend angle is linear.  

 

3.2 Circumferential liquid film thickness variation in the bend: 

 
The variations of the liquid film thickness with four liquid flow rates (0.02, 0.04, 0.08 and 0.1 

m/s) are shown in Figure 5. The shape of the profiles varies with the liquid and gas 

superficial velocities. Here, the polar plots show that at 0.02 m/s and 0.04 m/s liquid 

superficial velocities and gas superficial velocities of 6.2 m/s and 6.4 m/s, the liquid film 

distribution is less symmetrical for the three bend angles. But at higher liquid superficial 
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velocities, the liquid film becomes much thicker at the bottom and is significantly 

asymmetrical. The plots at liquid superficial velocities of 0.08 m/s and 0.1 m/s show that the 

profile of the liquid film thickness changes significantly when the bend angle is increased 

from 45o to 135o. At the 45o and 90o bend positions, the liquid film is thick at the inside of the 

bend. The thick films become a source of new droplets and at the inside of the 135o bend 

location; the liquid film is thinner than at the 45o and 90o bend designations. At the inside of 

the 90o bend position, the liquid film is thicker than that at the 135o but less than that at the 

45o bend. This may be due to the deposited droplets falling down owing to gravity drainage 

as a liquid film at the inside of the 135o bend position. Though, a thickening of the liquid film 

outside the three bends is also visible, most especially at the 90o and 135o positions. Because 

the ratio of average liquid film thickness to pipe diameter is very small, the variation of liquid 

film thickness cannot be seen clearly. It is in view of this development that subsequent results 

will be displayed in Cartesian coordinates. Figure 6 shows the variation of the time averaged 

liquid film thickness that occurs in the bend. Here, the abscissa is the circumferential angular 

position of the probes and the 90 and 270o are the top and bottom of the pipe. 0 and 180o 

represents the side of the bend. 
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Figure 5: Polar plots of average liquid film thickness in the bend at (a) liquid superficial velocities of 0.02 

m/s and 0.04 m/s and (b) liquid superficial velocities of 0.08 m/s and 0.1 m/s. Some points were omitted as 

shown in some plots based on the fact that they became saturated, most especially at higher liquid flow rates. 

The pin probes have excellent spatial resolution and thickness resolution for measurements of the order of 

5.2 mm, but became saturated (suffer loss of resolution for thicker films). 
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3.3 Spatial variations of the average liquid film thickness in the bend: 

 
The average liquid film thickness profiles are presented in Figure 6 that were measured for 

the 45, 90 and 135o bends. The data collected can be used to understand the variation of 

liquid film thickness distribution with gas and liquid superficial velocities. Comparison of 

these profiles shows that the general form of these is greatly influenced by both the gas and 

liquid superficial velocities. The liquid film thickness inside the bend decreases with 

increasing gas superficial velocity as the increased interfacial shear produces liquid 

entrainment in the gas core. In spite of this decrease there are fewer tendencies for film 

breakdown (when liquid film thickness equals zero) to occur at higher gas rates except at the 

45o bend. The same tendency, according to Hills (1973), has been observed for straight pipe 

horizontal flow with low liquid rates where at higher gas rates stratified flow gives way to 

annular flow.  
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Figure 6: Spatial liquid film thickness distribution at liquid superficial velocity of (a) 0.02 m/s and (b) 0.2 m/s. 

Closed symbols–wire probes; open symbols–pin probes. 

 

At liquid superficial velocity of 0.02 m/s, the liquid film thickness inside the bend decreases 

with an increase in gas superficial velocity as shown in Figure 6 (a). In contrast, for the 

outside of the bend, the liquid film thickness increases and then remains almost constant with 

an increase in gas superficial velocity. Though, the liquid films are wavy. The decrease in 

liquid film thickness on the inside of the bend can be attributed to the high interfacial shear 

stress, bringing about an increase in liquid entrainment in the gas core. The increase on the 

other hand for the outside of the bend is a result of an increase in droplet deposition outside 

the bend. This is in agreement with the observations reported by Flores et al. (1995). Flores et 

al. (1995) confirmed that a secondary flow exists in horizontal annular flow using a twin 

axial vorticity meter. They concluded that at low gas velocity the major factor which 

transports liquid into the upper part of the tube causing the transition from stratified to 

annular flow is the circumferential secondary flow in the gas core. That at higher gas 

velocities, the deposition of entrained liquid is a significant factor in transporting liquid to the 
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top of the tube. In addition, the observations made here supports the arguments presented in 

Figure 4. At 16.1 m/s gas superficial velocity also, the location of the maximum and 

minimum liquid film thickness both inside and outside the bend shifts to the 135o and 45o 

bends, respectively. Though, the change in the magnitude of the liquid film thickness outside 

the bend is insignificant with an increase in gas superficial velocity.  

For 0.2 m/s liquid superficial velocity, the maximum liquid film thicknesses for the inside 

and outside of the bend are found at 45 and 90o, respectively, as shown in Figure 6b. For the 

45o bend, because liquid flow rate is high, the centrifugal force therefore has a greater 

influence and acts on it like a cyclone: throwing the liquid to the outside of the bend. Gravity 

on the other hand, drains the liquid to the bottom of the pipe. In addition, some of the liquid 

that is meant to move up to the 90o bend due to its lower momentum and curvature of the 

bend return back (back flow) to the 45o bend. These two scenarios could be the explanation 

for why the observed liquid film at the bottom of the 45o bend is thicker than the other 

locations, 90 and 135o bend locations. Some of the liquid at the bottom and top of the 90o 

bend due to the action of gravity and shape of the curvature of the bend, drain down to the 

bottom of the 135o bend and accumulate there. Also the droplets that impinged on the wall 

also deposit at the 135o bend. This could be the reason why there is a thick film at the 135o 

bend but less than those found at the 45o and 90o bends. This claim is supported by analyzing 

the images taken by a high speed video camera. For the outside of the bend scenario, the 

liquid film is thickest at the 90o, followed by the 135o and thinnest at the 45o bend. The film 

is wavy. This is an indication that more liquid is drained from the top of the 45o bend. As a 

consequence of this drainage, the liquid film at the outside of the 45o bend thins out and 

become more uniformly distributed around it. The uniformity of the liquid film could be due 

to a balance of circumferential drag, shear and gravity forces. Another possible explanation 

could be that the pin probes that are meant to cope with thin liquid films could not see the 
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expected thick films outside the 45o bend. At gas superficial velocity of 14.2 m/s, as expected 

the location of the liquid film inside the bends in increasing order are 135o, 90o and 45o, 

respectively. This therefore suggest that the reverse flow of liquid that was observed for the 

90o bend at gas superficial velocity of 3.5 m/s is not seen here: most of the liquid is able to 

climb up into the bend and accumulate there. For the outside of the bend, most of the liquid at 

higher gas flow rate are being drained to the bottom of the bend and as a consequence the 

liquid thins out in the 3 bends.  

It can be concluded that contrary to the observations reported by Hills (1973) and Anderson 

and Hills (1974), with regards to liquid film distribution at higher liquid flow rates and lower 

gas flow rates, the liquid film thickness on the inside of the bend is indeed thicker than on the 

outside. Three reasonable explanations suggest themselves: (1) Anderson and Hills (1974) 

used a bend with a curvature ratio 4 times that of the present study and the implication is 

more liquid film is drained from the top to the bottom of the bend. (2) The ratio of surface 

tension to pipe diameter in this study is small, experiments therefore suggest that the effect of 

gravity has overcome the circumferential drag and as a result the liquid film drains to the 

bottom of the bend. (3) The pin probes could not cope with thicker films greater than 2.5 mm 

and became saturated as a consequence suggests a thinning of the liquid film. As the gas 

superficial velocity is increased further, the film at the outside of the bend drains out almost 

completely.  

 

3.4 Comparison between Experiments and Previous Computational Fluid Dynamics 

(CFD) Studies Based on Spatial Liquid Film Thickness Variation in the Bend: 

 

Some disagreements were observed in the data reported by Hills (1973), Anderson and Hills 

(1974) and the present experimental study with regards to liquid film distribution in the bend. 

The reason can be argued by the fact that in the present study the pipe diameter and radius of 

curvature are different. In order to actually find out if the present data is consistent, there was 
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a need to compare experimental data against similar pipe configuration. Hitherto, no such 

experimental data was found in the literature. The aim of this section therefore is to compare 

and verify whether CFD calculations are consistent with the experimental observations 

discussed earlier. The CFD calculations were carried out by Tkaczyk (2011) using similar 

pipe configuration and dimensions, fluid properties and operating conditions to the 

experiment. He modelled the gas–liquid flow as a continuum gas field, continuum liquid film 

and as liquid droplets of varying diameters. The dynamics of the droplet flow in the gas core 

and the interaction between them were accounted for. The liquid film was explicitly solved 

using a modified Volume of Fluid (VOF) method. The droplets were tracked using a 

Lagrangian technique. The liquid film to droplet and droplets to liquid film interactions were 

taken into account using sub-models to complement the VOF model. He took into cognizance 

the fact that in free surface flows, a high velocity gradient at the gas/liquid interface results in 

high turbulence generation. In order to overcome this shortcoming, he implemented a 

correction to the VOF model based on the work of Egorov (2004). Full details can be found 

in Tkaczyk (2011). The model gives a reasonably good prediction of the liquid film thickness 

in the bend. Figure 7 shows the comparison between the experimental results and those 

obtained numerically by Tkaczyk (2011). 
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Figure 7: The distribution of liquid film thickness in the bend at (a) liquid and gas superficial velocities of 0.1 

and 11.24 m/s, respectively and (b) liquid and gas superficial velocities of 0.2 and 12.5 m/s, respectively. Angles 

0–180o represents outside the bend and 181–360o, inside the bend. Closed symbols-wire probes; open symbols-

pin probes; grey symbols represents film thickness measurement with less confidence. 

 

 

At liquid and gas superficial velocity of 0.1 and 11.24 m/s, respectively the model under 

predicts the film thickness outside the 90 and 135o bends. It also under predicts the maximum 

film thickness inside )270( o the 135o bend with an error of 13.2 %. It is interesting to 

note that the model is able to predict the maximum film thickness inside the 45 and 90o 

bends. It is also able to predict the film thickness outside the 45o bend. Though, the error is 

8.3 %. Another interesting observation made here is that the double peak found on the film 

thickness which Adechy and Issa (2004) made an effort to replicate without success is 

correctly predicted. Adechy and Issa (2004) used a Lagrangian/Eulerian approach to simulate 

annular flow in a T-junction. They represented the liquid film as a thin film model based on 

the assumption that the liquid film is thin and behaves like a boundary layer, so that the 
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dominant derivatives are in the direction normal to the flow. Although, the first and second 

peaks separated by the maximum film thickness are shown to occur respectively at a position 

200o and 340o. The former occurring at 2.5o less than that found experimentally whiles the 

latter 14.2o more. 

At liquid superficial velocity of 0.2 m/s and gas superficial velocity of 12.5 m/s, the model is 

able to predict the maximum film thickness inside and outside the 135o bend except for some 

few points outside. The model under predicts the maximum film thickness inside the 45 and 

90o bends. The percentage error of the former is 5.7 whilst for the latter, 3.3. However, it is 

able to predict the film thickness outside the 45o bend well.  

It can be concluded therefore that the comparison between CFD results and experiment is 

very good and that the present experimental data have been successfully used to validate 

models for the prediction of spatial film thickness variation in the bend. 

 

4. Conclusions: 

A comprehensive set of measurements has been taken to study the effect of liquid film 

thickness distribution in a bend of 127 mm internal diameter and bend radius of 381 mm at 

various gas and liquid flow rates. The liquid film thickness distribution in the bend has been 

measured with pin and wire probes. With the former for measuring thin films  2.5 mm 

outside the bend while the latter for thick liquid films  2.5 mm inside the bend. These 

measurements have been supplemented by visual observation. 

1) For liquid and gas superficial velocities of 0.02 m/s and 6.2 m/s, respectively, the 

averaged liquid film thickness was observed to peak at 90o. As the gas superficial 

velocity is gradually increased to 14.0 m/s, the triangular relationship begins to 

diminish and tends towards linear. At the higher liquid superficial velocities, this 

change took place at the lower gas superficial velocities. 
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2) The results of polar plots of average liquid film thickness in the bend showed that 

the distribution of the liquid film is not symmetrical with thicker films on the 

inside of the bend due to the action of gravity. 

3) Deposition of entrained droplets, which has a higher momentum than the gas 

which carries them, keeps the film on the outside of the bend supplied with the 

liquid. This is consistent with the observations reported by Flores et al. (1995). 

This will be of vital importance in applications where it is desirable to maintain a 

liquid film on the pipe wall. 

4) At higher liquid flow rates, although the liquid film thickness is always relatively 

high on the inside of the bend due both to the lower interfacial shear stress and 

gravity drainage of the liquid film to the bottom of the pipe. The liquid film thins 

out in the three bends location.  

5) The comparison between CFD results reported in literature and experiment 

showed a good agreement. The double peak found on the liquid film thickness 

which Adechy and Issa (2004) failed to replicate is correctly predicted by 

Tkaczyk (2011). 
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Figure captions: 

Figure 1     Schematic diagram of the experimental facility 

Figure 2     Sketch of the test section for liquid film thickness at the bottom of pipe 

Figure 3    Cross-sectional view of the test-section for liquid film thickness measurement at 

the top of the pipe 

 

Figure 4   Variation of average liquid film thickness with the bend angle at liquid superficial 

velocity of (a) 0.02 m/s (b) 0.04 m/s and (c) 0.2 m/s   

 

Figure 5   Polar plots of average liquid film thickness in the bend at (a) liquid superficial 

velocities of 0.02 m/s and 0.04 m/s and (b) liquid superficial velocities of  0.08 m/s and 0.1 

m/s   

 

Figure 6    Spatial liquid film thickness distributions at liquid superficial velocity of (a) 0.02 

m/s (b) 0.2 m/s   

 

Figure 7  The distribution of liquid film thickness in the bend at (a) liquid and gas superficial 

velocities of 0.1 and 11.24 m/s, respectively and (b) liquid and gas superficial velocities of 

0.2 and 12.5 m/s, respectively. 
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Table captions: 

Table 1   The range of variables 

 

 

 

 

                           

 

 

 

 

 

 

 

 

 

 


